# Approaches used to measure quality of multifocus image fusion

Marek Vajgl

Institute for Research and Applications of Fuzzy Modeling University of Ostrava Ostrava, Czech Republic

marek.vajgl@osu.cz

January 30, 2014







#### Problem introduction

- Multifocus image
- F-Transform and multifocus fusion
- Fusion evaluation
- 2 Measures and evaluation
  - Mosaic images
  - Non-mosaic images
- 3 Expert decision
- 4 Conclusion

#### 5 References

### Multifocus image fusion I

#### Multifocus images

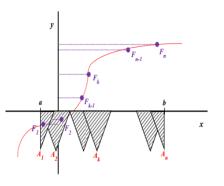
Multiple images obtained with different focus (No rotation, no shift, no scale change)

#### Example



# Multifocus image fusion II

#### Types


- Mosaic each pixel is the "best" information in at least one image
- Real-life there might be no ideal image for pixel

#### Example



# F-Transform schematically

- Original function
  - $f:[a,b]\to [c,d]$
- Fuzzy partition  $A_1, \ldots, A_n$ of [a, b]
- F-Transform Components *F*<sub>1</sub>,...,*F*<sub>n</sub>
- Transformation:  $f \Rightarrow \mathbf{F}_n[f]$  $\frac{x \parallel A_1 \mid A_2 \mid \cdots \mid A_n}{\mathbf{F}_n[f] \parallel F_1 \mid F_2 \mid \cdots \mid F_n}$ Result:  $\mathbf{F}_n[f] = (F_1, \dots, F_n)$





# F-transform formally

#### Direct and inverse F-Transform

$$F[u](A_k \times B_l) = \frac{\sum_{i=1}^N \sum_{j=1}^M u(i,j) A_k(i) B_l(j)}{\sum_{i=1}^N \sum_{j=1}^M A_k(i) B_l(j)},$$
(1)

$$u_{nm}(i,j) = \sum_{k=1}^{n} \sum_{l=1}^{m} F[u]_{kl} A_k(i) B_l(j).$$
(2)

#### Basic usage in image processing

- **1** Calculate components c of input image u
- 2 Calculate reconstructed image  $u_r$  from components c
- 3 Calculate residuals  $r = u_r u$



# Image fusion using F-Transform

#### Algorithm description

- Calculate residuals for each input image
- 2 Calculate residuals from residuals for each input image (obtained next "level")
- 3 ... continue interatively until residuals are not significant
- 4 For each "level" take highest residuals in absolute values
- 5 Reconstruct image as sum highest residuals

#### Properties

- Very time consuming
- Precise for complex images
- May contain artifacts in case of simple images  $\Rightarrow$  improvements done

# Fusion example - input





### Fusion example - output





### Fusion example - which is the best?



IRAFM



### Fusion - evaluation

#### Possible defects

- Result image (or its parts) is out of focus
- Artifacts existing in result image

#### How to measure quality?

- Solution based on automatically calculated measures
  - Is there "best" image to compare
  - There is no best image to compare
- Solution based on human experts
  - (Subjective? Who is expert?)



### Fusion - evaluation

#### Possible defects

- Result image (or its parts) is out of focus
- Artifacts existing in result image

#### How to measure quality?

- Solution based on automatically calculated measures
  - Is there "best" image to compare
  - There is no best image to compare
- Solution based on human experts

(Subjective? Who is expert?)

11 / 42

### Fusion - evaluation

#### Possible defects

- Result image (or its parts) is out of focus
- Artifacts existing in result image

#### How to measure quality?

- Solution based on automatically calculated measures
  - Is there "best" image to compare
  - There is no best image to compare
- Solution based on human experts
  - (Subjective? Who is expert?)





### ... quick remark about measures

#### .. about measures

- Distortion measures higher means lower quality (bigger distortion)
- Quality measures higher means better quality (lower distortion)



### Automatically calculated measures - mosaic images I

#### Commonly used measures

Mean square error

$$MSE = \frac{1}{n*m} \sum_{x=1}^{n} \sum_{y=1}^{m} (u(x,y) - \hat{u}(x,y))^2$$

Peak signal to noise ratio

$$PSNR = 20 * log_{10} \frac{255}{\sqrt{MSE}}$$

Structural similarity

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

### Automatically calculated measures - mosaic images I

#### Commonly used measures

Mean square error

$$MSE = \frac{1}{n*m} \sum_{x=1}^{n} \sum_{y=1}^{m} (u(x,y) - \hat{u}(x,y))^2$$

Peak signal to noise ratio

$$PSNR = 20 * log_{10} \frac{255}{\sqrt{MSE}}$$

Structural similarity

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

### Automatically calculated measures - mosaic images I

#### Commonly used measures

Mean square error

$$MSE = \frac{1}{n*m} \sum_{x=1}^{n} \sum_{y=1}^{m} (u(x,y) - \hat{u}(x,y))^2$$

Peak signal to noise ratio

$$PSNR = 20 * log_{10} \frac{255}{\sqrt{MSE}}$$

Structural similarity

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

### Automatically calculated measures - mosaic images II

#### Information-weighted MSE & PSNR [Wang (2004)]

$$\mathsf{IW-MSE} = \prod_{j=1}^{M} \left[ \frac{\sum_{i} w_{j,i}(u_{j,i} - \hat{u}_{j,i})}{\sum_{i} w_{j,i}} \right]^{\beta_j}$$
$$\mathsf{IW-PSNR} = 20 * \log_{10} \frac{255}{\sqrt{IWMSE}}$$



14 / 42

### Automatically calculated measures - mosaic images III

Multiscale structural similarity [Wang (2004)]

Evaluated SSIM in multiple scales

Brightness (luminance)  $l(x,y) = \frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_u^2+C_1}$ 

Contrast 
$$c(x, y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$
  
Similarity  $s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$ 

$$\mathsf{SSIM}_j = \frac{1}{N_j} \sum_{i} \left[ l(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) c(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) s(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) \right]$$

Result

$$\mathsf{MS}\text{-}\mathsf{SSIM} = \prod_{j=1}^M (\mathsf{SSIM}_j)^{\beta_j}$$

### Automatically calculated measures - mosaic images III

Multiscale structural similarity [Wang (2004)]

Evaluated SSIM in multiple scales

Brightness (luminance)  $l(x,y) = \frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_u^2+C_1}$ 

Contrast 
$$c(x, y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$
  
Similarity  $s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$ 

Local

$$\mathsf{SSIM}_j = \frac{1}{N_j} \sum_{i} \left[ l(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) c(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) s(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) \right]$$

Result

$$\mathsf{MS-SSIM} = \prod_{j=1}^{M} (\mathsf{SSIM}_j)^{\beta_j}$$

### Automatically calculated measures - mosaic images III

Multiscale structural similarity [Wang (2004)]

Evaluated SSIM in multiple scales

Brightness (luminance)  $l(x,y) = \frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_u^2+C_1}$ 

Contrast 
$$c(x, y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$
  
Similarity  $s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$ 

Local

$$\mathsf{SSIM}_j = \frac{1}{N_j} \sum_{i} \left[ l(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) c(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) s(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) \right]$$

Result

$$\mathsf{MS-SSIM} = \prod_{j=1}^{M} (\mathsf{SSIM}_j)^{\beta_j}$$

### Automatically calculated measures - mosaic images IV

Multiscale weighted structural similarity [Wang (2004)]

 $\label{eq:scalar} Evaluated \ information \ weighted \ SSIM \ in \ multiple \ scales$ 

- Brightness, contrast, similarity stays the same
- Local value now weighted

$$\mathsf{IW-SSIM}_j = \frac{\sum_i w_{j,i} c(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) s(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i})}{\sum_i w_{j,i}}, \forall j < M$$

Result

$$\mathsf{IW}\text{-}\mathsf{SSIM} = \prod_{j=1}^{M} (\mathsf{IW}\text{-}\mathsf{SSIM}_j)^{\beta_j}$$



16 / 42

### Automatically calculated measures - mosaic images IV

Multiscale weighted structural similarity [Wang (2004)]

 $\label{eq:scalar} Evaluated \ information \ weighted \ SSIM \ in \ multiple \ scales$ 

- Brightness, contrast, similarity stays the same
- Local value now weighted

$$\mathsf{IW-SSIM}_j = \frac{\sum_i w_{j,i} c(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i}) s(\mathbf{u}_{j,i}, \hat{\mathbf{u}}_{j,i})}{\sum_i w_{j,i}}, \forall j < M$$

$$\mathsf{IW}\text{-}\mathsf{SSIM} = \prod_{j=1}^M (\mathsf{IW}\text{-}\mathsf{SSIM}_j)^{\beta_j}$$

### Commonly used measures - results

#### Commonly used measures

| lmage     | Size     | MSE     | PSNR   | SSIM  |
|-----------|----------|---------|--------|-------|
| reference | 256x177  | 0.000   | (Inf)  | 1.000 |
| input A   | 256×177  | 243.581 | 24.264 | 0.886 |
| input B   | 256x177  | 120.663 | 27.315 | 0.936 |
| fused     | 256x177  | 10.993  | 37.748 | 0.992 |
| reference | 1024x708 | 0.000   | (Inf)  | 1.000 |
| input A   | 1024x708 | 340.879 | 22.804 | 0.871 |
| input B   | 1024x708 | 195.902 | 25.210 | 0.994 |
| fused     | 1024x708 | 30.969  | 33.222 | 0.988 |



### Information weighted measures - results

#### Information weighted measures

| Image     | Size     | SSIM  | IW-PSNR | MS-SSIM | IW-SSIM |
|-----------|----------|-------|---------|---------|---------|
| reference | 256x177  | 1.000 | -,      | 1       | 1       |
| input A   | 256x177  | 0.886 | 20.900  | 0.933   | 0.836   |
| input B   | 256x177  | 0.936 | 38.888  | 0.985   | 0,944   |
| fused     | 256x177  | 0.992 | 32.097  | 0.997   | 0.995   |
| reference | 1024x708 | 1.000 |         | 1       | 1       |
| input A   | 1024×708 | 0.871 | 14.244  | 0.889   | 0.655   |
| input B   | 1024×708 | 0.994 | 21.997  | 0.954   | 0.837   |
| fused     | 1024×708 | 0.988 | 28.148  | 0.988   | 0,975   |
| blur 3    | 1024×708 | 0.939 | 28.849  | 0.984   | 0.939   |
| blur 10   | 1024x708 | 0.905 | 17.854  | 0.930   | 0.714   |
| blur 25   | 1024x708 | 0.805 | 13.368  | 0.842   | 0.490   |

### A1 obtained by DCT [Haghighat (2011)]



### A2 obtained by DCT [Haghighat (2011)]



#### B obtained by wavelet-based statistical sharpness measure [Tian (2012)]



#### C obtained by bilateral gradiend-based sharpness [Tian (2011)]



### D obtained by laplacian-based fusion [Xiao (2009)]



### Original F-Transform based fusion (origin)



#### Residual F-Transform based fusion (residual)



#### Invasive A - F-Transform based fusion



#### Invasive B - F-Transform based fusion



#### Invasive C - F-Transform based fusion



#### Invasive D - F-Transform based fusion



# Fused images - results

### Fused images - results

| lmage          | SSIM  | IW-PSNR | MS-SSIM | IW-SSIM |
|----------------|-------|---------|---------|---------|
| orig.bmp       | 1     | -,      | 1.000   | 1.000   |
| D.bmp          | 0.991 | 27.183  | 0.991   | 0.977   |
| Forigin.bmp    | 0.990 | 25.636  | 0.989   | 0.971   |
| FinvasiveB.bmp | 0.992 | 26.687  | 0.991   | 0.976   |
| A1.bmp         | 0.988 | 25,835  | 0.988   | 0.955   |
| FinvasiveD.bmp | 0.982 | 22.180  | 0.982   | 0.951   |
| FinvasiveA.bmp | 0.982 | 22.532  | 0.982   | 0.950   |
| Fresidual.bmp  | 0.973 | 21.705  | 0.975   | 0.925   |
| A2.bmp         | 0.975 | 23.316  | 0.971   | 0.925   |
| FinvasiveC.bmp | 0.972 | 20.624  | 0.974   | 0.915   |
| B.bmp          | 0.968 | 20.860  | 0.967   | 0.902   |
| C.bmp          | 0.946 | 18.091  | 0.953   | 0.862   |

# Automatically calculated metrics - non-mosaic images

#### How to evaluate focus

#### Camera uses focus measure to autofocus

- Phase detection
- Contrast detection intensity differences between neighbor pixels increasing with correct focus ⇒ no default image needed



# Autofocus measurement methods

#### Many approaches, references implementations [Petruz (2012)]

- Image contrast / curvature [Nanda (2001), Helmli (2001)]
- Gray level variance/normalized/locality [Krotkov (1986), Santos (1997), Pech (2000)]
- Histogram range / entrophy [Firestone (1991), Krotkov (1986)]
- Energy of gradient [Subbarao (1992)]
- Thresholded gradient, squared gradient [Santos (1997), Eskicioglu (1995)]
- Steerable filter-based measure [Minhas (2009)]
- Gaussian derivative [Geusebroek (2000)]
- Laplacian energy / variance / diagonal [Subbarao (1992), Pech (2000), Thelen (2009)]
- DCT energy mesasure / ratio [Shen (2006), Lee (2009)]
- Wavelet sum / variance / ratio [Yang (2003), Yang (2003), Xie (2004)]
- ... + 9 more

Marek Vajgl (IRAFM)

# Autofocus measurement methods - results |

#### Autofocus measures - demo images

| lmage     | SFIL ( $\times 10^{17}$ ) | GRAE   | WAVV   | ACMO       |
|-----------|---------------------------|--------|--------|------------|
| reference | 5.867                     | 10.649 | 47.370 | 30 720.427 |
| input A   | 3.547                     | 4.218  | 10.963 | 30 720.648 |
| input B   | 4.863                     | 7.406  | 34.692 | 30 724.082 |
| fused     | 5.526                     | 10.013 | 47.136 | 30 722.849 |
| blur 3    | 5.408                     | 7.999  | 0.354  | 30 721.009 |
| blur 10   | 3.990                     | 3.164  | 0.154  | 30 730.036 |
| blur 25   | 2.542                     | 0.973  | 0.155  | 30 724.739 |

- SFIL Steerable filters-based [Minhas (2009)]
- GRAE Energy of gradient [Subbarao (1992)]
- WAVV Wavelet variance [Yang (2003)]

ACMO - Absolute central moment [Shirvaikar (2004)]

## Autofocus measurement methods - results II

### Autofocus measures - fused images

| lmage          | SFIL ( $\times 10^{16}$ ) | GRAE  | WAVV  |
|----------------|---------------------------|-------|-------|
| input A.bmp    | 308.302                   | 4.331 | 0.494 |
| input B.bmp    | 317.491                   | 5.421 | 1.194 |
| orig.bmp       | 415.314                   | 9.715 | 4.176 |
| D.bmp          | 407.490                   | 7.968 | 1.367 |
| Forigin.bmp    | 404.429                   | 7.866 | 1.417 |
| FinvasiveB.bmp | 393.407                   | 7.534 | 1.315 |
| FinvasiveD.bmp | 365.260                   | 9.712 | 5.360 |
| B.bmp          | 325.765                   | 6.099 | 4.164 |
| A1.bmp         | 408.299                   | 7.943 | 1.402 |
| Fresidual.bmp  | 347.895                   | 5.239 | 0.864 |
| A2.bmp         | 417.827                   | 8.631 | 2.113 |
| FinvasiveC.bmp | 368.989                   | 6.859 | 1.748 |

# Autofocus methods - summary

### Acceptable measures (in case of no artifacts)

- Steerable filtering-based approach
- DCT energy, DCT ratio
- Gaussian derivative
- Gray level local variance

#### Unacceptable measures

Detecting directly sharpness of image

- Wavelets...
- Contrast...
- Histogram...
- Laplacian...

# Who is human expert?

### Who is human expert?

- Multiple subjects evaluate images differently
  - Some prefer improved contrast in image
  - Some do not see (or ignore) artifacts
  - Sometimes difference is too small
- So which one is better?





# Just Noticeable Difference

### Just Noticeable Difference

- Based on perceptual sensitivity (E.H. Webber, G.T. Fecher)
- Test based on

$$img_{test} = img_{ref} + k * (img_{dmg} - img_{ref})$$

- Subject must decide if *img<sub>test</sub>* or *img<sub>ref</sub>* is better
- With success > 75%, difference is 1 JND, with success >93.75%, difference is 2 JND
- Difference 2 JND is "noticeable"

This may be useful to define minimal significant measure difference.



#### Conclusion

- In case of reference image, IW-SSIM characteristic can be used
- In case of non-mosaic input, DCT based measures, gaussian derivative or gray-level-local-variance can be used
- Artifacts cause results should be processed carefully

#### Future

- Measure the robustness of selected algorithms
- Look for other types of algorithms than focus-oriented





# References

Aslantas (2009) – Aslantas, V. and R.Kurban: A comparison of different focus measures for use in fusion of multi-focus noisy images, The 4th International Conference on Information Technology (ICIT 2009), Amman, Jordan, 2009 Wang (2004) – Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli: Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. Petruz (2012) - Said Pertuz, Domenec Puig, Miguel Angel Garcia: Analysis of focus measure operators for shape-from-focus, Pattern Recognition, Volume 46, Issue 5, May 2013, Pages 1415-1432, ISSN 0031-3203 **Tektronics (2008)** – Tektronics: Understanding PQR, DMOS, and PSNR Measurements. http://http://www.tek.com/document/fact-sheet/understanding-pqrdmos-and-psnr-measurements. 2008 [online 2014-01-20 Perfilieva (2011) - Perfiljeva I., Dankova M., Hodakova P., Vajgl M.: F-Transform

based Image Fusion. In: Image Fusion. InTech, Rijeka, Croatia (2011) pp. 3-22 Perfiljeva (2012) – Perfiljeva I., Vajgl M., Hodakova P.: Advanced F-Transform-based Image Fusion. In: Advances in Fuzzy Systems (2012) 1-9.



## Fusion algorithms references

Haghighat (2011) – M.B.A. Haghighat, A. Aghagolzadeh, H. Seyedarabi, *Multi-Focus Image Fusion for Visual Sensor Networks in DCT Domain*. Computers and Electrical Engineering, vol. 37, no. 5, pp. 789-797, Sep. 2011.

**Tian (2012)** – J. Tian and L. Chen: Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure. Signal Processing. Vol. 92, No. 9, Sep. 2012, pp. 2137-2146.

**Tian (2011)** – J. Tian, L. Chen, L. Ma and W. Yu: *Multi-focus image fusion using a bilateral gradient-based sharpness criterion*. Optics Communications, Vol. 284, Jan. 2011, pp. 80-87.

Xiao (2009) - QU Xiao-bo, YAN Jing-wen, YANG Gui-de:

Sum-modified-Laplacian-based Multifocus Image Fusion Method in Sharp Frequency Localized Contourlet Transform Domain. Optics and Precision Engineering, 17(5): 1203-1202, June 2009.



## Measure algorithm references I

Helmli (2001) – Helmli, F. & Scherer, S. Adaptive shape from focus with an error estimation in light microscopy. 2001. Nanda (2001) - Nanda, H. & Cutler, R. Practical calibrations for a real-time digital omnidirectional camera 2001 Krotkov (1986) - Krotkov, E. Range from focus. 1986. Santos (1997) - Santos, A.; de Solorzano, C. O.; Vaquero, J. J.; Pena, J. M.; Mapica, N. & Pozo, F. D. Evaluation of autofocus functions in moleclar cytogenetic analysis. Journal of Microscopy, Vol. 188, Issue 3, pages 264–272, December 1997 Pech (2000) – Pech, J.; Cristobal, G.; Chamorro, J. & Fernandez, J. Diatom autofocusing in brightfield microscopy: a comparative study. 2000. Firestone (1991) - Firestone, L.; Cook, K.; Culp, K.; Talsania, N. & Jr., K. P. Comparison of autofocus methods for automated microscopy. 1991. Subbarao (1992) - Subbarao, M.; Choi, T. & Nizkad, A. Tech. report: Focusing techniques 1992. Eskicioglu (1995) - Eskicioglu, A. M & Fisher, P. S. Image quality measures and their performance. 1995. Thelen (2009) – Thelen, A.; Frey, S.; Hirsch, S. & Hering, P. Interpolation Improvements in Shape-From-Focus for Holographic Reconstructions With Regard to 🔥 Focus Operators, Neighborhood-Size, and Height Value. 2009

## Measure algorithm references II

Shen (2006) – Shen, C. & Chen, H. Robust focus measure for low-contrast images. 2006.

Lee (2009) – Sang-Yong Lee, Jae-Tack Yoo, K. Y. S. K Reduced Energy-Ratio Measure for Robust Autofocusing in Digital Camera. 2009.

Yang (2003) – Yang, G. & Nelson, B. Wavelet-based autofocusing and unsupervised segmentation of microscopic images. 2003.

Xie (2006) – Xie, H.; Rong, W. & Sun, L. Wavelet-Based Focus Measure and 3-D Surface Reconstruction Method for Microscopy Images. 2006.

**Gausenbroek (2000)** – Geusebroek, J.; Cornelissen, F.; Smeilders, A. & Geerts, H Robust autofocusing in microscopy. 2000.

Minhas (2009) – Minhas, R.; Mohammed, A. A.; Wu, Q. M. & Sid-Ahmed, M. A. 3D Shape from Focus and Depth Map Computation Using Steerable Filter. 2009.

42 / 42