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Object is described by the following rule outputs:

Rule | Category | Confidence
#1 |1 0.8
#2 |3 0.5
#3 |6 0.2
#4 |1 0.4
#5 |2 0.3
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Multi-polar space

K, x [0,1], where K,,, = {1,...,m} is the set of categories

1

Co c3
C1

1

0 ©m
input of the type (k,z), k € K,;, and x € [0, 1]

Extended multi-polar space

EK, = [0,1]™
input of the type (x1,...,2m)




I(m X [07 1] — F I{m

A multi-polar space K, x [0,1] can be embedded into extended
multi-polar space FK,, by injective function
(k,z) — (0,...,0,_x ,0,...,0)

~
k-th

EKp — K x [0,1]

o An input from an extended multi-polar space (z1, ..., Zm)
can be treated as m inputs from K, x [0, 1] of the form
(i, ;)

o Reduction function FK,,, — K, x [0, 1] is such that
r((O,...,O,\xf/,O,...,O)) = (k,z) for all k € K,;, and

k-th
x € [0, 1] and have the same category monotonicity as

multi-polar aggregation operators.




(Extended) multi-polar aggregation operators

o For n = 1 aggregation is identity

o Zero and category maximal points are idempotent. In
multi-polar case these are 0 and (k,1) for all k € K. In

extended multi-polar case these are (0,...,0) and
(0,...,0, 1 ,0,...,0) for all k € Ky,
k-th

o Category monotonicity: if input in i-th category is
increased then output increase wrt category i, i.e., output
in category % increases and in all other categories decreases.




Example

e Basic extended multi-polar aggregation operators are those
working coordinate-wisely, i.e., for each category a (unipolar)
aggregation operator is used

e Basic multi-polar aggregation operators are those where
inputs in separate categories are first aggregated by (unipolar)
aggregation operators and then a reduction function is applied.

e omax — gives the input with the maximal absolute value, and
gives 0 if two inputs with maximal absolute values have different
classes

e The ordered category projection operator — gives the standard
aggregation of values from the most important class that is
present

e The union of the projections to a single coordinate




o Addition on N




o Addition on N

o Introduction of 0




o Addition on N
o Introduction of 0

o Red numbers (positive=fortune) and black numbers
(negative=debt): sum up red sum up black and compare
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Bipolar addition

Sum up positive, sum up negative and make the difference, i.e.,
apply a reduction function — the difference.
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function. Which?
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Summation reduction function

For x € FK,, with x = (x1,...,z,) let 0 be a permutation
such that To(1) 2 2 Lo(m)- Then if 2 < g < m the function

Uq((klv 331), 000 (kn7 $n)) =
(CIX(X)v max(O, To(l) = To(2) — """ xa(q)))'
is called a g-summation reduction function. Additionally, for

q = 1 the 1-summation reduction function is given by
Ul = omax.




Three steps of aggregation on [0, 1]

o (Monotone) Boolean functions {0,1}" — {0,1} — Boolean
logic — decision making on {0, 1} — voting games (simple
cooperative games) — hypergraphs
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Three steps of aggregation on [0, 1]
o (Monotone) Boolean functions {0,1}" — {0,1} — Boolean
logic — decision making on {0, 1} — voting games (simple
cooperative games) — hypergraphs

o Capacities (monotone) {0,1}" — [0, 1], u(0,...,0) =0 —
non-negative cooperative games — pseudo-Boolean functions

o Aggregation operators monotone [0, 1] — [0, 1] with
boundary conditions — decision making, optimization




Univariate bipolar model

corresponds to 2-polarity, inputs are from [—1, 1]

Bivariate unipolar model

corresponds to extended 2-polarity, inputs are from [0, 1]2, or
equivalently from [0,1] x [—1,0]




(monotone) bipolar Boolean functions — bipolar crisp
functions

b: {—1,0,1}" — {—1,0, 1} — balanced three-valued logic —
ternary voting games
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Bi- and bipolar capacities and generalized bipolar capacities

o Bi-capacity (Grabisch and Labreuche): monotone function
v:{-1,0,1}" — [-1,1], v(0,...,0) = 0 — bi-cooperative
games
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(monotone) bipolar Boolean functions — bipolar crisp
functions

b: {—1,0,1}" — {—1,0, 1} — balanced three-valued logic —
ternary voting games

Bi- and bipolar capacities and generalized bipolar capacities

o Bi-capacity (Grabisch and Labreuche): monotone function
v:{-1,0,1}" — [-1,1], v(0,...,0) = 0 — bi-cooperative
games

o Generalized bipolar capacity (Grabisch et al.): monotone
function p*: ({0,1}2)" — [0, 1]?, p*(0,...,0) =0

e Bipolar capacity (Greco et al.): monotone function
p: {—1,0,1}" — [0,1]2, u(0,...,0) =0




Input spaces for capacities and bi- and bipolar capacities

Capacity: {0, 1}" corresponds to P(X); inputs are S € P(X)

Bi-capacity: {—1,0,1}" corresponds to
Q(X)={(A,B) e P(X) x P(X) | AN B = 0}; inputs are
(A, B) € Q(X)

Generalized bipolar capacity: ({0,1}2)" corresponds to
O*(X)={(C,D) e P(X) x P(X)}; inputs are (C, D) € Q*(X)




Input spaces for capacities and bi- and bipolar capacities

Capacity: {0, 1}" corresponds to P(X); inputs are S € P(X)

Bi-capacity: {—1,0,1}" corresponds to
Q(X)={(A,B) e P(X) x P(X) | AN B = 0}; inputs are
(4,B) € Q(X)

Generalized bipolar capacity: ({0,1}2)" corresponds to
O*(X)={(C,D) e P(X) x P(X)}; inputs are (C, D) € Q*(X)

Let p: {—1,0,1}" —> [0, 1] be a (normalized) bipolar capacity
and let 7: EK9 — Ko x [0, 1] be a reduction function. Then
v:{-1,0,1}" — [-1,1] given by v = r o u is a (normalized)
bi-capacity.




Aggregation on [—1, 1]
Several types of bipolar Choquet integral, symmetric Sugeno
integral

Aggregation on [0, 1]2, resp. [0,1] x [~1,0]

YinYang bipolar fuzzy logic and YinYang bipolar t-norms and
t-conorms — different type of monotonicity — coordinatewise




Multi-polar crisp functions
K, x{0,1} ={0,1,...,m}

c: (Kp x {0,1})" — K, x {0,1} together with monotonicity
and idempotency — multi-polar crisp aggregation operators
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semi-lattice. Together with
category monotonicity we
obtain the following structure




Multi-polar aggregation

Multi-polar t-norms, t-conorms and uninorms, multi-polar
addition, multi-polar Choquet integral

Extended multi-polar aggregation

Extended multi-polar t-norms




Multi-polar x-ordinal sum of aggregation operators

Let A* be an aggregation operator for all k € K,, and
x: EK,;, — K, % [0,1] be an m-polar reduction function. Then

M*((k1,21), ..., (kn,zn)) = *(AL(xY), ..., A™(x™))

is an m-polar aggregation operator, which will be called an
m-polar x-ordinal sum of aggregation operators.




For m = 3 let x = ((1,0.3),(2,0.5),(1,0.1), (3,0.7), (2,0.9)) then
x' = (0.3,0,0.1,0,0)

x2 = (0,0.5,0,0,0.9)

x3 = (0,0,0,0.7,0)




Multi-polar t-norm

Commutative, associative, multi-polar aggregation operator,
such that each its restriction to a single category is a (unipolar)
t-norm.

THx1,...,2p) ifki=--=k,=1

0 else.

T((k1,21)y .y (knyxn)) = {

Bipolar t-norm is a linear transformation of a nullnorm.




Multi-polar t-conorm

Commutative, associative, multi-polar aggregation operator,
such that each its restriction to a single category is a (unipolar)
t-conorm.

Bipolar t-conorm is a linear transformation of a uninorm.
Minimal and maximal uninorm corresponds in multi-polar case
to a OCP-ordinal sum of (unipolar) t-conorms: here we have a
linear order on the set of categories.




Multi-polar pre-t-conorm

PC((klwxl)’ G000 (kna xn)) = f_l(Lm(f((kla 'Tl))? 0009 f((knv $n)))

for a multi-polar function f((k,z)) = (k, fx(x)) where fi is an
isomorphism on [0, 1] with fx(0) =0 for all k € K,




Multi-polar pre-t-conorm

PC((khxl)’ G000 (km xn)) = f_l(Lm(f((kla xl))? 0009 f((km 'Tn)))

for a multi-polar function f((k,z)) = (k, fx(x)) where fi is an
isomorphism on [0, 1] with fx(0) =0 for all k € K,

Multi-polar uninorm

Commutative, associative, multi-polar aggregation operator,
such that each its restriction to a single category is either a
(unipolar) t-norm or a (unipolar) t-conorm.

Bipolar continuous mixed uninorm is a linear transformation of
an ordinal sum of two t-norms, or equivalently of two t-conorms.




Multi-polar Choquet integral based on (unipolar) capacity

Multi-polar symmetric Choquet integral, multi-polar fusion
Choquet integral, multi-polar balancing Choquet integral

Multi-polar OWA operators

Using the connection between the Choquet integral and OWAs,
via a symmetric capacity we can define multi-polar OWAs:
MSOWA, MFOWA, MBOWA with several interesting
properties.

Using maximal and minimal (unipolar) capacity we can obtain
several special operators as oriented maximum etc.




Extended multi-polar category t-norm

Commutative, associative extended multi-polar aggregation

operators with category neutral elements (0,..., 1 ,...,0),
k-th
i.e., such an element is a neutral element on restriction of the
t-norm onto elements of the form (0,..., z ,...,0)
~
k-th

Extended multi-polar integrated t-norm

Commutative, associative extended multi-polar aggregation
operators with neutral element (1,...,1)

Extended multi-polar integrated category t-norm

This extended multi-polar t-norm is given coordinate-wisely




Multi- and multi-polar capacities and generalized multi-polar
capacities

o Multi-capacity: monotone function
v: (K x {0,1})" — K, x [0,1], v(0,...,0) =0 —
multi-cooperative games
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Multi- and multi-polar capacities and generalized multi-polar
capacities

o Multi-capacity: monotone function
v: (K x {0,1})" — K, x [0,1], v(0,...,0) =0 —
multi-cooperative games

o Generalized multi-polar capacity: monotone function
w*: ({0,1}™"™ — [0,1]™, p*(0,...,0) =0

o Multi-polar capacity: monotone function
w: (K x {0,1})" — [0,1]™, u(0,...,0) =0




Input spaces for multi- and multi-polar capacities

Multi-capacity: (K,, x {0,1})" corresponds to
Qm(X) =S {(Al, - ,Am) € (P(X))m | A; ﬂAj = for all ¢ =£
553 €{1,...,m}}

Generalized multi-polar capacity: ({0,1}™)" corresponds to

Qn(X) ={(C1,...,Cn) € (P(X))"}-




Example

Assume a reduction function based on m-summation,

X ={1,...,100} and let v be a multi-polar capacity given by
’U(Al, ) aAm) _ (max(O,Card(AlB)072-Card(A3))’ Carlti](OA2)’ o Car;ié(,?m) )
Assume any Aj, As, A3, B3, B such that Card(4;) = 40,

Card(Az) = 33, Card(As) = 2, and B3 = A3 U B with Card(B3) = 10.

Then v is a multi-polar capacity, however,

36 33 2 1
A, As A =r((—, —,—,0,... =(1,—
T(U( 1,412, 37®a 7®)) r((looa 1007 1007 ; 70)) ( s 100)
and
20 33 10 3
A, A, B =r((—,—,—,0,... =(2,—).
T(U( 1,412, 3a®7 a®)> 7"((100, 1007 1007 9 70)) ( ) 100)

Thus although the set corresponding to the third category was
increased, the output changed from the first to the second category,

i.e., r o v is not a multi-capacity.

w




Let p: (K x {0,1})™ — [0,1]™ be a (normalized) multi-polar
capacity given coordinate-wisely and let r: EK,,, — K, x [0, 1]
be a reduction function. Then v: (K, x {0,1})" — K, x [0, 1]
given by v = r o u is a (normalized) multi-capacity.




e Basic multi-(polar) capacities are additive, symmetric,
category symmetric and decomposable.

e For p < m an m-capacity restricted to inputs from p
categories is a p-capacity.

e For n inputs if n < m an m-capacity is given by a collection of
(7:) compatible partial n-capacities




e X - set of all players, C(j) set of players who choose
alternative j

e (C(1),...,0(m)) is called an arrangement of the players
among the m alternatives

o if for all arrangements I' and all S € I" we set v(5,I') € R it is
represented as the 'worth’ of S with respect to the arrangement

r

e (X, m,v) is a game on X with m alternatives provided
v(T,T') = 0 whenever T'= 0 (v is an (X, m) game).




Input space for (X, m) games

Sn(X) = {(A1, s Am) € On(X)| ‘Q A= X}

Qm—l(X) = Sm(X) € Qm(X)

(X, m) game
V:Sn(X) — R™  (v:Sn(X) — [0,1]™)

Thus an m-polar capacity is a monotone (X, m + 1) game such
that there is a 0 gain if all players abstain.




e bi-cooperative simple (voting) game - (X, 3) game fulfilling nil
condition with embedded range {—1,0,1}

e bi-cooperative game - (X, 3) game fulfilling nil condition with
embedded range [—1,1]

e m-cooperative simple (voting) game - (X, m + 1) game
fulfilling nil condition with embedded range K,, x {0,1}

e m-cooperative game - (X, m + 1) game fulfilling nil condition
with embedded range K, x [0, 1]

e bi-capacity - monotone (X, 3) game fulfilling nil condition,
with embedded range [—1,1]

e bipolar capacity - monotone (X, 3) game fulfilling nil condition
e m-capacity - monotone (X, m + 1) game fulfilling nil condition
with embedded range K, x [0, 1]

e m-polar capacity - monotone (X, m + 1) game fulfilling nil
condition
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