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Abstract

We give a group-theoretic proof of the following fact, proved ini-

tially by methods of topological design theory: Up to isomorphism,

the number of regular hamiltonian embeddings of Kn,n is 2 or 1, de-

pending on whether n is a multiple of 8 or not. We also show that

for each n there is, up to isomorphism, a unique regular triangular

embedding of Kn,n,n.
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1 Introduction

A 2-cell embedding of a graph on a surface (orientable or not) is said to be
regular if the automorphism group of the embedding acts transitively, and
hence regularly, on the flags (which, in this note, can be identified with mu-
tually incident vertex-edge-face triples) of the embedding. If an embedding
of a graph in an orientable surface admits a group of automorphisms acting
transitively on the darts (edges with direction) of the graph, we say that the
embedding is orientably regular.
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The study of orientably regular and regular embeddings has a rich his-
tory and is closely related to group theory, hyperbolic geometry, theory of
Riemann surfaces, and Galois theory; see [11] for a survey. The quest for
classification of regular embeddings takes three natural directions: by auto-
morphism groups, by supporting surfaces, and by embedded graphs. Except
for [9, 14], little is known in the first direction. For recent progress in the
second direction we refer to [3, 1]. As regards the third direction, the only im-
portant class of graphs for which orientably regular and regular embeddings
have been classified by the time of submission of this article are complete
graphs [8, 15]. However, significant results have lately been obtained for the
next two natural candidate classes, the complete bipartite graphs Kn,n (see
e.g. [10]) and the n-cubes (see e.g. [4]), in both cases extending earlier re-
sults of [12]. We remark that it is easy to prove uniqueness of orientably
regular embeddings of Kp,p where p is a prime [13]; face boundaries in these
embeddings are hamiltonian cycles.

In this note we extend the result of [13] by classifying, for all n, the
regular embeddings of Kn,n in which faces are bounded by closed walks of
length at least 2n. It turns out that in such maps, faces boundaries must
be hamiltonian cycles (and we speak about hamiltonian embeddings). We
also prove that, up to isomorphism, for each n the graph Kn,n,n admits a
unique regular embedding with triangular faces. We note that uniqueness of
orientably regular embeddings of the graphs Kp,p,p for prime p follows also
from [5]. All these embeddings are forcibly orientable.

Special cases of the above results have, rather surprisingly, been derived
first by methods of topological design theory, with restriction to orientable
embeddings [6, 7]. The purpose of this note is to supply completely different
proofs based on elementary group theory.

2 Regular hamiltonian embeddings of Kn,n

Let e be an edge of a regular embedding M of Kn,n in some surface, with
face boundaries of length 2l ≥ 2n. The automorphism group Gn of M
then contains an element r of order n which rotates the map about a vertex
incident with e. Similarly, Gn contains commuting involutions a, b such that
a rotates the map about the center of the edge e while b reflects M in e. It
is well known that Gn = 〈a, b, r〉; by regularity, |Gn| = 4n2. The conjugate
s = ara is a rotation of M about the other vertex incident with e. The
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automorphisms r, a, s rotate the map in the same local direction (referring
to some open neighbourhood of e) while b reverses the local direction. We
also have brb = r−1 and bsb = s−1.

The subgroup Hn = 〈r, s, b〉 with |Hn| = 2n2 preserves the natural two-
colouring of vertices of Kn,n; clearly Gn = Hn ⋊ 〈a〉. The element rs, of
order l ≥ n, is a colour preserving rotation of a face of M incident with e.
Since r and s fix vertices in different parts, 〈r〉 ∩ 〈s, b〉 = 1. Also, it can be
checked that the cyclic group 〈rs〉 intersects the dihedral groups 〈r, b〉 and
〈s, b〉 just trivially if n ≥ 3. Therefore for n ≥ 3 the group Gn has the form
Gn = Hn ⋊ 〈a〉 where Hn = 〈r〉〈s, b〉 = 〈r, s, b| rn = sn = (rs)n = b2 =
(br)2 = (bs)2 = . . . = 1〉. The supporting surface for M is orientable if and
only if b /∈ 〈r, s〉, and then Hn = 〈r〉〈s〉 ⋊ 〈b〉.

Omitting the trivial spherical embedding of K1,1, the graph K2,2 admits
two regular embeddings: a hamiltonian one in a sphere and a projective-
planar one with face length 8. If n ≥ 3, then from 〈rs〉 ∩ 〈r, b〉 = 1 we obtain
2n2 = |Hn| ≥ |〈rs〉| · |〈r, b〉| = l · 2n, which implies that l ≤ n; since we have
assumed that l ≥ n, we conclude that l = n. In other words, if n ≥ 3, a
regular embedding of Kn,n of face length at least 2n must be hamiltonian.
For such embeddings we have the following classification result.

Theorem 1 If n ≥ 3, the graph Kn,n admits exactly two regular hamilto-

nian embeddings if n is a multiple of 8, and a unique regular hamiltonian

embedding in all other cases; the embeddings are necessarily orientable.

Proof. Since Hn = 〈r〉〈s, b〉 with 〈r〉 ∩ 〈s, b〉 = 1, for each i ∈ [n] =
{0, 1, . . . , n−1} we have (rs)i = rkislibεi for unique ki, li ∈ [n] and εi ∈ {0, 1};
conjugation by ab yields (s−1r−1)i = s−kir−libεi . Let δi = (−1)εi . Inverting
both sides of the last equation and rearranging terms gives (rs)i = rδilisδikibεi .
We see that li = δiki, and so for each i ∈ [n] we have

(rs)i = rkisδikibεi . (1)

Conjugation of (1) by ra leaves the left-hand side of (1) invariant and trans-
forms the right-hand side into (rs)i = ski−1rδikisδibεi . Comparison with (1)
then gives, for each i ∈ [n],

rkisδi(ki−1) = ski−1rδiki . (2)

Suppose that kj = ki for some j 6= i. Then we have (rs)j = rkisδjkibεj .
which, after left multiplication by the inverse of (1) and rearrangement yields
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(rs)j−i = s(δiδj−1)kibεi+εj . Since j 6= i, it follows that εj 6= εi and hence
δj 6= δi, giving (rs)j−i = s−2kib. This, however, contradicts the fact that
〈rs〉 ∩ 〈s, b〉 = 1. We conclude that the n exponents ki ∈ [n] are distinct.
Hence there exists a unique ℓ ∈ [n] such that kℓ = 2.

Suppose first that εℓ = 1. Note that now b ∈ 〈r, s〉 and the embedding is
nonorientable. Then, (2) with kℓ = 2 and δℓ = −1 gives r2s−1 = sr−2 and
conjugation by a results in s2r−1 = rs−2. If n = 3 this reduces to (rs)2 = 1,
contradiction. For n ≥ 4 let us take (2) again but this time for the (unique)
element i ∈ [n] such that ki = 3, that is, r3s2δi = s2r3δi. Multiplying the two
identities and rearranging terms we arrive at s2r2 = r1+3δis−2δi . Taking the
ab conjugate and then inverting both sides leaves the left-hand side of the
last identity unaltered and yields s2r2 = r−2δis1+3δi . Comparing right-hand
sides of the last two equalities leads to r1+5δi = s1+5δi . Since we have assumed
that n ≥ 4 and 〈r〉 ∩ 〈s〉 = 1, it follows that n = 4 if δi = −1 and n = 6 if
δi = 1. The catalog of small regular maps of [3] shows, however, that there
do not exist nonorientable regular hamiltonian embeddings of K4,4 and K6,6.
We note that the only arithmetically feasible candidate for n = 6, the dual
of the map N20.3 of [3], has a non-bipartite underlying graph.

The preceding analysis shows that εℓ = 0. By (2), r2s = sr2. If b ∈ 〈r, s〉,
then the last identity shows that r2 is in the center of Hn; in particular,
r2b = br2. But conjugation by b also satisfies r2b = br−2, which then implies
that r4 = 1 and leads to a contradiction as above. We are therefore left
with b /∈ 〈r, s〉, that is, Hn = H∗

n ⋊ 〈b〉 where H∗

n = 〈r〉〈s〉. This also shows
that there are no regular hamiltonian embeddings of Kn,n in nonorientable
surfaces for any n. Conjugating the identity r2s = sr2 by a ∈ Gn we obtain
s2r = rs2, which implies that 〈r2, s2〉 is a central subgroup of H∗

n.

Let k2 = j, so that (rs)2 = rjsj. It follows that sr = rj−1sj−1 and, by
symmetry, rs = sj−1rj−1. If j was odd then sj−1 and rj−1 would commute,
which would imply rs = sr and j = 2, contradiction. Therefore j must
be even. Still using centrality of 〈r2, s2〉 in H∗

n and conjugation by a ∈ Gn

we obtain (rs)2 = rjsj = sjrj = (sr)2 and (rs)2 = (sr)2 = sr · sr =
rj−1sj−1 · rj−1sj−1 = rj−1sj−1 · rj−2sj−2rs = r2j−3s2j−3rs. After cancellation
we are left with rs = r2j−3s2j−3, which is possible only if 2j − 3 ≡ 1 (mod n)
or equivalently 2j − 4 ≡ 0 (mod n). Since 0 ≤ j < n, the last equation has
only two solutions, namely j = 2 and j = 2 + n/2. The first solution gives
rs = sr and hence H∗

n = 〈r〉 × 〈s〉 ∼= Zn × Zn, with the obvious presentation
H∗

n = 〈r, s| rn = sn = (rs)n = [r, s] = 1〉 where [r, s] = r−1s−1rs.
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We will now analyze the second solution and identify the corresponding
group. Here j is even and therefore n is a multiple of 4; say, n = 4d, and
j = 2 + 2d. Using centrality of even powers of r and s, with the involutory
element t = r2ds2d we rewrite (rs)2 = rjsj in the form (rs)2 = r2s2t, which
simplifies further to t = [r, s] (and also to t = [s, r] since t2 = 1). Raising the
last identity for (rs)2 to the power of d we obtain (rs)2d = r2ds2dtd = t1+d.
Since the order of rs is 4d it follows that t1+d is a non-trivial involution, which
means that d must be even and hence n must be divisible by 8. By the facts
appearing at the beginning of the proof, t = r2ds2d is also a power of rs. But
there is only one such non-trivial involutory power and therefore (rs)2d = t =
[s, r], which implies that sr = r−1(rs)r = (rs)2d+1. Summing up, the second
solution j = 2+n/2 implies that 8|n and that H∗

n = 〈rs〉⋊〈r〉 ∼= Zn⋊Zn where
the semidirect product is determined by the above conjugation identity. In
terms of a presentation, H∗

n = 〈r, s| rn = sn = (rs)n = (rs)n/2[r, s] = 1〉.

In both cases the group H∗

n of order n2 has two automorphisms of or-
der 2 interchanging r with s and inverting both r and s, respectively. This
completely determines Gn in the form Gn = H∗

n ⋊ 〈a, b〉 where a, b are com-
muting involutions representing the two automorphisms of Hn. Moreover, in
each case the split extension of H∗

n by 〈a〉 is a subgroup of Gn of index two
consisting precisely of the orientation preserving automorphisms. By general
theory of maps (see e.g. [2]), up to isomorphism these are the only regular
hamiltonian embeddings of Kn,n, since any such embedding with rotations
r′, s′ and involutions a′, b′ would lead to the same presentation of the auto-
morphism group as obtained in the course of the proof, with r′, s′, a′, b′ in
place of r, s, a, b, giving isomorphic embeddings. 2

3 Regular triangular embeddings of Kn,n,n

On the basis of Theorem 1 it is now relatively easy to classify regular trian-
gular embeddings of complete tripartite graphs with equal parts.

Theorem 2 The graph Kn,n,n admits a unique regular triangular embedding

for any n; the embedding is orientable.

Proof. It suffices to assume that n ≥ 3. Let Fn be the automorphism
group of a regular triangular embedding M ′ of the graph Kn,n,n in some sur-
face. We may assume that vertices of Kn,n,n have been properly 3-coloured,
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say, black, white and green. It is clear that deletion of the n green vertices
from M ′ yields a regular hamiltonian embedding of Kn,n whose automor-
phism group Gn is a subgroup of Fn consisting of all automorphisms in Fn

that preserve green vertices setwise. By Theorem 1 and its proof we may
assume that the supporting surface of the embedding is orientable and that
Gn

∼= H∗

n ⋊ 〈a, b〉 where H∗

n = 〈r〉〈s〉 and the conjugation actions by a, b are
as described before.

Let τ be a fixed triangular face of M ′. Then r, s, and (rs)−1 can be
assumed to represent the colour-preserving rotations of M ′, by two triangles
each, about the black, white, and green vertex of τ , respectively, so that the
rotations are clockwise with respect to τ . Similarly, a and b can be assumed
to represent the half-turn of M ′ about the centre of the edge of τ lying
opposite the green vertex and the reflection of M ′ in this edge, respectively.

By regularity of M ′ the three rotations are conjugate via an element
c ∈ Fn of order 3 which represents a clockwise (with respect to τ) rotation
of M ′ about the center of the face τ ; that is, csc−1 = r, crc−1 = (rs)−1

and c(rs)−1c−1 = s. Further, one can check by following the action of the
automorphisms a, b, c, r on the ‘corner’ x of τ containing the black vertex that
(ca)2(x) = cbc−1b(x) = r−1(x). Invoking regularity of M ′ again, it follows
that (ca)2 = cbc−1b = r−1. The two identities will be tacitly used at the end
of the proof in their equivalent forms cac−1 = r−1ac and cbc−1 = br; note
that the last one can be rewritten in the form bcb = rc.

With the extra information about c we can now specify H∗

n. Indeed, in
the proof of Theorem 1 we saw that (rs)2 = rjsj for some j. Conjugating
this identity by c and rearranging terms yields (rs)j = rjs2, which (by the
previous proof again) is possible if and only if j = 2. It follows that in this
case for each n we have H∗

n = 〈r〉 × 〈s〉 and, of course, Gn = H∗

n ⋊ 〈a, b〉 as
before.

The entire group Fn is now uniquely determined. Since all elements of Gn

preserve the set of green vertices while c and c2 do not, we have Gn∩〈c〉 = 1.
This together with the facts that |Fn| = 12n2 and |Gn| = 4n2 implies that
Fn = Gn〈c〉. The way c acts on r, s, a, b is given by the identities derived
above. Finally, note that Fn also admits a description in the form Fn =
F#

n ⋊ 〈b〉 where F#
n = (H∗

n ⋊ 〈a〉)〈c〉 is the group of orientation preserving
automorphisms of M ′. Uniqueness of the regular triangular embedding of
Kn,n,n now follows by the same argument as given at the end of the proof of
Theorem 1. 2
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4 Remarks

In the theory of regular embeddings on orientable surfaces it is custom-
ary to describe orientation preserving automorphism groups in terms of
two generators R and L representing the automorphisms that rotate the
embedding (say, clockwise) about a vertex (by one face) and about the
center of an edge incident with the vertex. In order to obtain this type
of presentation for our group F#

n we may take L = a and R = ac−1.
With the help of the relations established in the course of the previous
proofs one can check that r = R2 and s = LR2L. Further, [r, s] = 1
turns out to be equivalent with [L, R]3 = 1. This identity also implies
that crc−1 = (rs)−1 with c = R−1a = R−1L and with r, s as above (we
note that in this setting we have csc−1 = r for free). Consequently, the
full presentation of the orientation preserving automorphism group of the
unique regular triangular embedding of Kn,n,n can be given in the form
F#

n = 〈R, L| R2n = L2 = (LR)3 = [L, R]3 = 1〉. A result of the same
type for the orientation preserving automorphism groups G#

n = H∗

n ⋊ 〈a〉 of
the regular hamiltonian embeddings of Kn,n described in Theorem 1 follows
by directly taking the rotations r and a for generators. A much shorter com-
putation then gives G#

n = 〈r, a| rn = a2 = (ra)2n = (ar)2(ra)δn−2 = 1〉 where
δ ∈ {0, 1} if 8|n and δ = 0 otherwise. For completeness we recall that the
full automorphism groups Fn and Gn are semidirect products of F#

n and G#
n

by 〈b〉, where conjugation by b inverts all the above generators.
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