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A [0, 1]-valued universal integral is a functional

U (e #85) ~ 01

X, )es

satisfying the following conditions:
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A [0, 1]-valued universal integral is a functional

U (e #85) ~ 01

X, )es

satisfying the following conditions:

11) forall (X,«) €., my,m, € ///(1)( oy andfy,f € Z,
f; < f, we have |(m1,f1) < |(m2, fz),

[0,1]

X,)
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A [0, 1]-valued universal integral is a functional

Introduction and
motivation

1 0,1
I: U ('ﬁ(x’ﬂ) X <g.([xaﬂ]f)) - [0’ 1] Monotone
X, o) convergence
Almost uniformn
satisfying the following conditions: cor ,,,LL!,:‘,!' ‘

11) forall (X,«) €., my,my € ///(lx’d) and fy,f, € 34‘([2’2) with m; < my,

f; < f, we have |(m1,f1) < |(m2, fz),

12) forall (X,«) €., me L///(lx’%) and A € & we have m(A) = I(m, 1A); integral
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A [0, 1]-valued universal integral is a functional

Introduction and

a 0.1 motivation
| : U (,ﬁ(xyﬂ) X y(x:d)) 7 [oa 1] Monotone
X, o) convergence
Almost uniforn
satisfying the following conditions: onver ence

11) forall (X,«) €., my,my € ///& oy andfy,f € 34‘([2’&) with m; < my,
f; < f, we have |(m1,f1) < |(m2, fz),

12) forall (X, o) € ¥, m € 45, and A€ o/ we have M(A) = I(m, 1x);

I3) forall (X,e/) €., még //f(lx,m and ¢ € [0,1] we have I(m,c - 1x) = c;
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A [0, 1]-valued universal integral is a functional

Introduction and

a 0.1 motivation
| : U (,ﬁ(xyﬂ) X y(x:d)) 7 [oa 1] Monotone
X, o) convergence
Almost uniforn
satisfying the following conditions: onver ence

11) forall (X,«) €., my,my € ///(lx’d) and fy,f, € 34‘([2’2) with m; < my,

f; < f, we have |(m1,f1) < |(m2, fz),

12) forall (X,«) €., me.#} ., andAc o we have m(A) = I(m, 1,);

(X, =)
I3) forall (X,e/) €., még //f(lx,m and ¢ € [0,1] we have I(m,c - 1x) = c;

14) 1(mq,f1) = I(my, f2) for all integral equivalent pairs.
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@ for (m,f) € #x ) x Fx ., We may introduce a single function
hms : [0,1] — [0, 1] as follows

Introduction and
motivation

hm(t) :=m({x € X; f(x) >1t}) Monotone

convergence

Almost uniform
vergence
For (m,f) € ///&,g,) X f(gg”ﬂ{) the smallest [0, 1]-valued universal

integral having S as the underlying semicopula is given by

Is(m,f) := sup S(t,hm¢(t)).

tef0,1]
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@ for (m,f) € (//l(lxﬂ) X ﬂ([ﬁ’yﬂﬁ,) we may introduce a single function
hm ¢ : [0,1] — [0, 1] as follows

Bt (1) := m({x € X; f(x) > t})

For (m,f) € ///&,g,) X f(gg”ﬂ{) the smallest [0, 1]-valued universal
integral having S as the underlying semicopula is given by

Is(m,f) := sup S(t,hm¢(t)).

tef0,1]

Im ... the Sugeno integral
In ... the Shilkret integral

I+ ... the Sugeno-Weber integral (with T being a fixed strict t-norm)
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Theorem (monotone convergence )

Let S € & be left-continuous and m € //{&’d). Then the following
assertions are equivalent:

(i) m is continuous from below;

(i) forallf, (f.)3° € Z{3'", such thatfy ~f, it holds
lim Is(m,fy) = Is(m,f).
n—oo
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Theorem (monotone convergence II)

Let S € & be right-continuous and m & //l&’g,). Then the following
assertions are equivalent:

(i) m is continuous from above;

(i) forallf, (f2)3° € Z{3"), such that fy \, f, it holds
lim Is(m,fy) = Is(m,f).
n—oo
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Theorem (everywhere convergence)

Let S € & be continuous and m € ///&’d). Then the following
assertions are equivalent:

(i) mis continuous;

(i) forallf, (f2)3° € Z{3'", such that f, — f, it holds
lim Is(m,fy) = Is(m,f).
n—oo
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Theorem (everywhere convergence)

Let S € & be continuous and m € ///&’d). Then the following
assertions are equivalent:

(i) mis continuous;

(i) forallf, (f2)3° € Z{3'", such that f, — f, it holds
lim Is(m,fy) = Is(m,f).
n—oo

Example: Consider X =]0, 1], & = #4([0, 1]) and

mA) — {o, A=10

1, else

0, x€]* 1]
fa(x) = n
n(x) {1, else

forn e Nand f(x) =0on X. Foreveryn € Nand t € [0, 1] we have
hm i, (t) = m(]0, £]) = 1. However,

Is(m,fn) = sup S(t,hms,(t)) = sup S(t,1) =1 and Is(m,f)=0.

tefo,1] tel0,1]
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Theorem (everywhere convergence)

Let S € & be continuous and m € . .. Then the following
assertions are equivalent:

(i) m is continuous;

(i) forallf, (fr);° € #(3'Y, such that f, — f, it holds
lim Is(m,f,) = Is(m,f).
n—oo

f, =25 iff (A€ .o/, m(A)=0) f, —fon X \A

Theorem (almost everywhere convergence)

Let S € & be continuous and m € . .. Then the following
assertions are equivalent:

(i) m is null-additive and continuous;

(i) forallf, (f,)5° € #(3'Y,) such that f, "=°f, it holds
lim Is(m,fy) = Is(m,f).
n—oo
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fo A i (Ve €]0,1]) (FA. € o, M(AL) < &) fo > f on X\A.

@ m:.«/ — [0,1] is said to be autocontinuous from above, iff
lim m(AUBy) =m(A) for all A € o and (Bn)$° € </ with
n—oo

lim m(B,) =0
n—oo

@ m:.«/ — [0,1] is said to be autocontinuous from below, iff
lim m(A\ Bn) = m(A) forall A, (Bn){® € & with lim m(B,) = 0.
n—oo n—oo

Theorem (almost uniform convergence)

Let S € & be continuous and m € ///&’d). Then the following
assertions are equivalent:

(i) m is monotone autocontinuous;

(i) forallf, (f.)3° € (", such that f, "="1, it holds
lim Is(m,fy) = Is(m,f).
n—oo
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REGERV I EIVE

fo —f iff (Vt €0,1]) lim A i, (t) = 0
fo S ff lim 1s(m, |f —f]) = 0

Convergence in
measure and
mean
convergence

Theorem (relationship between convergence in measure and in mean)

Let (m,f) € //l(lx,m,) X ﬂ([gfj{) and S € 6 with no zero divisors. Then the
following assertions are equivalent:

() fo = f;

(i) fo - f.

Jana Molnarova (FSTA 2014) Convergence theorems for integral Ig



fo =0 f iff lim m({x € X; [fa(x) = f(x)| > 0}) =0

Example: Let X = [0, 1], A be the Lebesgue measure on #(X) and
take the sequence of functions

for x € X. Then f, %2 f, but

lim 1s(\, [fa — ) = lim Is(\,fa) = Is(A,f) = 0,

e f, -5 f.
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fo =0 f iff lim m({x € X; [fa(x) = f(x)| > 0}) =0

Example: Let X = [0, 1], A be the Lebesgue measure on #(X) and
take the sequence of functions

for x € X. Then f, %2 f, but

lim 1s(\, [fa — ) = lim Is(\,fa) = Is(A,f) = 0,

e f, -5 f.

Open problem: For which class of semicopulas (of measures,
eventually) is strict convergence in measure equivalent to mean
convergence?
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Theorem (convergence in measure)

Let S € & be continuous and m € . .. Then the following
assertions are equivalent:

(i) m is autocontinuous;

(i) forallf, (fr)5° € #(3'Y, such that f, =™ f, it holds

lim Is(m,f,) = Is(m,f).

Theorem (convergence in mean)

T
3
\

Let S € & be continuous without zero divisors and m € .Z(x . Then
the following assertions are equivalent:

(i) m is autocontinuous;

(i) forallf, (f2)3° € (3%, such that f, 5. £, it holds

lim Is(m,f,) = Is(m,f).
n—oo
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Relationships among convergences schematically
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@ for a copula C define a mapping ﬁonverge'}ce
neorems for

Ke : U (-//l(lx,(;z{) X ﬁ([g’i}{)) — [0,1] as integral Ig
X, ) ’

Jana Molnarova
Ke(m, 1) :=Pc ({(.y) € [0,y < hns()})

Example: Let X = [0, 1], X be the Lebesgue measure on %(X). Consider the
monotone sequence of functions

fa(x) = max{o,x — %}

forn e N, x € X and f(x) = x on X.

C-universal
integral

Then
Kw (X fn) =0, but Ky (A, f) = 1.
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Thank you for your attention!

C-universal
integral
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