Conjugacy Relations via Group Action on the set of Implications

N.R. Vemuri & B.Jayaram

Department of Mathematics

Indian Institute of Technology Hyderabad

January 30, 2014

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

N.R. Vemuri & B.Jayaram

Conjugacy Relations via Group Action on the set of Implications

Classical Implication:Truth Table

р	q	$\mathbf{p} ightarrow \mathbf{q}$
0	0	1
0	1	1
1	0	0
1	1	1

Classical Implication:Truth Table

Fuzzy Implication

• A generalization of classical implication.

Classical Implication:Truth Table

Fuzzy Implication

• A generalization of classical implication.

Definition [Kitainik, 1993]

A function $I : [0,1]^2 \rightarrow [0,1]$ is called a **fuzzy implication(FI)** if

- *I* is decreasing in the first variable and increasing in the second variable.
- I(0,0) = I(1,1) = I(0,1) = 1 and I(1,0) = 0.

Basic Fuzzy Implications

Name	Formula
Łukasiewicz	$I_{LK}(x,y) = \min(1,1-x+y)$
Gödel	$I_{\text{GD}}(x, y) = \begin{cases} 1, & \text{if } x \leq y \\ y, & \text{if } x > y \end{cases}$
Reichenbach	$I_{RC}(x,y) = 1 - x + xy$
Kleene-Dienes	$I_{\mathbf{KD}}(x,y) = \max(1-x,y)$
Goguen	$I_{GG}(x,y) = \begin{cases} 1, & \text{if } x \le y \\ \frac{y}{x}, & \text{if } x > y \end{cases}$
Weber	$I_{WB}(x,y) = egin{cases} 1, & ext{if } x < 1 \ y, & ext{if } x = 1 \end{cases}$
Yager	$I_{YG}(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ and } y = 0 \\ y^x, & \text{if } x > 0 \text{ or } y > 0 \end{cases}$

Basic Fuzzy Implications

Name	Formula
Loost El	$h_{x}(x, y) = \int 1$, if $x = 0$ or $y = 1$
	0(x, y) = 0, if $x > 0$ and $y < 1$
Largest El	$\int 1, \text{ if } x < 1 \text{ or } y > 0$
Largest FI	$1(\mathbf{x}, \mathbf{y}) = \begin{cases} 0, & \text{if } x = 1 \text{ and } y = 0 \end{cases}$
Most strict	$h_{r}(x,y) = \int 1$, if $x = 0$
	y, if x > 0

Basic Fuzzy Implications

Name	Formula	
Loost El	$I_0(x,y) = \left\{$	$\int 1, \text{if } x = 0 \text{ or } y = 1$
		0, if x > 0 and y < 1
Largost El	$I_1(x,y) = \langle$	$\int 1, \text{if } x < 1 \text{ or } y > 0$
Largest II		0, if x = 1 and y = 0
Most strict	$I_{D}(x,y) = \begin{cases} 1\\ y \end{cases}$	$\int 1$, if $x = 0$
		y, if x > 0

Notation

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Basic Fuzzy Implications

Name	Formula	
	$I_0(x,y) = \left\{$	$\int 1, \text{if } x = 0 \text{ or } y = 1$
LEASETT		0, if x > 0 and y < 1
Largest El	$\left \ I_1(x,y) = \right $	$\int 1, \text{if } x < 1 \text{ or } y > 0$
Largest II		0, if x = 1 and y = 0
Most strict	$I_{D}(x,y) = \begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\int 1$, if $x = 0$
		y, if x > 0

Notation

• $\mathbb I$ - the set of all fuzzy implications.

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Basic Fuzzy Implications

Name	Formula	
Least FI	$I_0(x,y) = \left\{$	$\int 1, \text{if } x = 0 \text{ or } y = 1$
		$\int 0, \text{ if } x > 0 \text{ and } y < 1$
Lowroot El	$I_1(x,y) = \langle$	$\int 1, \text{if } x < 1 \text{ or } y > 0$
Largest II		$\int 0, \text{ if } x = 1 \text{ and } y = 0$
Most strict	$I_{D}(x,y) = \left\{ \begin{array}{c} \\ \end{array} \right.$	$\int 1$, if $x = 0$
		$\int y$, if $x > 0$

Notation

- I the set of all fuzzy implications.
- \mathbb{I}_{NP} the set of all fuzzy implications satisfying I(1, y) = y.

Basic Fuzzy Implications

Name	Formula	
	$I_0(x,y) = \left\{$	$\int 1, \text{if } x = 0 \text{ or } y = 1$
LEASETT		$\int 0, \text{ if } x > 0 \text{ and } y < 1$
Loweast El	$I_1(x,y) = \langle$	$\int 1, \text{if } x < 1 \text{ or } y > 0$
Largest FI		$\int 0, \text{ if } x = 1 \text{ and } y = 0$
Most strict	$I_{D}(x,y) = \left\{ \begin{array}{c} \\ \end{array} \right.$	$\int 1$, if $x = 0$
		y, if $x > 0$

Notation

- I the set of all fuzzy implications.
- \mathbb{I}_{NP} the set of all fuzzy implications satisfying I(1, y) = y.
- Φ the set of all increasing bijections on [0,1].

3 Types

• From fuzzy logic connectives-

3 Types

• From fuzzy logic connectives-

```
viz., (S,N), R, QL-implications ...etc.
```

• From unary monotonic functions on [0,1],

3 Types

• From fuzzy logic connectives-

viz., (S,N), R, QL-implications ...etc.

• From unary monotonic functions on [0,1],

viz., Yager's f, g-implications ... etc.

3 Types

• From fuzzy logic connectives-

viz., (S,N), R, QL-implications ...etc.

• From unary monotonic functions on [0,1],

viz., Yager's f, g-implications ... etc.

• From fuzzy implications.

3 Types

• From fuzzy logic connectives-

viz., (S,N), R, QL-implications ...etc.

• From unary monotonic functions on [0,1],

viz., Yager's f, g-implications ... etc.

• From fuzzy implications.

Fuzzy implications from fuzzy implications will lead to

3 Types

• From fuzzy logic connectives-

viz., (S,N), R, QL-implications ...etc.

• From unary monotonic functions on [0,1],

viz., Yager's f, g-implications ... etc.

• From fuzzy implications.

Fuzzy implications from fuzzy implications will lead to

New fuzzy implications

3 Types

From fuzzy logic connectives-

viz., (S,N), R, QL-implications ...etc.

• From unary monotonic functions on [0,1],

viz., Yager's f, g-implications ... etc.

• From fuzzy implications.

Fuzzy implications from fuzzy implications will lead to

- New fuzzy implications
- Algebraic structures on \mathbb{I} (often).

Generating Methods

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Generating Methods

• Lattice operations (Bandler and Kohout, 1980)

- Lattice operations (Bandler and Kohout, 1980)
- Convex combinations(Baczyński and Drewniak)

- Lattice operations (Bandler and Kohout, 1980)
- Convex combinations(Baczyński and Drewniak)
- Compositions(Baczyński, Drewniak and Sobera 2001)

- Lattice operations (Bandler and Kohout, 1980)
- Convex combinations(Baczyński and Drewniak)
- Compositions(Baczyński, Drewniak and Sobera 2001)
- Conjugacy classes (Baczyński and Drewniak, 1999)

- Lattice operations (Bandler and Kohout, 1980)
- Convex combinations(Baczyński and Drewniak)
- Compositions(Baczyński, Drewniak and Sobera 2001)
- Conjugacy classes (Baczyński and Drewniak, 1999)

Why do we need new generating methods?

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Why do we need new generating methods?

• Existing methods involve an operator or a parameter

Why do we need new generating methods?

- Existing methods involve an operator or a parameter
- Richest algebraic structure available on ${\mathbb I}$ is a semigroup

Why do we need new generating methods?

- Existing methods involve an operator or a parameter
- $\bullet\,$ Richest algebraic structure available on $\mathbb I$ is a semigroup
- May obtain hitherto unknown Characterisations and Representations

Generating methods of FIs from FIs

Generating methods of FIs from FIs

Method-1

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Generating methods of FIs from FIs

Method-1

For any $I, J \in \mathbb{I}$, we define
Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Theorem

Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Theorem

 $I\Delta J\in\mathbb{I}$.

Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Theorem

 $I\Delta J\in\mathbb{I}$.

Theorem

 (\mathbb{I}, Δ) is a semigroup.

Method-1

For any $I, J \in \mathbb{I}$, we define

$$(I\Delta J)(x,y) = I(J(1,x), J(x,y)), \qquad x, y \in [0,1]$$

Theorem

 $I\Delta J\in\mathbb{I}$.

Theorem

 (\mathbb{I}, Δ) is a semigroup.

We do not use any external operator.

A Monoid structure on $\mathbb I$

A Monoid structure on $\mathbb I$

Definition [Vemuri & Jayaram (IPMU 2012)]

For any $I, J \in \mathbb{I}$, we define

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

Theorem [Vemuri & Jayaram (IPMU 2012)]

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 $I \circledast J \in \mathbb{I}$.

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 $I \circledast J \in \mathbb{I}$.

Theorem [Vemuri & Jayaram (IPMU 2012)]

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 $I \circledast J \in \mathbb{I}$.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 (\mathbb{I},\circledast) is a monoid with identity

For any $I, J \in \mathbb{I}$, we define

$$(I \circledast J)(x, y) = I(x, J(x, y))$$
.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 $I \circledast J \in \mathbb{I}$.

Theorem [Vemuri & Jayaram (IPMU 2012)]

 (\mathbb{I},\circledast) is a monoid with identity

$$I_{\mathbf{D}}(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ y, & \text{if } x > 0. \end{cases}$$

Remark

Remark

• $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.

Remark

- $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.
- $I \circledast I_1 \neq I_D$ for any $I \in \mathbb{I}$.

Remark

- $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.
- $I \circledast I_1 \neq I_D$ for any $I \in \mathbb{I}$.

Moreover...

Remark

- $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.
- $I \circledast I_1 \neq I_D$ for any $I \in \mathbb{I}$.

Moreover...

Fuzzy Implications of the form

$$\mathcal{K}^{\delta}(x,y) = egin{cases} 1, & ext{if } x < 1 ext{ or } (x = 1 ext{ and } y \geq \delta) \\ 0, & ext{otherwise.} \end{cases}$$

satisfy $I \circledast K^{\delta} = K^{\delta}$ for all $I \in \mathbb{I}$

Remark

- $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.
- $I \circledast I_1 \neq I_D$ for any $I \in \mathbb{I}$.

Moreover...

Fuzzy Implications of the form

$$\mathcal{K}^{\delta}(x,y) = egin{cases} 1, & ext{if } x < 1 ext{ or } (x = 1 ext{ and } y \geq \delta) \\ 0, & ext{otherwise.} \end{cases}$$

satisfy $I \circledast K^{\delta} = K^{\delta}$ for all $I \in \mathbb{I}$

Conclusion

Remark

- $I \circledast I_1 = I_1$ for all $I \in \mathbb{I}$. i.e., I_1 is a right zero element.
- $I \circledast I_1 \neq I_D$ for any $I \in \mathbb{I}$.

Moreover...

Fuzzy Implications of the form

$$\mathcal{K}^{\delta}(x,y) = egin{cases} 1, & ext{if } x < 1 ext{ or } (x=1 ext{ and } y \geq \delta) \ 0, & ext{otherwise.} \end{cases}$$

satisfy $I \circledast K^{\delta} = K^{\delta}$ for all $I \in \mathbb{I}$

Conclusion

 $(\mathbb{I}, \circledast)$ is NOT a group.

Largest subgroup of a monoid

Set of all invertible elements = the largest subgroup.

Set of all invertible elements = the largest subgroup.

So in $(\mathbb{I}, \circledast)$...

Set of all invertible elements = the largest subgroup.

So in $(\mathbb{I}, \circledast)$...

• What are the invertible implications?

Subgroups of (\mathbb{I}, \circledast)

Subgroups of $(\mathbb{I}, \circledast)$

Lemma[Vemuri & Jayaram , FSS 2013]

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Let $I \in \mathbb{I}$. Then following are equivalent

Let $I \in \mathbb{I}$. Then following are equivalent

• *I* is invertible w.r.to *

Let $I \in \mathbb{I}$. Then following are equivalent

- I is invertible w.r.to ⊛
- \exists a unique $J \in \mathbb{I}$ such that for any $x \in (0,1]$ and $y \in [0,1]$

$$I(x, J(x, y)) = y = J(x, I(x, y)) .$$
 (1)

Let $I \in \mathbb{I}$. Then following are equivalent

- I is invertible w.r.to ⊛
- \exists a unique $J \in \mathbb{I}$ such that for any $x \in (0,1]$ and $y \in [0,1]$

$$I(x, J(x, y)) = y = J(x, I(x, y)) .$$
 (1)

Theorem [Vemuri & Jayaram , FSS 2013]

Let $I \in \mathbb{I}$. Then following are equivalent

- I is invertible w.r.to ⊛
- \exists a unique $J \in \mathbb{I}$ such that for any $x \in (0,1]$ and $y \in [0,1]$

$$I(x, J(x, y)) = y = J(x, I(x, y)) .$$
 (1)

Theorem [Vemuri & Jayaram , FSS 2013]

 $I \in \mathbb{I}$ is invertible w.r.to \circledast if and only if

$$I(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ \varphi(y), & \text{if } x > 0, \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Subgroups of (\mathbb{I}, \circledast)
Subgroups of $(\mathbb{I}, \circledast)$

Example

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Subgroups of $(\mathbb{I}, \circledast)$

Example

The fuzzy implication

$$I(x, y) = \begin{cases} 1, & \text{if } x = 0, \\ y^3, & \text{if } x > 0, \end{cases}$$

is invertible w.r.to \circledast in $\mathbb{I},$ because there exists a unique fuzzy implication

$$J(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ y^{\frac{1}{3}}, & \text{if } x > 0, \end{cases}$$

such that $I \circledast J = I_{\mathbf{D}} = J \circledast I$.

Subgroups of $(\mathbb{I}, \circledast)$

Example

The fuzzy implication

$$I(x, y) = \begin{cases} 1, & \text{if } x = 0, \\ y^3, & \text{if } x > 0, \end{cases}$$

is invertible w.r.to \circledast in $\mathbb{I},$ because there exists a unique fuzzy implication

$$J(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ y^{\frac{1}{3}}, & \text{if } x > 0, \end{cases}$$

such that $I \circledast J = I_{\mathbf{D}} = J \circledast I$.

Notation

Subgroups of (\mathbb{I},\circledast)

Example

The fuzzy implication

$$I(x, y) = \begin{cases} 1, & \text{if } x = 0, \\ y^3, & \text{if } x > 0, \end{cases}$$

is invertible w.r.to \circledast in $\mathbb{I},$ because there exists a unique fuzzy implication

$$J(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ y^{\frac{1}{3}}, & \text{if } x > 0, \end{cases}$$

such that $I \circledast J = I_{\mathbf{D}} = J \circledast I$.

Notation

 \mathbb{S} - the set of all invertible elements of $(\mathbb{I}, \circledast)$.

Lemma

Lemma

For $I, J \in \mathbb{S}$,

$I \circledast J \equiv I \Delta J$

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Lemma

For $I, J \in \mathbb{S}$,

$$I \circledast J \equiv I \Delta J$$

Lemma

$$K \circledast (I \Delta K^{-1}) = (K \circledast I) \Delta K^{-1}, \qquad I \in \mathbb{I}, K \in \mathbb{S}$$

Group action

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

$$\bullet \ s_1 \bullet (s_2 \bullet g) = (s_1 \circ s_2) \bullet g$$

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

$$s_1 \bullet (s_2 \bullet g) = (s_1 \circ s_2) \bullet g$$

 $e \bullet g = g$

for all $s_1, s_2 \in S, g \in G$ (e is the identity of (S, \circ)).

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

$$s_1 \bullet (s_2 \bullet g) = (s_1 \circ s_2) \bullet g$$

 $e \bullet g = g$

for all $s_1, s_2 \in S, g \in G$ (e is the identity of (S, \circ)).

What does a group action do?

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

 $e \bullet g = g$

for all $s_1, s_2 \in S, g \in G(e \text{ is the identity of } (S, \circ))$.

What does a group action do?

Define \sim on *G* by

Group action of a group (S, \circ) on a set G is a map $\bullet : S \times G \rightarrow G$ satisfying

 $e \bullet g = g$

for all $s_1, s_2 \in S, g \in G(e \text{ is the identity of } (S, \circ))$.

What does a group action do?

Define \sim on *G* by

$$g_1 \sim g_2 \Longleftrightarrow g_1 = s \bullet g_2 \tag{2}$$

for some $s \in S$.

More about group action

 $\mathbf{0}$ ~ is an equivalence relation

 ${\small 0} \ \sim {\rm is \ an \ equivalence \ relation}$

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 ${\small 0} \ \sim {\rm is \ an \ equivalence \ relation}$

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

 ${\small 0} \ \sim {\rm is \ an \ equivalence \ relation}$

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

 $\mathbf{0}$ ~ is an equivalence relation

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

• Can we get a partition on $\mathbb I$?

 $\mathbf{0}$ ~ is an equivalence relation

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

- Can we get a partition on $\mathbb I$?
- Can we define an equivalence relation on ${\mathbb I}$?

 $\mathbf{0}$ ~ is an equivalence relation

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

- Can we get a partition on $\mathbb I$?
- Can we define an equivalence relation on ${\mathbb I}$?
- Can we define a group action on $\mathbb I$?

 $\mathbf{0}$ ~ is an equivalence relation

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

- Can we get a partition on \mathbb{I} ?
- Can we define an equivalence relation on ${\mathbb I}$?
- Can we define a group action on $\mathbb I$?

Answer is

 $\mathbf{0}$ ~ is an equivalence relation

$$[g]_{\sim} = \{b \in G | a \sim b\}$$

 \bigcirc ~ partitions G

So in our context...

- Can we get a partition on \mathbb{I} ?
- Can we define an equivalence relation on ${\mathbb I}$?
- Can we define a group action on $\mathbb I$?

Answer is

Yes we can !!!

Definition

Definition

Let $\bullet : \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

• is a group action of \mathbb{S} on \mathbb{I} .

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

• is a group action of \mathbb{S} on \mathbb{I} .

Definition

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

• is a group action of \mathbb{S} on \mathbb{I} .

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I$$

for some $K \in \mathbb{S}$. Then

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I$$

for some $K \in \mathbb{S}$. Then

• $\stackrel{\circledast}{\sim}$ is an equivalence relation.
Recall

Recall

$$\mathcal{K} \in \mathbb{S} \Longrightarrow \mathcal{K}(x,y) = egin{cases} 1, & ext{if } x = 0 \ , \ arphi(y), & ext{if } x > 0 \ , \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Recall

$$\mathcal{K} \in \mathbb{S} \Longrightarrow \mathcal{K}(x,y) = egin{cases} 1, & ext{if } x = 0 \ arphi(y), & ext{if } x > 0 \ , \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence class of I

Recall

$$\mathcal{K} \in \mathbb{S} \Longrightarrow \mathcal{K}(x,y) = egin{cases} 1, & ext{if } x = 0 \ arphi(y), & ext{if } x > 0 \ , \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence class of I

$$\begin{split} [I] &= \{J \in \mathbb{I} | J \stackrel{\circledast}{\sim} I\} \\ &= \{J \in \mathbb{I} | J = K \circledast I \text{ for some } K \in \mathbb{S}\} \\ &= \{J \in \mathbb{I} | J(x, y) = \varphi(I(x, y)) \text{ for some } \varphi \in \Phi\} \end{split}$$

Recall

$$K \in \mathbb{S} \Longrightarrow K(x,y) = egin{cases} 1, & ext{if } x = 0 \ arphi(y), & ext{if } x > 0 \ , \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence class of I

$$\begin{split} [I] &= \{ J \in \mathbb{I} | J \overset{\circledast}{\sim} I \} \\ &= \{ J \in \mathbb{I} | J = K \circledast I \text{ for some } K \in \mathbb{S} \} \\ &= \{ J \in \mathbb{I} | J(x, y) = \varphi(I(x, y)) \text{ for some } \varphi \in \Phi \} \end{split}$$

Note

Recall

$$\mathcal{K} \in \mathbb{S} \Longrightarrow \mathcal{K}(x,y) = egin{cases} 1, & ext{if } x = 0 \ arphi(y), & ext{if } x > 0 \ , \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence class of I

$$\begin{split} [I] &= \{ J \in \mathbb{I} | J \overset{\circledast}{\sim} I \} \\ &= \{ J \in \mathbb{I} | J = K \circledast I \text{ for some } K \in \mathbb{S} \} \\ &= \{ J \in \mathbb{I} | J(x, y) = \varphi(I(x, y)) \text{ for some } \varphi \in \Phi \} \end{split}$$

Note

[I] = transformations proposed by Jayaram & Mesiar. FSS(2009).

Group action on the set I-2

Definition

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I \Delta K^{-1}$$

for some $K \in \mathbb{S}$. Then

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \Delta K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I \Delta K^{-1}$$

for some $K \in \mathbb{S}$. Then

• $\stackrel{\circledast}{\sim}$ is an equivalence relation.

Group action on the set I-2

Recall

Recall

Fuzzy implications from $\ensuremath{\mathbb{S}}$ are of the form

Recall

Fuzzy implications from $\ensuremath{\mathbb{S}}$ are of the form

$$\mathcal{K}(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ \varphi(y), & \text{if } x > 0, \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Recall

Fuzzy implications from $\ensuremath{\mathbb{S}}$ are of the form

$$\mathcal{K}(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ \varphi(y), & \text{if } x > 0, \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence classes

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Recall

Fuzzy implications from $\ensuremath{\mathbb{S}}$ are of the form

$$\mathcal{K}(x,y) = \begin{cases} 1, & \text{if } x = 0, \\ \varphi(y), & \text{if } x > 0, \end{cases}$$

where the function $\varphi \colon [0,1] \to [0,1]$ is an increasing bijection.

Equivalence classes

For $I \in \mathbb{I}$

$$\begin{split} [I]_{\textcircled{B}} &= \{J \in \mathbb{I} | J \overset{\circledast}{\sim} I\} \\ &= \{J \in \mathbb{I} | J = K \circledast I \Delta K^{-1} \text{ for some } K \in \mathbb{S}\} \\ &= \{J \in \mathbb{I} | J(x, y) = \varphi^{-1} \left(I(\varphi(x), \varphi(y)) \right) \text{ for some } \varphi \in \Phi\} \\ &= \{J \in \mathbb{I} | J = I_{\varphi} \text{ for some } \varphi \in \Phi\} \end{split}$$

Conjugacy classes of FIs

Let $I \in \mathbb{I}$. For any $\varphi \in \Phi$, define

Let $I \in \mathbb{I}$. For any $\varphi \in \Phi$, define

$$I_{\varphi}(x,y) = \varphi^{-1}\left(I(\varphi(x),\varphi(y))\right),$$

Let $I \in \mathbb{I}$. For any $\varphi \in \Phi$, define

$$I_{\varphi}(x,y) = \varphi^{-1}\left(I(\varphi(x),\varphi(y))\right),$$

Theorem [Baczyński & Drewniak(1999)]

Let $I \in \mathbb{I}$. For any $\varphi \in \Phi$, define

$$I_{\varphi}(x,y) = \varphi^{-1}\left(I(\varphi(x),\varphi(y))\right),$$

Theorem [Baczyński & Drewniak(1999)]

•
$$I_{\varphi} \in \mathbb{I}$$
.

Let $I \in \mathbb{I}$. For any $\varphi \in \Phi$, define

$$I_{\varphi}(x,y) = \varphi^{-1}\left(I(\varphi(x),\varphi(y))\right),$$

Theorem [Baczyński & Drewniak(1999)]

- $I_{\varphi} \in \mathbb{I}$.
- $I_{\varphi} = \varphi$ conjugate of I

Conjugacy classes of FIs

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Let $I, J \in \mathbb{I}$. Define $I \sim_{\varphi} J \iff I = J_{\varphi}$ for some $\varphi \in \Phi$

Let $I, J \in \mathbb{I}$. Define $I \sim_{\varphi} J \Longleftrightarrow I = J_{\varphi}$ for some $\varphi \in \Phi$

• \sim_{φ} is an equivalence relation on $\mathbb I$

Let $I, J \in \mathbb{I}$. Define $I \sim_{\varphi} J \iff I = J_{\varphi}$ for some $\varphi \in \Phi$

- \sim_{φ} is an equivalence relation on $\mathbb I$
- The equivalence class of $I \in \mathbb{I}$ is

$$\begin{split} [I]_{\sim_{\varphi}} &= \{J \in \mathbb{I} | J = I_{\varphi} \text{ for some } \varphi \in \Phi\} \\ &= \{J \in \mathbb{I} | J = \varphi^{-1} \left(I(\varphi(x), \varphi(y)) \right) | \varphi \in \Phi\} \\ &= [I]_{\circledast} \end{split}$$

Definition

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$
Grooup Action on the set I-III

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

• is a group action of \mathbb{S} on \mathbb{I} .

Definition

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Grooup Action on the set I-III

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I \circledast K^{-1}$$

for some $K \in \mathbb{S}$. Then

Grooup Action on the set I-III

Definition

Let $\bullet \colon \mathbb{S} \times \mathbb{I} \to \mathbb{I}$ be defined by

$$K \bullet I = K \circledast I \circledast K^{-1}, \qquad K \in \mathbb{S}, \ I \in \mathbb{I}.$$

Lemma

 \bullet is a group action of $\mathbb S$ on $\mathbb I.$

Definition

Define $\stackrel{\circledast}{\sim}$ on \mathbb{I} by

$$I \stackrel{\circledast}{\sim} J \Longleftrightarrow J = K \circledast I \circledast K^{-1}$$

for some $K \in \mathbb{S}$. Then

• $\stackrel{\circledast}{\sim}$ is an equivalence relation.

Equivalence classes

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Equivalence classes

For $I \in \mathbb{I}$

$$\begin{split} [I]_{\circledast} &= \{J \in \mathbb{I} | J \stackrel{\circledast}{\sim} I\} \\ &= \{J \in \mathbb{I} | J = K \circledast I \circledast K^{-1} \text{ for some } K \in \mathbb{S}\} \\ &= \{J \in \mathbb{I} | J(x, y) = \varphi \left(I((x), \varphi^{-1}(y)) \right) \text{ for some } \varphi \in \Phi \} \end{split}$$

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

Notation

• $\mathbb{I}_{\mathbb{F}}$ -set of all *f*-implications.

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

- I_{**F**} −set of all *f*-implications.
- $\mathbb{I}_{\mathbb{F},\infty}$ the family of all f- implications such that $f(0)=\infty$,

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

- I_𝔅 −set of all *f*-implications.
- $\mathbb{I}_{\mathbb{F},\infty}$ the family of all f- implications such that $f(0)=\infty$,
- $\mathbb{I}_{\mathbb{F},1}$ the family of all f- implications such that f(0) = 1,

Let $f : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing and continuous function with f(1) = 0. The function $I : [0,1]^2 \longrightarrow [0,1]$ defined by

$$I(x,y) = f^{-1}(x \cdot f(y)), \qquad x, y \in [0,1],$$

with the understanding $0 \cdot \infty = 0$, is called an *f*-implication.

- I_𝔅 −set of all *f*-implications.
- $\mathbb{I}_{\mathbb{F},\infty}$ the family of all f- implications such that $f(0)=\infty$,
- $\mathbb{I}_{\mathbb{F},1}$ the family of all *f* implications such that f(0) = 1,
- Clearly, $\mathbb{I}_{\mathbb{F}} = \mathbb{I}_{\mathbb{F},\infty} \cup \mathbb{I}_{\mathbb{F},1}$.

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Let $I \in \mathbb{I}$ and $J \in [I]$. Then

Let $I \in \mathbb{I}$ and $J \in [I]$. Then

- $I \in \mathbb{I}_{\mathbb{F}} \iff J \in \mathbb{I}_{\mathbb{F}}.$
- $I \in \mathbb{I}_{\mathbb{F},\infty} \iff J \in \mathbb{I}_{\mathbb{F},\infty}.$
- $I \in \mathbb{I}_{\mathbb{F},1} \iff J \in \mathbb{I}_{\mathbb{F},1}.$

$$\mathbb{I}_{\mathbb{F},\infty} = [\mathit{I}_{\mathbf{YG}}]$$

Theorem $\mathbb{I}_{\mathbb{F},\infty} = [\mathit{I}_{\mathbf{Y}\mathbf{G}}]$ Theorem

Theorem $\mathbb{I}_{\mathbb{F},\infty} = [\textit{I}_{\textbf{YG}}]$ Theorem $\mathbb{I}_{\mathbb{F},1} = [\textit{I}_{\textbf{RC}}]$

$$\mathbb{I}_{\mathbb{F},1} = [I_{\mathsf{RC}}]$$

Representation of *f*-implications

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

$\mathbb{I}_{\mathbb{F},\infty} = [\mathit{I}_{\mathbf{YG}}]$

Theorem

Theorem

$$\mathbb{I}_{\mathbb{F},1} = [\textit{I}_{\textbf{RC}}]$$

Representation of *f*-implications

• An
$$I \in \mathbb{I}_{\mathbb{F},\infty}$$
 if and only if

$$I(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ and } y = 0 \\ \varphi \left(\left[\varphi^{-1}(y) \right]^x \right), & \text{if } x > 0 \text{ or } y > 0 \end{cases}, \text{ for some}$$

$$\varphi \in \Phi.$$

An I ∈ I_{F,1} if and only if I(x, y) = φ (1 − x + xφ⁻¹(y)), for some φ ∈ Φ.

Let $g: [0,1] \rightarrow [0,\infty]$ be a strictly increasing and continuous function with g(0) = 0. The function $I: [0,1]^2 \rightarrow [0,1]$ defined by

$$I(x,y) = g^{(-1)}\left(\frac{1}{x} \cdot g(y)\right), \qquad x,y \in [0,1]$$

with the understanding $\frac{1}{0} = \infty$ and $\infty \cdot 0 = \infty$, is called a gimplication, where the function $g^{(-1)}$ is the pseudo inverse of g given by

$$g^{(-1)}(x) = egin{cases} g^{-1}(x), & ext{if } x \in [0, \ g(1)] \ , \ 1, & ext{if } x \in [g(1), \ \infty] \ , \end{cases}$$

- I_G -set of all *g*-implications.
- $\mathbb{I}_{\mathbb{G},\infty}$ the family of all g- implications such that $g(1)=\infty$,
- $\mathbb{I}_{\mathbb{G},1}$ the family of all g- implications such that g(1)=1,
- Clearly, $\mathbb{I}_{\mathbb{G}} = \mathbb{I}_{\mathbb{G},\infty} \cup \mathbb{I}_{\mathbb{G},1}$.

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Let $I \in \mathbb{I}$ and $J \in [I]$. Then

- $I \in \mathbb{I}_{\mathbb{G}} \iff J \in \mathbb{I}_{\mathbb{G}}.$
- $I \in \mathbb{I}_{\mathbb{G},\infty} \iff J \in \mathbb{I}_{\mathbb{G},\infty}.$
- $I \in \mathbb{I}_{\mathbb{G},1} \iff J \in \mathbb{I}_{\mathbb{G},1}$.

$$\mathbb{I}_{\mathbb{G},\infty} = [\textit{I}_{\textbf{YG}}]$$

Theorem

$$\mathbb{I}_{\mathbb{G},\infty} = [\mathit{I}_{\mathsf{YG}}]$$

Theorem

$$\mathbb{I}_{\mathbb{G},\infty} = [\mathit{I}_{\mathsf{YG}}]$$

$$\mathbb{I}_{\mathbb{G},1} = [\textit{I}_{\textbf{GG}}]$$

Theorem

$$\mathbb{I}_{\mathbb{G},\infty} = [\mathit{I}_{\mathsf{YG}}]$$

Theorem

$$\mathbb{I}_{\mathbb{G},1} = [\textit{I}_{\textbf{GG}}]$$

Representation of g-implications

• An
$$I \in \mathbb{I}_{\mathbb{G},\infty}$$
 if and only if

$$I(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ and } y = 0 \\ \varphi\left(\left[\varphi^{-1}(y)\right]^x\right), & \text{if } x > 0 \text{ or } y > 0 \\ \varphi \in \Phi. \end{cases}$$
, for some

2 An $I \in \mathbb{I}_{\mathbb{G},1}$ if and only if

$$I(x,y) = \begin{cases} 1, & \text{if } \varphi(x) \leq y, \\ \varphi\left(\frac{\varphi^{-1}(y)}{\varphi(x)}\right), & \text{if } \varphi(x) > y, \end{cases} \text{ for some } \varphi \in \Phi.$$

Conjugacy Relations via Group Action on the set of Implications

Group actions

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Group actions

• give algebraic connotation of conjugacy classes, transformation.

Group actions

- give algebraic connotation of conjugacy classes, transformation.
- representations of Yager's implications

Thank you!!!

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications

Thank you!!!

Questions???

N.R. Vemuri & B.Jayaram Conjugacy Relations via Group Action on the set of Implications