
On the axiomatisation of logics
for approximate reasoning

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems
Johannes Kepler University (Linz, Austria)

January 2014



Crisp reasoning

Model:
W , a set of worlds,
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Meaning:
W is the set of distinguished situations;
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Classical propositional logic (CPL)

Language:

Propositional formulas are built up from ϕ0, ϕ1, . . . ,>,⊥
by means of ∧,∨,¬.

Conditional formulas are of the form

α1, . . . , αk → β.

Interpretation:

An evaluation v maps propositional formulas to B,
interpreting ∧,∨,¬ by ∩,∪, {.

The above statement is satisfied if

v(α1) ∩ . . . ∩ v(αk) ⊆ v(β).
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Approximate reasoning
(Enrique Ruspini)

Model:
W is endowed with a similarity relation s : W ×W → [0, 1]:

(S1) s(u, u) = 1 (reflexivity),

(S2) s(u, v) = 1 implies u = v (separability),

(S3) s(u, v) = s(v, u) (symmetry).

(S4) s(u, v)� s(v, w) ≤ s(u,w) (�-transitivity).

Meaning:
Two worlds v, w ∈W resemble each other to the degree s(v, w).
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Language:

Propositional formulas are built up from ϕ0, ϕ1, . . . ,>,⊥
by means of ∧,∨,¬.

Conditional formulas are of the form

α1, . . . , αk
d→ β, where d ∈ [0, 1].

Interpretation:

An evaluation v maps propositional formulas to B,
interpreting ∧,∨,¬ by ∩,∪, {.

The above statement is satisfied if

v(α1) ∩ . . . ∩ v(αk) ⊆ Ud(v(β)).



Illustration of LAE

α
d→ β

is satisfied in LAE by an evaluation v if

v(α) ⊆ Ud(v(β)).



Rules for LAE

Γ, α, β
d→ γ

Γ, α ∧ β d→ γ

Γ
d→ β

Γ, α
d→ β

Γ, α
d→ γ Γ, β

d→ γ

Γ, α ∨ β d→ γ

Γ
d→ α

Γ
d→ α ∨ β

Γ
c→ α α

d→ γ

Γ
c�d→ γ

Γ
c→ α

Γ
d→ α

, where d ≤ c
Γ

d→ ⊥
Γ

1→ ⊥
, where d > 0

α
0→ β

α
1→ β

α ∧ ¬β 1→ ⊥
α

1→ β, where ¬α ∨ β is a CPL tautology

Open problem

How can LAE be axiomatised?
The above rules are sound;
are these few rules actually already complete?
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Two technical difficulties of the completeness proof

A standard completeness proof:

We take a theory T and an implication α
t→ β such that

T 0 α t→ β.

We then construct a model satisfying T but not α
t→ β.

To this end, we take the Boolean algebra B
of 1-similar propositional formulas.

We then define a similarity between two propositions by

d(α, β) = sup{t ∈ [0, 1] : T ` α t→ β}.
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From ϕ
d→ ψ,

nothing follows
concerning

ψ
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that there are ϕ1, ϕ2 such that
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First approach: finiteness
(Ll. Godo, R. Rodgŕıguez)

We assume that there is a fixed finite number n of variables.

We include to our axioms:

(χ
c→ χ′) → (χ′

c→ χ) if χ and χ′ are m.e.c.’s

(χ
c→ ϕ ∨ ψ) ↔ (χ

c→ ϕ) ∨ (χ
c→ ψ) if χ is a m.e.c.

A m.e.c. is of the form (¬)ϕ1 ∧ . . . ∧ (¬)ϕn.
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“LAEf is complete.”

• LAEf solves both problems:
“symmetry” and “conjunction”;

• LAEf depends on a fixed finite number of variables.



Second approach: a further connective

We extend the language by a new connective:

α↗ β

is interpreted by

{w ∈W : s(w,α) ≥ s(w, β)},

i.e. those worlds that are more similar to α than to β.



Second approach: a further connective

We extend the language by a new connective:

α↗ β

is interpreted by

{w ∈W : s(w,α) ≥ s(w, β)},

i.e. those worlds that are more similar to α than to β.



The logic LAEC

Model:
W is endowed with a quasi-similarity relation
s : W ×W → [0, 1]:

(S1) s(u, u) = 1 (reflexivity),

(S2) s(u, v) = 1 implies u = v (separability),

(S4) s(u, v)� s(v, w) ≤ s(u,w) (�-transitivity).

The logic LAEC:

Language: Propositional formulas from ϕ0, ϕ1, . . . by ∧,∨,¬.

Conditional formulas of the form α1, . . . , αk
d→ β.

Interpretation: in B, interpreting ∧,∨,¬ by ∩,∪, {;
v(α↗ β) = {w ∈W : s(w, v(α)) ≥ s(w, v(β))}.

Satisfaction if v(α1) ∩ . . . ∩ v(αk) ⊆ Ud(v(β)).



The logic LAEC

Model:
W is endowed with a quasi-similarity relation
s : W ×W → [0, 1]:

(S1) s(u, u) = 1 (reflexivity),

(S2) s(u, v) = 1 implies u = v (separability),

(S4) s(u, v)� s(v, w) ≤ s(u,w) (�-transitivity).

The logic LAEC:

Language: Propositional formulas from ϕ0, ϕ1, . . . by ∧,∨,¬.

Conditional formulas of the form α1, . . . , αk
d→ β.

Interpretation: in B, interpreting ∧,∨,¬ by ∩,∪, {;
v(α↗ β) = {w ∈W : s(w, v(α)) ≥ s(w, v(β))}.

Satisfaction if v(α1) ∩ . . . ∩ v(αk) ⊆ Ud(v(β)).



Proof system for LAEC

Γ, α, β
d→ γ

Γ, α ∧ β d→ γ

Γ
d→ β

Γ, α
d→ β

Γ, α
d→ γ Γ, β

d→ γ

Γ, α ∨ β d→ γ

Γ
d→ α

Γ
d→ α ∨ β

Γ
c→ β↗ α Γ

d→ α

Γ
c2�d→ β

α
1→ β

> 1→ β↗ α

α
1→ α↗ β α↗ β, β↗ γ

1→ α↗ γ

Γ, α↗ β
d→ γ Γ, (¬α ∧ β)↗ α

d→ γ

Γ
d→ γ

Γ
c→ α α

d→ γ

Γ
c�d→ γ

Γ
c→ α

Γ
d→ α

, where d ≤ c
Γ

d→ ⊥
Γ

1→ ⊥
, where d > 0

α
0→ β

α
1→ β

α ∧ ¬β 1→ ⊥
α

1→ β, where ¬α ∨ β is a CPL tautology



Progress and drawbacks

Call a theory T consistent if T 0 > 1→ ⊥.

Theorem (Th.V.)

Let T be a consistent finite theory of LAEC;

let α
d→ β be a conditional formula.

Then T proves α
d→ β

if and only if

T semantically entails α
d→ β.

• LAEC solves “division”; it evades “symmetry”.

• LAEC depends on an additional connective.



Progress and drawbacks

Call a theory T consistent if T 0 > 1→ ⊥.

Theorem (Th.V.)

Let T be a consistent finite theory of LAEC;

let α
d→ β be a conditional formula.

Then T proves α
d→ β

if and only if

T semantically entails α
d→ β.

• LAEC solves “division”; it evades “symmetry”.

• LAEC depends on an additional connective.



Progress and drawbacks

Call a theory T consistent if T 0 > 1→ ⊥.

Theorem (Th.V.)

Let T be a consistent finite theory of LAEC;

let α
d→ β be a conditional formula.

Then T proves α
d→ β

if and only if

T semantically entails α
d→ β.

• LAEC solves “division”; it evades “symmetry”.

• LAEC depends on an additional connective.



Third approach: an embedding theorem

Recall the “symmetry” problem:
When constructing a model from a theory,
we cannot assure the symmetry of the similarity relation.

Question

Can we embed in some sense a quasi-similarity space
into a similarity space?



Third approach: an embedding theorem

Recall the “symmetry” problem:
When constructing a model from a theory,
we cannot assure the symmetry of the similarity relation.

Question

Can we embed in some sense a quasi-similarity space
into a similarity space?



Hausdorff quasi-similarity in similarity spaces

Definition

Let (Y, d) be a similarity space.
For A,B ⊆ Y , we call

qd(A,B) = sup
a∈A

inf
b∈B
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Embedding theorem

Theorem (Th.V.)

Let (X, q) be a quasi-similarity space.
Then there is a similarity space (Y, d) and a mapping

ι : X → P(Y ),

such that distinct points map to disjoint subsets and

q(a, b) = qd(ι(a), ι(b))

for any a, b ∈ X.



Idea of the proof

Let (X, q) be the quasi-similarity space.

Let Y = X × U2, where

U = {(a, b) ∈ X2 : q(a, b) ≤ q(b, a)}.

We define
ι : X → P(Y ), a 7→ {(a, (. . .))}.

We let d be the largest similarity on Y such that:

d( (a, (i1, . . .)), (b, (i1, . . .)) ) = q(a, b) ∨ q(b, a);

d( (a, (. . . , 0, . . .)), (b, (. . . , 1, . . .)) ) = q(a, b) if (a, b) ∈ U
↑ position (a, b) ↑
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Summary

• LAE, the Logic of Approximate Entailment, is probably
the most straightforward logic in the field of
Approximate Reasoning.

But in its standard version, it lacks an axiomatisation.

Two problems need to be overcome.

• A modification: we restrict the number of variables.

• An extension: we add a comparative connective.

• An embedding: we enlarge quasi-similarity spaces
to similarity spaces.
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“asymmetry”.
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• an axiomatisation of the unmodified LAE.
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