CHARACTERIZATION OF
MINOR-CLOSED PSEUDOSURFACES

MARTIN KNOR

Department of Mathematics, Faculty of Civil Engineering, Slovak
Technical University, Radlinského 11, 813 68 Bratislava, Slovakia

ABSTRACT. A pseudosurface is obtained from a collection of closed surfaces
by identifying some points. It is shown that a pseudosurface S is minor-
closed if and only if S consists of a pseudosurface S^o, having at most one
singular point, and some spheres glued to S^o in a tree structure.

This is a preprint of an article accepted for publication in
Ars Combinatoria @1996 (copyright owner as specified in the
journal).

1. INTRODUCTION

By a pseudosurface we understand a connected topological space result-
ing when finitely many identifications, of finitely many points each, are
made on a finite collection of closed surfaces (=compact 2-manifolds). Any
point obtained by such an identification of at least two distinct points is
called a singular point. Let G be a graph and S a surface or a pseudosur-
face. We say that G is embeddable in S if there is a continuous mapping
$\varphi : G \rightarrow S$ which maps G homeomorphically onto its image $\varphi(G)$. An
embedding $\varphi : G \rightarrow S$ is called a 2-cell (or cellular) embedding if each
component of $S - \varphi(G)$, called a face, is homeomorphic to an open 2-cell.

Embeddability in a closed surface can be characterized by a finite set of
forbidden subgraphs; constructive proofs of this theorem were given
by Kuratowski for the sphere [4], Bodendiek and Wagner for orientable
surfaces [3], and by Archdeacon and Huneke for nonorientable surfaces [1].
It is natural to ask whether the same is true for pseudosurfaces. The answer
is negative in general, as shown by Širáň and Gvozdjak in [7] for 2-banana
surface, i.e. the 2-amalgamation of two spheres. However, the 2-banana
surface is not minor-closed, see [2]. We remark that a surface S is minor-closed if and only if the set of graphs embeddable in S is minor closed (i.e. closed under a deletion of an edge or a vertex, and under contraction of an edge).

As shown by Robertson and Seymour in [6], any minor-closed class of graphs can be characterized by a finite set of forbidden subgraphs. Thus, it seems to be reasonable to characterize minor-closed pseudosurfaces; by [6] the embeddability in such pseudosurfaces can be characterized by a finite set of forbidden subgraphs.

Let S be a pseudosurface. If S contains as a topological subspace a sphere S_1 having exactly one singular point, then S is called spherically-reducible. Otherwise, S is called spherically-irreducible. Clearly, from each pseudosurface S we obtain a spherically-irreducible pseudosurface S' by successively deleting the spheres that are "glued" to the rest of the pseudosurface in exactly one singular point. Moreover, S' is determined uniquely by S. The main result of this paper is the following theorem:

Theorem 1. Let S be a pseudosurface. Let S' be the spherically-irreducible pseudosurface that arises from S by successively deleting the spheres containing exactly one singular point. Then S is minor-closed if and only if S' contains at most one singular point.

2. Preliminaries

Let G be a graph. As usual, $V(G)$ denotes the vertex set of G and $E(G)$ the edge set of G. The degree of a vertex u in G is denoted by $deg_G(u)$. By G/uv we denote a graph that arises from G by contracting the edge $uv \in E(G)$. A cycle on n vertices is denoted by C_n and a path on n vertices is denoted by P_n.

Let S be a closed surface and let G be a graph cellularly embedded in S with F faces. Then the number

$$\chi(S) = |V(G)| - |E(G)| + F$$

depends only on S (and not on G) and is known as the **Euler characteristic** of S. The non-negative quantity $\epsilon(S) = 2 - \chi(S)$ is called the **Euler genus** of S. If S is orientable, then S has a **positive orientability characteristic**. Otherwise, S has a **negative orientability characteristic**. We remark that S is determined uniquely by $\epsilon(S)$ and the orientability characteristic.

Definitions and notations not included here can be found in White [8].

In what follows we introduce concepts of uniqueness and faithfulness due to [5].
Two embeddings \(\varphi_1, \varphi_2 : G \to S \) are said to be equivalent if there is an automorphism \(\sigma : G \to G \) and a self-homeomorphism \(h : S \to S \) with \(h \circ \varphi_1 = \varphi_2 \circ \sigma \). When there is just one equivalence class of embeddings of \(G \) in \(S \), \(G \) is said to be uniquely embeddable in \(S \).

Faithfulness is defined as follows. Let \(\varphi : G \to S \) be an embedding of \(G \) in \(S \). Then \(\varphi \) is said to be faithful if for any automorphism \(\sigma : G \to G \), there is a self-homeomorphism \(h : S \to S \) such that \(h \circ \varphi = \varphi \circ \sigma \). In other words, \(\varphi \) is faithful when all automorphisms of \(\varphi(G) \) extend to self-homeomorphisms of \(S \). A graph \(G \) is said to be faithfully embeddable in \(S \) if \(G \) has a faithful embedding in \(S \).

Thus, \(G \) is uniquely and faithfully embeddable in \(S \) if \(G \) has a unique embedding in \(S \) and this embedding is faithful.

For an arbitrary closed surface \(S \) there exists a graph uniquely and faithfully embeddable in \(S \) by the following lemma [5, Proposition 1.4.7]:

Lemma 1. Every closed surface admits an infinite number of triangulations that are uniquely and faithfully embeddable in it.

Let \(G \) be uniquely and faithfully embeddable in \(S \). Then \(G \) is uniquely embeddable in \(S \) as a labeled graph. Consider a faithful embedding of \(G \) in \(S \). Then no automorphism of \(G \) can map a vertex \(u \) of \(G \) again to \(u \) and rearrange the neighbors of \(u \). This local property of faithful embedding will often be tacitly used.

Let \(G \) be uniquely and faithfully embeddable in \(S \), and let \(H \) be a subdivision of \(G \). Then obviously, \(H \) is again uniquely and faithfully embeddable in \(S \). Moreover, we have the following lemma [5, Corollary 1.5.7]:

Lemma 2. Let \(G \) have a unique and faithful triangular embedding in a closed surface \(S \). If a 3-connected graph \(H \) is embeddable in \(S \) and contains a subgraph contractible to \(G \), then \(H \) is uniquely and faithfully embeddable in \(S \).

In the proof of Theorem 1 we use the following lemma:

Lemma 3. Every closed surface \(S \) admits infinitely many triangulations that are uniquely and faithfully embeddable in \(S \), and that cannot be embedded in \(S' \) with \(\varepsilon(S') = \varepsilon(S) \) and the opposite orientability characteristic.

Proof. Let \(G \) be uniquely and faithfully triangul arly embeddable in \(S \). In what follows we construct the barycentric subdivision \(G_2 \) of \(G \) and show that \(G_2 \) satisfies the conditions in Lemma 3. First subdivide all edges of \(G \) by one vertex and denote the resulting graph by \(G_1 \). Clearly, \(G_1 \) has a 2-cell embedding, say \(\varphi_1 \), in \(S \). Now insert one new vertex into each face \(f \) of \(\varphi_1 \), join it to all vertices lying on the boundary of \(f \), and denote the resulting graph by \(G_2 \).
Since G triangulates S and contains no loops, there are no multiple edges in G_2. Since G_2 is 3-connected and contains a subgraph contractible to G, G_2 is uniquely and faithfully embeddable in S, by Lemma 2. Moreover, the unique embedding of G_2 in S is a triangulation of S.

Now assume that G_2 is embedded in S' with $\epsilon(S') = \epsilon(S)$. Then G_2 necessarily triangulates S'. Clearly, each 3-cycle in G_2 contains exactly one vertex from $V(G)$, one vertex from $V(G_1) - V(G)$, and one vertex from $V(G_2) - V(G_1)$. Moreover, each edge of G_2 lies in exactly two 3-cycles. Thus, the surface admitting a triangular embedding of G_2 is determined uniquely, and hence $S \cong S'$.

By Lemma 1 there are infinitely many triangulations of S satisfying Lemma 3. □

As a matter of fact, the graphs satisfying Lemma 1 were constructed from triangulations by means of barycentric subdivision, see [5]. Hence, they also satisfy Lemma 3.

3. Proof of the Main Result

This section is completely devoted to the proof of Theorem 1.

Proof. Let S be a pseudosurface, and let S^o be the spherically-irreducible pseudosurface that arises from S by successively deleting the spheres containing exactly one singular point. Suppose that S^o contains at most one singular point.

Clearly, each pseudosurface is closed under deletion of an edge or a vertex. Thus, it is sufficient to prove that S is closed under edge contraction.

Let G be a graph embeddable in S, and let φ be an embedding of G in S. Then the subgraph of G embedded in $S - S^o$ in φ is planar. Thus, G is embeddable in S^o. Clearly, S^o is closed under edge contraction, and hence, S is minor-closed.

We now turn to the more difficult part of Theorem 1. The outline of the proof is as follows. Suppose that S is a pseudosurface closed under edge contraction. We construct a graph G embeddable in S with two specified vertices z_1 and z_2 that are joined by an edge. Then we derive properties (i) - (iv) of any embedding φ of $G/\{z_1,z_2\}$ in S. Finally, considering various positions of z_1 and z_2 in G on S, and using (i) - (iv) we obtain assertions (1) - (4) that complete the proof.

Let S be a pseudosurface resulting when identifications are made on a collection S_1, S_2, \ldots, S_l of closed surfaces. For the sake of convenience, with S we associate a bipartite multigraph B_S. The vertex set of B_S consists of S_i, $1 \leq i \leq l$, and the set P of singular points of S, and S_i is joined
to \(p \in P \) by \(t \) edges if and only if \(t \) points of \(S_i \) have been identified to \(p \).
Denote \(n = |P| \), and \(n_i = \text{deg}_{S_i}(S_i) \), \(1 \leq i \leq l \).

Let \(p \) be a singular point of \(S \). If there is \(S_i \), \(1 \leq i \leq l \), that is joined to \(p \) by at least two edges in \(B_S \), then \(p \) is called a \textit{self-singular point}. By \(S_i^* \) we denote the topological subspace of \(S \), which had been obtained from \(S_i \), \(1 \leq i \leq l \). More precisely, \(B_S^* \) is a subgraph of \(B_S \) induced by multiple edges incident with \(S_i \).

The construction of \(G \)

By Lemma 3 there are graphs \(H_i \) uniquely and faithfully triangularly embeddable in \(S_i \), \(1 \leq i \leq l \), which cannot be embedded in \(S_i' \) with \(\epsilon(S_i') = \epsilon(S_i) \) and the opposite orientability characteristic. We can assume that each \(H_i \) has at least \(n_i \) vertices.

![Diagram](image)

Figure 1

Now we locally describe a construction of a graph \(H'_i \) from \(H_i \), \(1 \leq i \leq l \).
We replace each vertex \(u \) of \(H_i \) by the Cartesian product \(C_{n \cdot \text{deg}_{H_i}(u)} \times P_{n+2} \) and each edge by \(n+1 \) independent edges as shown in Fig. 1 for \(n = 2 \).
Clearly, \(H'_i \) is 3-connected, embeddable in \(S_i \), and contains a subgraph contractible to \(H_i \). Thus, by Lemma 2 \(H'_i \) is uniquely and faithfully embeddable in \(S_i \), and the only embedding \(\varphi'_i \) of \(H'_i \) in \(S_i \) is just the one locally described above.

For every \(u \in V(H_i) \) denote by \(f_u \) the face of the embedding \(\varphi'_i \) that appears in the position of \(u \) in \(S_i \), \(1 \leq i \leq l \) (see Fig. 1). For a moment we concentrate on \(H_1 \). Put one new vertex \(u' \) into each face \(f_u \) of \(\varphi'_1 \), and join \(u' \) to all vertices incident with \(f_u \). There are at least \(n_1 \) such added vertices \(u' \); out of them we need to distinguish \(n_1 - 1 \) vertices, say \(v_2', \ldots, v_{n_1}' \). Moreover, put one new vertex \(v_1' \) into the face where \(v_2' \) has been placed, join \(v_1' \) and \(v_2' \), and denote the resulting graph by \(G_1 \), see Fig. 2.
Similarly, for each \(i, 2 \leq i \leq l \), put one new vertex \(u' \) into each face \(f_u \) of
\(\varphi' \), join \(u' \) to all vertices incident with \(f_u \), and denote the resulting graph by \(G_i \). Denote by \(v^i_1, \ldots, v^i_{n_i} \) the \(n_i \) vertices of \(V(G_i) - V(H'_l) \), \(2 \leq i \leq l \).

Finally, identify \(v^1_{j_1}, \ldots, v^1_{j_{n_1}}, v^2_{j_1}, \ldots, v^2_{j_{n_2}}, \ldots, v^l_{j_1}, \ldots, v^l_{j_{n_l}} \) into \(n \) vertices \(z_1, \ldots, z_n \) in the same way as the corresponding points of \(S_1, \ldots, S_l \) have been identified when constructing the pseudosurface \(S \), and denote the resulting graph by \(G \). More precisely, there is a one-to-one correspondence between the vertices \(v^j_i, 1 \leq i \leq l \) and \(1 \leq j \leq n_i \), and the edges of \(B_S \) incident to \(S_i \). Identify \(v^j_i \) with \(v^j_i' \) whenever the corresponding edges of \(B_S \) are incident to the same singular point. Note that the structure of \(G \) depends on the ordering of the surfaces \(S_1, \ldots, S_l \) and the singular points of \(S \). However, the assertions \((i) - (iv)\) we are going to prove below do not depend on this ordering.

![Figure 2](image_url)

Clearly, \(G \) is embeddable in \(S \). Denote by \(\varphi \) the embedding of \(G \) in \(S \) which is determined by the embeddings \(\varphi'_i \), \(1 \leq i \leq l \), as described above.

Denote by \(z_1 \) and \(z_2 \) the vertices of \(G \) obtained from \(v^1_1 \) and \(v^2_1 \), respectively. Assume that \(z_1 \neq z_2 \). Suppose that \(G/z_1z_2 \) is embeddable in \(S \) and denote by \(\varphi^c \) an embedding of \(G/z_1z_2 \) in \(S \). In what follows we derive some properties of \(\varphi^c \). (We remark that so far we have not had any reason to expect that the supposed embedding \(\varphi^c \) of \(G/z_1z_2 \) in \(S \) has anything in common with the original embedding \(\varphi \) of \(G \) in the same \(S \).)

Basic properties of \(\varphi^c \)

There are \(m \leq n \) vertices, say \(x_1, x_2, \ldots, x_m \), of \(G/z_1z_2 \) embedded in the singular points of \(S \) in \(\varphi^c \). Let \(H' \) be a subgraph of \(G/z_1z_2 \). If \(H' \) contains no vertex from \(\{ x_1, \ldots, x_m \} \), then \(H' \) is called an **unbroken** subgraph of \(G/z_1z_2 \).

For each \(i, 1 \leq i \leq l \), let us do the following. Find a connected subgraph \(H''_i \) of \(H'_i - \{ x_1, \ldots, x_m \} \) that is uniquely and faithfully embeddable in \(S_i \).
For each $u \in V(H_i)$, include to H''_i all unbroken copies of $C_{n, \text{deg}H_i(u)}$ at u. (Since $m \leq n$, for each $u \in V(H_i)$ there are at least two copies of $C_{n, \text{deg}H_i(u)}$ in H''_i.) Moreover, for each $uv \in E(H_i)$, include to H''_i all those unbroken copies of P_{n+2} at u that correspond to the unbroken copies of P_{n+2} at v, together with the edges joining them. (Since $m \leq n$, for each edge $uv \in E(H_i)$ there is a pair of corresponding copies of P_{n+2} in H''_i.) Finally, throw away the endvertices of H''_i, see Fig. 3.

Clearly, H''_i contains a subgraph contractible to H_i. Since H''_i is a subgraph of H'_i, H''_i is embeddable in S_i. Moreover, from H''_i we obtain a 3-connected graph by a successive contraction of edges incident with vertices of degree two. Thus, H''_i is uniquely and faithfully embeddable in S_i, by Lemma 2 and the note before Lemma 2.

Note that each H''_i is embedded in one closed surface, say S_{i^c}, in φ^c, since the connected graph H''_i contains no vertices placed in singular points. Clearly, $\epsilon(S_i) \leq \epsilon(S_{i^c})$, since H_i triangulates S_i and H''_i contains a subgraph contractible to H_i. Let $J_t = \{j : \epsilon(S_j) > t\}$, $t \geq 0$. Assume that there is t such that $S_{j^c} \cong S_j$ for each $j \in J_t$ (this is certainly true for t large enough). Let $j \in J_t$. Then φ^c induces a cellular embedding of H''_i in S_{j^c}. Thus, only planar graphs can be embedded in S_{j^c} together with H''_i. By the finiteness of J_t, for each $j \in J_t$ there is $k \in J_t$ such that $S_{k^c} = S_j$ (since $t \geq 0$, H''_k is not a planar graph).

Suppose that $\epsilon(S_i) = t$. If S_i is not a sphere, then H''_i is not a planar graph, and hence $i^c \notin J_t$. Thus, $\epsilon(S_{i^c}) \leq \epsilon(S_i)$ and hence $\epsilon(S_{i^c}) = \epsilon(S_i)$. Moreover, since H_i is not embeddable in S' with $\epsilon(S') = \epsilon(S_i)$ and the opposite orientability characteristic, we have $S_{i^c} \cong S_i$. Hence, $S_{j^c} \cong S_j$ for each $j \in J_{t-1}$. Thus:

(i) For each i, $1 \leq i \leq l$, φ^c induces an embedding of H''_i in S_{i^c}, $1 \leq i^c \leq l$. If S_i is not a sphere, we have $S_{i^c} \cong S_i$. Moreover, if $i_1 \neq i_2$, and S_{i_1} and S_{i_2} are not spheres, then $S_{i_1^c} \neq S_{i_2^c}$.

\[H''_i \quad \text{and} \quad G''_i\]

Figure 3

Clearly, each vertex from $V(G_i) - V(H_i')$ (except $v_{i_1}^1$) is joined to H''_i by 7
at least \(n+1 \) vertex-disjoint paths in \(G_i \). Since \(v^1_1 \) and \(v^2_1 \) are identified into a single vertex in \(G/z_1z_2 \), we have:

(ii) All vertices of \(G/z_1z_2 \) that have been obtained by the identification of some vertices from \(V(G_i) - V(H'_i) \), and possibly some other vertices, lie in \(S_i^* \) in \(\varphi^c \), \(1 \leq i \leq l \).

Suppose that \(S_i \) is a sphere, but \(S_{ic} \) is not. Then there is a \(j \) such that \(S_j \) is not a sphere and \(S_{jc} = S_{ic} \), by (i) (the second part). Moreover, \(\varphi^c \) induces a cellular embedding of \(H''_j \) in \(S_{ic} \), and hence, \(H''_1 \) is embedded in one cell of the embedding of \(H''_j \) in \(S_{ic} \). Thus, \(\varphi^c \) induces an embedding of \(H''_j \) in \(S_{ic} \) that arises from the embedding of \(H_j \) in \(S_i \), since \(H''_j \) is uniquely and faithfully embeddable in the sphere (we do not distinguish the exterior face of the embedding of \(H''_j \) in the cell). Analogously, if \(S_i \) is not a sphere, or if \(S_{ic} \) is a sphere, then \(\varphi^c \) induces an embedding of \(H''_i \) in \(S_{ic} \) that arises from the embedding of \(H_i \) in \(S_i \), by (i).

Let \(V = \{ v^1_1, \ldots, v^i_1, \ldots, v^i_n \} \setminus \{ v^1_1 \} \). Denote by \(f'_u \) the face of the embedding of \(H''_i \) in \(S_{ic} \) that corresponds to the face \(f_u \) in \(\varphi^c \), see Fig. 3. Since \(m \leq n \), for all pairs \(u, v \in V(H_i) \) there are at least four vertex-disjoint cycles in the embedding of \(H''_i \) in \(S_{ic} \) that separate \(f'_u \) from \(f'_v \), namely the copies of \(C_{n, \text{deg} H_i}(u) \) and \(C_{n, \text{deg} H_i}(v) \). Suppose that \(u, v \in V \) have been identified to \(z \) in \(G/z_1z_2 \). Since there are at least two vertex-disjoint cycles separating \(u \) from \(v \) in \(S_{ic} \) in \(\varphi^c \) (the exterior ones, see Fig. 3), \(z \) is placed in a self-singular point of \(S_{ic}^* \) in \(\varphi^c \). Analogously, we have:

(iii) Let \(v_1, \ldots, v_a \in V \) be identified to a vertex \(z \) in \(G/z_1z_2 \), \(a \geq 2 \). Then \(z \) is placed in \(\varphi^c \) in a self-singular point \(p \) of \(S_{ic}^* \) that is joined to \(S_{ic} \) by at least \(2 \) edges in \(B_S \).

Now we introduce a lexicographical ordering of pseudosurfaces \(S_i^* \) for which \(S_i \cong S_i \), according the multiplicities of edges in \(B_{S_i} \). Let \(S_{i_1} \cong S_{i_2} \). Let \(S_{i_k}^* \) contain \(b_k \) self-singular points with multiplicities (i.e. the multiplicities of edges in \(B_{S_{i_k}} \)) \(a_k^1 \geq \cdots \geq a_k^k \), \(1 \leq k \leq 2 \). We write \(S_{i_1}^* \leq S_{i_2}^* \) if and only if from \(a_j^1 > a_j^2 \), \(1 \leq j \leq b_1 \) it follows that there is \(j' \), \(1 \leq j' < j \), with \(a_j^1 < a_j^2 \). If \(S_{i_1}^* \leq S_{i_2}^* \) and \(S_{i_1}^* \neq S_{i_2}^* \), we write \(S_{i_1}^* < S_{i_2}^* \).

Let \(z \) be a vertex of \(G/z_1z_2 \) that has been obtained by the identification of a vertex from \(V \), and possibly some other vertices. Denote by \(P_z \) the collection of the paths joining \(z \) to \(H''_i \) that contain no vertex from \(\{ x_1, \ldots, x_m \} \) (except possibly \(z \)). Clearly, for each such \(z \) there is at least one path in \(P_z \) with this property. Denote by \(G_z^* \) the subgraph of \(G/z_1z_2 \) induced by \(H''_i \) and the paths \(P_z \), where \(z \) is obtained by the identification of a vertex from \(V \), see Fig. 3 (the vertices \(z_{i,j} \) in Fig. 3, \(1 \leq j \leq 3 \), need not necessarily be distinct). Since \(H''_i \) is embedded in \(S_{ic} \) in \(\varphi^c \), the graph \(G_z^* \) is embedded in \(S_{ic}^* \), by (ii).

Suppose that \(S_i \) is not a sphere. Then \(S_{ic} \cong S_i \), by (i). Moreover,
we have $S^*_{i_c} \succeq S^*_1$, by (ii) and (iii). Note that $S^*_{i_c} \succeq S^*_1$ also if z_1 and z_2 are self-singular points of S^*_1. (We remark that $S^*_{i_c} \succeq S^*_1$ is only a necessary but not a sufficient condition for embeddability of G^*_i in $S^*_{i_c}$.) Let $J = \{j : S^*_j \succ S^*_i\}$. By (i) (the second part), if $k_1 \neq k_2$, and $k_1, k_2 \in J$, then $S_{i_{k_1}} \neq S_{i_{k_2}}$. Since J is a finite set, $S^*_{i_c} \succeq S^*_1$ contradicts $S^*_{j_c} \succeq S^*_j$, $j \in J$. Hence, $S^*_1 \simeq S^*_1$.

Now suppose that S_i is a sphere, but S^*_1 is not. Moreover, suppose that $S^*_{i_c}$ is not a sphere, either. Then there is a j such that S_j is not a sphere and φ^c induces an embedding of G^*_j in $S^*_{j_c}$ with $S^*_{j_c} = S^*_{i_c}$, by (i) (the second part). As shown above, we have $S^*_j \simeq S^*_j$. Since S^*_j is not a sphere, there is a self-singular point in S^*_j. Since $z_1 \neq z_2$ in G, there are at least two vertices, say $u, v \in V_i$ that have been identified into a single vertex in G^*_i. However, φ^c induces an embedding of H''_i in S^*_i that arises from the embedding of H_i in S_i (see the note below (ii)). Thus, at least one of the vertices u and v, say u, is separated from each vertex from V_j (and also from $V_i - u$) by a cycle in S^*_i in φ^c. Since G^*_j is embedded in $S^*_{j_c}$ in φ^c, we have $S^*_{i_c} \succeq S^*_j$, as shown above. Since u is separated from each vertex from $V_j \cup (V_i - u)$ by a cycle in S^*_i in φ^c, we have $S^*_{i_c} \succeq S^*_j$, which contradicts $S^*_{i_c} \simeq S^*_j$. Hence, if S^*_1 is not a sphere but S_i is, then $S^*_{i_c}$ is a sphere, too.

Now analogously as above, if S^*_1 is not a sphere but S_i is, we have $S^*_{i_c} \succeq S^*_1$, by (ii) and (iii). Moreover, if $S^*_{i_k}$ is not a sphere but S_{i_k} is, $1 \leq k \leq 2$, we have $S^*_{i_k} \neq S^*_{i_2}$. Hence, we have $S^*_{i_c} \simeq S^*_1$, since the set of those j for which $S^*_j \succeq S^*_1$ is finite. Thus:

(iv) For each i, $1 \leq i \leq l$, φ^c induces an embedding of G^*_i in S^*_i. If S^*_i is not a sphere, we have $S^*_{i_c} \simeq S^*_1$. Moreover, if $i_1 \neq i_2$, and $S^*_{i_1}$ and $S^*_{i_2}$ are not spheres, then $S^*_{i_1} \neq S^*_{i_2}$.

Necessary conditions for S

To obtain the necessary conditions in Theorem 1, we now need to utilize the "finer structure" of G, that is, the way how G depends on the labelling of the surfaces and the singular points. In fact, we only need to consider the vertices z_1 and z_2 in G.

Suppose that z_1 and z_2 are placed in two self-singular points of S^*_1 in φ. Let z_j be obtained by the identification of t_j vertices of G_1, $1 \leq j \leq 2$. Suppose that G^*_i is embedded in $S^*_{i_c}$ in φ^c. Since $t_1 + t_2 - 1 > \max\{t_1, t_2\}$, we have $S^*_{i_c} \succeq S^*_1$, by (i) and (iii). By (iv) we have:

1. No pseudosurface S^*_i contains more than one self-singular point, $1 \leq i \leq l$.

Suppose that B_S contains a cycle of length at least four. Let $p_1, S_1, p_2, \ldots, p_t, S_t, p_1$ be a shortest cycle in B_S such that $t \geq 2$. Let z_1 be placed in p_1 and z_2 be placed in p_2 in φ. Let G be the subgraph of G/z_1z_2 induced by $G^*_2, G^*_3, \ldots, G^*_t$.
By (iv) each G_i^*, $2 \leq i \leq t$, is embedded in one pseudosurface S_i^* in φ^c. Hence, \overline{G} is embedded in one pseudosurface, say S_k^*, in φ^c if $t = 2$. Now suppose that $t \geq 3$. Then G_2^*, \ldots, G_t^* are joined to a $(t-1)$-cycle, by (ii). (More precisely, if we replace each G_i^* by a single vertex g_i, and join g_i by an edge whenever G_i^* and G_j^* have some common vertices, then \overline{G} will result to a cycle on $t-1$ vertices.) Since $2t$ is the length of a shortest cycle of length at least four in B_S, the graph \overline{G} is embedded in one pseudosurface, say S_k^*, if $t \geq 3$.

Since \overline{G} is not a planar graph, S_k^* is not a sphere. By (iv) (the second part), at most one pseudosurface from S_2^*, \ldots, S_t^* is not a sphere. If $S_k^* \not\equiv S_i^*$ for each i, $2 \leq i \leq t$, then the finiteness of the set of those j for which $S_j^* \equiv S_k^*$ contradicts (iv). Hence, $S_k^* \equiv S_j^*$ for some j, $2 \leq j \leq t$, and S_j^* is the unique pseudosurface from S_2^*, \ldots, S_t^* which is not a sphere.

Suppose that $t = 2$. Then $\overline{G} = G_j^* = G_2^*$ and the vertex $z_1 z_2$ is embedded in a self-singular point of S_k^* in φ^c. Hence we have $S_k^* \not\equiv S_2^*$, by (iii), which contradicts $S_k^* \equiv S_j^*$.

Now suppose that $t \geq 3$. Let G' be the subgraph of G induced by G_i^*, $2 \leq i \leq t$ and $i \neq j$. Then G' is a connected graph containing two distinct vertices, say z_1 and z_2, of G_j^*. Let z' be obtained by the identification of a set V_j^1 vertices from V_j, and possibly some vertices outside V_j, $1 \leq i \leq 2$. Since $S_k^* \equiv S_j$, the graph H''_j is uniquely and faithfully embeddable in S_k. Hence, each pair of vertices from V_j is separated by at least two vertex-disjoint cycles in S_k in φ^c (see the note before (iii)). Hence, also the sets of vertices V_j^1 and V_j^2 are separated by two vertex-disjoint collections of cycles in S_k in φ^c. Since G' joins z^1 with z^2 in S_k^* in φ^c, there is a self-singular point of S_k^* that allows this connection. Hence, we have $S_k^* \not\equiv S_j^*$ by (iii), which contradicts $S_k^* \equiv S_j^*$. Thus:

(2) There is no cycle of length greater than two in B_S.

Thus, S has a “tree structure”. Suppose that at least two pseudosurfaces from S_1^*, \ldots, S_t^* are not spheres. Let $S_2, p_1, S_1, p_2, S_3, p_3, \ldots, p_{t-1}, S_t$ be a longest path in B_S such that both S_2^* and S_t^* are not spheres. Suppose that $t \geq 3$. Let z_1 be placed in p_1 and z_2 be placed in p_2 in φ.

Let \overline{G} be the subgraph of $G/z_1 z_2$ induced by $G_2^*, G_3^*, \ldots, G_t^*$. By (iv) each G_i^*, $2 \leq i \leq t$, is embedded in one pseudosurface S_i^* in φ^c. Moreover, G_2^*, \ldots, G_t^* are joined to a $(t-1)$-path, by (ii). (More precisely, if we replace each G_i^* by a single vertex g_i, and join g_i with g_j by an edge whenever G_i^* and G_j^* have some common vertices, then \overline{G} will result to a path on $t-1$ vertices.) Thus, there are surfaces, say S_{i_1} and S_{i_2}, at distance $2t$ in B_S, such that $S_{i_1}^*$ and $S_{i_2}^*$ are not spheres, and either $S_{i_1}^*$ or $S_{i_2}^*$ are covered by planar graphs, possibly empty, in φ^c, which contradicts (iv). Hence:

(3) If S_i^* and S_j^* are not spheres, then S_i and S_j are at distance two in B_S.

10
Let S_1^* and S_2^* be not spheres. Let pS_1 and pS_2 be edges of B_S, and let z_1 be placed in p in φ. Suppose that S_1^* contains a self-singular point different from p that is occupied by z_2 in φ. Since p is the unique singular point lying in at least two pseudosurfaces that are not spheres, by (2) and (3), the vertex z_1z_2 is placed in p in φ^c, by (ii).

Let p be a self-singular point of S_i^*, $2 \leq i \leq l$. Then p is a self-singular point of S_i^*, by (ii) and (3). However, p is a self-singular point of S_1^*, while p is not a self-singular point of S_1^*, by (1). Since there is just a finite set of S_j^* that contains p as a self-singular point, by (iv) (the second part) we have:

(4) If S_i^* and S_j^* are not spheres and p is a self-singular point of S_i^*, then $p \in S_j^*$.

Hence, if there are three pseudosurfaces, say S_1^*, S_2^*, and S_3^*, that are not spheres, then they are glued in a unique singular point p, by (2) and (3). Moreover, if one of them, say S_1^*, contains a self-singular point p', then $p' = p$, by (4). Thus, the spherically-irreducible subspace of S contains at most one singular point. This completes the proof. \(\square \)

We remark that if a pseudosurface S is not minor-closed, then there are infinitely many graphs G embeddable in S such that G/xy is not embeddable in S for some $xy \in E(G)$, by Lemma 3. The problem of determining whether or not the embeddability in a given non-minor-closed pseudosurface can be characterized by a finite set of forbidden subgraphs remains open.

Acknowledgement

I would thank to J. Širáň and M. Škoviera for their interest in this work and helpful comments.

References

