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Set operations

Operation Classical Fuzzy

Union ∪ t-conorm

Intersection ∩ t-norm

Complement c Fuzzy Negation

Set di�erence \ ??

Symmetric di�erence ∆ ??

Table : Classical vs Fuzzy operators
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Di�erence of (classical)sets

Set di�erence

The set di�erence of A,B is de�ned as

A \ B = {a ∈ A|a /∈ B}

Equivalent de�nition

A \ B = A ∩ Bc
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Symmetric Di�erence of (classical)sets

Symmetric di�erence

The symmetric di�erence of two sets A,B is de�ned as

A∆B = (A \ B) ∪ (B \ A)

Equivalent de�ntion

A∆B = (A ∩ Bc) ∪ (B ∩ Ac)
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Generalisations of Di�erence operators

De�nition

The di�erence of two fuzzy sets can be de�ned as

Sd1(x , y) = T (x ,N(y)) (1)

Sd2(x , y) = x − T (x , y) (2)

where T ,N are a t-norm and a fuzzy negation, resp.

Symmetric di�erence of fuzzy sets ??
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Dubois and Prade (1980)

Two Examples

S1(x , y) = |x − y |
S2(x , y) = max(min(x , 1− y),min(1− x , y))

Note

S1, S2 are only examples of fXoR operators

No axiomatic de�nition was proposed.
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Alsina et.al. (2005)

De�nition

∆: [0, 1]2 −→ [0, 1] is called a symmetric di�erence operator if

(A1) ∆(a, 0) = ∆(0, a) = a

(A2) ∆(a, a) = 0

(A3) ∆(a, 1) = ∆(1, a) = N(a), where N is a strong negation.

Drawbacks

∆ is not commutative

N is a strong negation

Not general enough to accomodate known fXoR operators.

S2(a, a) 6= 0.
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Bedregal et.al. (2009)

De�nition

E : [0, 1]2 −→ [0, 1] is called a symmetric di�erence operator if

(B1) E (a, b) = E (b, a)

(B2) E (a,E (b, c)) = E (E (a, b), c)

(B3) E (0, a) = a

(B4) E (1, 1) = 0.

Drawbacks

Most of the fXoR operators do not satisfy associativity

Not general enough to accomodate many fXoR operators
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fXoR operators - some Generalisations

Classical A∆B fXoR

(A \ B) ∪ (B \ A) D1(x , y) = S(x − T (x , y), y − T (x , y))

(A ∩ Bc) ∪ (B ∩ Ac) D2(x , y) = S(T (x ,N(y)),T (y ,N(x)))

(A ∪ B) ∩ (A ∩ B)c D3(x , y) = T (S(x , y),N(T (x , y)))

(A ∪ B) ∩ (Ac ∪ Bc) D4(x , y) = T (S(x , y), S(N(x),N(y)))

(A ∪ B) \ (A ∩ B) D5(x , y) = S(x , y)− T (S(x , y),T (x , y))

Table : Various fXoR operators
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Properties of Di

Di and the violated axioms

Alsina .et.al Bedregal.et.al.

D1 A2 B2

D2 A2,A3 B2

D3 A2,A3 B2

D4 A2,A3 B2

D5 A2 B2

Table : Violated properties of Di operators
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De�nition 1

D : [0, 1]2 → [0, 1] is called an fXoR operator if for all x , y ∈ [0, 1]
it satis�es:

(i) D(x , y) = D(y , x),

(ii) D(0, x) = x ,

(iii) D(1, x) = N(x) where N is a fuzzy negation.

Theorem

Di satis�es De�nition 1, for i = 1, 2, 3, 4, 5.
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Figures

Case 1: Consider T = min, S = max and N(x) = 1− x , then
D1 − D5 are shown in Fig. 1.
Case 2: when T = TLK, S = SP and N(x) = 1− x , then D1 − D5

are shown in Fig. 2.

Vemuri, Sai Hareesh & Srinath Symmetric Di�erence



Preliminaries
Symmetric Di�erence

De�nition
Examples
Properties
Applications
Future Work
References

Figures

Case 1: Consider T = min, S = max and N(x) = 1− x , then
D1 − D5 are shown in Fig. 1.
Case 2: when T = TLK, S = SP and N(x) = 1− x , then D1 − D5

are shown in Fig. 2.

Vemuri, Sai Hareesh & Srinath Symmetric Di�erence



Preliminaries
Symmetric Di�erence

De�nition
Examples
Properties
Applications
Future Work
References

Figures

Case 1: Consider T = min, S = max and N(x) = 1− x , then
D1 − D5 are shown in Fig. 1.
Case 2: when T = TLK, S = SP and N(x) = 1− x , then D1 − D5

are shown in Fig. 2.

Vemuri, Sai Hareesh & Srinath Symmetric Di�erence



Preliminaries
Symmetric Di�erence

De�nition
Examples
Properties
Applications
Future Work
References

Figures

Case 1: Consider T = min, S = max and N(x) = 1− x , then
D1 − D5 are shown in Fig. 1.
Case 2: when T = TLK, S = SP and N(x) = 1− x , then D1 − D5

are shown in Fig. 2.

Vemuri, Sai Hareesh & Srinath Symmetric Di�erence



Preliminaries
Symmetric Di�erence

De�nition
Examples
Properties
Applications
Future Work
References

Figure : (a) D1, D5 (b) D2 (c) D3, D4, when T = TM, S = SM and
N(x) = 1− xVemuri, Sai Hareesh & Srinath Symmetric Di�erence
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Figure : (a) D1 (b) D2 (c) D3 (d) D4 (e) D5, when T = TLK, S = SP
and N(x) = 1− x
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Properties of fXoR operators

Classical A∆B fXoR

A∆(B∆C ) = (A∆B)∆C D(x ,D(y , z)) = D(D(x , y), z)

A∆A = ∅ D(x , x) = 0

A∆B = Ac∆Bc D(x , y) = D(N(x),N(y))

(X∆A)c = X∆A D(1, y) is strong negation

A ∩ (B∆C ) = (A ∩ B)∆(A ∩ C ) T (x ,D(y , z)) = D(T (x , y),T (x , z))

Table : Various operators
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Properties of fXOR operators

Property D1 D2 D3 D4 D5

Commutativity X X X X X
Associativity × × × × ×
D(0, x) = x X X X X X

D(1, x) = D(x , 1) 1− x N(x) N(x) N(x) 1− x

D(N(x),N(y)) = D(x , y) × × × × ×
D(x , x) = 0 × × × × ×

Distributivity w.r.t T × × × × ×
D(x , y) = 1⇒ |x − y | = 1 × × × × ×
Conditional Monotonicity X × X × ×

Table : Properties vs Various operators
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More Properties

De�nition

Given x , y , z ∈ [0, 1], fXoR operator D is said to satisfy

(i) (CP) Cancellative Property if D(x , y) = D(x , z) then y = z .

(ii) (EP) Exchange Principle if D(x , y) = z then D(y , z) = x and
D(x , z) = y .

(iii) (COP) Coincidence Principle if D(x , y) = 0 ⇔ x = y .

(iv) (DT) Delta transitivity if D(D(x , y),D(y , z)) = D(x , z).

(v) (SP) Subset Principle if x ≤ y then D(x , y) = Sd(y , x) where
d = d1 or d2
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Few relationships

Figure : Some of the relationships between the di�erent properties
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Applications

Fuzzy XoR function is constructed and is used to extract edges
from grayscale images [1].

In [2], Pedrycz et.al., developed a logic-based architecture of
fuzzy neural networks, called here fXoR networks using basic
fuzzy operations such as Fuzzy Negation, t-norm and
t-conorm.

Commonly used preference formation rules in psychology and
marketing using linear models is given in [3]. The interaction
term with the linear models includes counterbalance (fXoR).
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Applications

Properties of x + y − 2xy is studied in [4] and it is found that
the operation is least sensitive (Most Robust) on average.

Fuzzy XoR dataset was used to compare the performance of
Fuzzy Clustering lagorithms namely Fuzzy C-Means (FCM),
Gustafson-Kessel FCM, and Kernel-based FCM in [5].

Classical connective XoR is frequently used as a problem, as,
e.g., in Neural Networks, in support vector machines (SVM)
and Quantum Computing due to its non-linearity.
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Future Work

To study...

All the properties of families in detail

Intersection between the families

Characterization of di�erent families
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Summary

A general de�nition of fXoR operator was given.

Some Families of fXoR operators were proposed.

Inter-relationships among the properties of fXoR operators was
studied.
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