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The need to aggregate several values into a single value arises in almost
every application.

Properties of aggregation functions for specific application:
@ Do we need every basic property?
@ De we need some extra properties?

Sometimes it is important that the resulting output does not incorporate
any new information from that already contained in the inputs.

Example: Image processing: filtering or reducing images.
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Impulsive noise Additive noise
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Impulsive noise Additive noise

Any other noise...
Which filter?
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Starting point

An internal operator is a mapping F : [0, 1]™ — [0, 1] such that

F(z,...,2,) €{z1,..., 20}

for every (z1,...,m,) € [0,1]™.

Notice that only internality is demanded in our definition, but not
monotonicity.
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It is clear that boundary conditions are satisfied.

Proposition

Let F' be an internal operator. The following items hold:
i) F(z,...,1) =z for all z € [0,1];
i) min(zy,...,2,) < Fay,...,2,) < maz(xy,...,z,) for all
(21,...,2,) €[0,1]™.
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Some examples

O Let 7; denote the j-th projection given by
(T, ..., %) = a5

Then, for every j € {1,...,n}, the operator 7; is an internal operator.
@ Both the minimum and the maximum are internal operators.
© Mode
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Previous definition

f:10,1]™ — [0, 1] is a locally internal aggregation function if:

© [ is continuous.

@ f is non-decreasing.

Q f(z,...,z) = x for every z € [0, 1].

Q [ is locally internal; that is, f(z1,...,z,) € {z1,...,z,} for every
(21,...,2,) € [0,1]™.

G. Mayor and J. Martin, Locally internal aggregation functions, International Journal of Uncertainty, Fuzziness and

Knowledge-based Systems, 7 (1999) 235-241.
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Construction of internal aggregation functions

Theorem

Let M :[0,1]™ — [0,1] be an aggregation function and let

ag, ai, - .., an € [0,1] such that 0 = ap < a3 < --- < a, =1. The

mapping Fyr,q - [0,1]" — [0,1] given by

7 if M(z1,...,2,) =0
FM,a(xl,...,xn):{ (1) ( 1 n)

ziy  if M(2,. .., 20) €ai-

is an internal aggregation function.

1 a”[]
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The following items hold

i) Letag =ay=---=a,=1. Then
Fuyo(zi,. .., 2,) = min(zy, ..., o)

for every aggregation function M and (z1,...,x,) € [0,1]";

i) Let0=a9p=a1 =---= an_1. Then
Fuyo(zi,. .., 2,) = max(z1, ..., )

for every aggregation function M and (z1,...,z,) € [0,1]";

i) Let n be odd and 0 = ay = a; = -+ = an—1 and
2
Gny1 = -+~ = a, = 1. Then
2
Fuyo(2, ..., 2,) = median(zi, . . ., )

for every aggregation function M and (z,...,x,) € [0,1]™.
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Definition

Let P : [a, b]"*! — R be a penalty function with the properties
i) P(x,y) >0 for all x, y;
i) P(x,y) =0ifall 2; = y;
iii) P(z,y) is quasi-convex in y for any x.
The penalty based function is

f(x) = argmin P(x, y)

if y is the unique minimizer, and y = %b if the set of minimizers is the
interval [a, b].

| N\

Theorem

Calvo et al. Any averaging aggregation function can be expressed as a
penalty based function.
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Theorem

Let P:[0,1]""t — [0,1] be a penalty function. Let Fp :[0,1]" — [0,1]
be given by

Fp(xy,...,2,) = arg min P(x,z;) foralli=1,...n

Then Fp is an internal operator.

Monotonicity? Let P(x,y) = >/ (7 — y)?
Fp(0,0.1,0.3,0.41) = 0.3
Fp(0,0.2,0.3,0.41) = 0.2
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Following previous example: let M be the arithmetic mean.
M(0,0.1,0.3,0.41) = 0.2025. Closest value is 0.3 = Fp(0,0.1,0.3,0.41)
M(0,0.2,0.3,0.41) = 0.2275. Closest value is 0.2 = Fp(0,0.2,0.3,0.41)
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The mapping dp : [0,1]2 — [0, 1] is a restricted dissimilarity function if it
satisfies:

(1) dr(z,y) = dg(y, z) for every z,y € [0, 1];

(2) dg(z,y) =1if and only if {z,y} = {0,1};

(3) dg(z,y) =0 if and only if z = y;

(4) Forany z,y,z € [0,1], if z < y < 2, then dr(z,y) < dg(z, z) and
dp(y, z) < dp(z, 2).

W
Theorem

Bustince et al. Take dr : [0,1]?> — [0, 1]. Then the following items are
equivalent:

(i) dg is a faithful restricted dissimilarity function.

(i) There exists a convex automorphism ¢ and a bijection h on the unit
interval such that dr(z,y) = ¢(|h(z) — h(y)|) for all z,y € [0, 1].
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Proposition
Bustince et al. Let dp : [0,1]?> — [0, 1] be a faithful dissimilarity function.
Then the function P : [0,1]""! — [0, 1] defined for any z1, ..., z, € [0,1]
as

P(a1,...,20) =Y dr(,y)
=1

is a penalty function.

Proposition

Let dr be a restricted dissimilarity function as in previous Theorem with
h(z) =z for all z € [0,1]. Let P be a penalty function given by

P(xb <oy I, y) Z?:l dR(fL'i, y) Then

Fp(zi+a,...,2y+a) = Fp(x1,...,z,) +a forall ..., x,,a € [0,1]
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Experimental study

@ Set of 50 medical images: original and corrupted with rician noise

@ A set of 6 filters: 3 types of filters (median, mean and gaussian) with
2 different settings

@ Internal operator based on penalty functions:

o P(xy,...,z,) = ZZ:l |z; — vl
o P(r,..., 1) = >or_ (2 — y)?
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Experimental study

Filter 5 Filter 6 Fusion P1 Fusion P2
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Experimental study

Comparison with original (without noise) image
@ Mean squared error

@ Simmilarity measure based on contrast de-enhancement

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6
323.8 379.0 3435 412.9 337.4 337.3
0.9400 0.9375 0.9369 0.9328 0.9382 0.9382

Fusion P1  Fusion P2
323.5 326.0
0.9390 0.9386
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Pixels selected from each filter

Using P2, the fusion image pixels are selected from:

Filter 1 Filter 2 Filter 3

Filter 4 Filter b Filter 6
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Experimental study

Image corrupted with gaussian noise
Med3  Med4  Avg3  Avgb Gau3 Gaub

2128.8 2160.6 21479 22145 21404 2140.4
0.8318 0.8302 0.8306 0.8279 0.8325 0.8312

IntP1 IntP2 IntP3
2132.1 2132.3 2128.4
0.8312 0.8312 0.8313
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Conclusions

Given an application of blind image fusion we have studied the concept of
internal fusion operator

e Internal aggregation functions (continuos and non-continuous)
@ Internal operators constructed from penalty functions

We have seen that the results obtained are promising. Our idea
@ To continue studying properties of internal operators

@ To use more sophisticated filters and observe the result obtained by
intenal fusion
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Thanks for your attention
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