On a class of cardinal densities

Ladislav Mišík¹, János T. Tóth²

National Supercomputing Center IT4Innovations¹; University J. Selye²

 $\verb"ladislav.misik@osu.cz"; tothj@selueuni.sk" \\$

Liptovský Ján January 29, 2014

IT4Innovations national01\$#&0 supercomputing center@#01%101

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

1 / 15

Definition and properties

For $n \in \mathbb{N}$ denote $\mathbf{n} = \{1, 2, ..., n\}$. By measure on \mathbf{n} we mean any monotone real function μ_n on $2^{\mathbf{n}}$ with $\mu_n(\emptyset) = 0$, $\mu_n(\mathbf{n}) = 1$.

- Mesiar, Valášková (2003): Universal fuzzy measure (UFM) is a sequence μ = (μ_n) of measures on n.
- UFM μ is called **regular** if $\mu_n(A) \leq \mu_m(A)$ for all m < n and $A \subset \mathbf{m}$.

UFM μ is called **proportional** if $\mu_n(A) = \frac{\mu_{n+k}(A)}{\mu_{n+k}(\mathbf{n})}$ for all $n, k \in \mathbb{N}$ and $A \subset \mathbf{n}$.

Additive, sub-additive, super-additive UFM are defined in a usual way.

Definition and properties

- For $n \in \mathbb{N}$ denote $\mathbf{n} = \{1, 2, ..., n\}$. By measure on \mathbf{n} we mean any monotone real function μ_n on $2^{\mathbf{n}}$ with $\mu_n(\emptyset) = 0$, $\mu_n(\mathbf{n}) = 1$.
- Mesiar, Valášková (2003): Universal fuzzy measure (UFM) is a sequence μ = (μ_n) of measures on n.
- UFM μ is called **regular** if $\mu_n(A) \leq \mu_m(A)$ for all m < n and $A \subset \mathbf{m}$.
 - UFM μ is called **proportional** if $\mu_n(A) = \frac{\mu_{n+k}(A)}{\mu_{n+k}(\mathbf{n})}$ for all $n, k \in \mathbb{N}$ and $A \subset \mathbf{n}$.

Additive, sub-additive, super-additive UFM are defined in a usual way.

Definition and properties

- For $n \in \mathbb{N}$ denote $\mathbf{n} = \{1, 2, ..., n\}$. By measure on \mathbf{n} we mean any monotone real function μ_n on $2^{\mathbf{n}}$ with $\mu_n(\emptyset) = 0$, $\mu_n(\mathbf{n}) = 1$.
- Mesiar, Valášková (2003): Universal fuzzy measure (UFM) is a sequence μ = (μ_n) of measures on n.

 UFM µ is called regular if µ_n(A) ≤ µ_m(A) for all m < n and A ⊂ m.
 UFM µ is called proportional if µ_n(A) = µ_{n+k}(A)/µ_{n+k}(n) for all n, k ∈ N and A ⊂ n.
 Additive, sub-additive, super-additive UFM are defined in a usual

way.

Definition and properties

- For $n \in \mathbb{N}$ denote $\mathbf{n} = \{1, 2, ..., n\}$. By measure on \mathbf{n} we mean any monotone real function μ_n on $2^{\mathbf{n}}$ with $\mu_n(\emptyset) = 0$, $\mu_n(\mathbf{n}) = 1$.
- Mesiar, Valášková (2003): Universal fuzzy measure (UFM) is a sequence μ = (μ_n) of measures on n.

 UFM µ is called regular if µ_n(A) ≤ µ_m(A) for all m < n and A ⊂ m.
 UFM µ is called proportional if µ_n(A) = μ_{n+k}(A)/μ_{n+k}(n) for all n, k ∈ N

and $A \subset \mathbf{n}$.

Additive, sub-additive, super-additive UFM are defined in a usual way.

Asymptotic fuzzy measures

• Let $\mu = (\mu_n)$ be a UFM and $A \subset \mathbb{N}$. The sequence $(\mu_n(A \cap \mathbf{n}))$ contains some information on the size of A.

Define

 $\underline{\mu}^*(A) = \liminf_{n \to \infty} \mu_n(A \cap \mathbf{n}), \quad \overline{\mu}^*(A) = \limsup_{n \to \infty} \mu_n(A \cap \mathbf{n})$

and $\mu^*(A) = \lim_{n \to \infty} \mu_n(A \cap \mathbf{n})$ if the limit exists.

Asymptotic fuzzy measures

• Let $\mu = (\mu_n)$ be a UFM and $A \subset \mathbb{N}$. The sequence $(\mu_n(A \cap \mathbf{n}))$ contains some information on the size of A.

Define

$$\underline{\mu}^*(A) = \liminf_{n \to \infty} \mu_n(A \cap \mathbf{n}), \quad \overline{\mu}^*(A) = \limsup_{n \to \infty} \mu_n(A \cap \mathbf{n})$$

and $\mu^*(A) = \lim_{n \to \infty} \mu_n(A \cap \mathbf{n})$ if the limit exists.

Asymptotic density

Example (continuation): Let $A \subset \mathbb{N}$. Define

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{|A \cap \mathbf{n}|}{n}$$
 and $\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \mathbf{n}|}{n}$.

We call \underline{d} and \overline{d} the *lower and upper asymptotic densities*, respectively. If $\underline{d}(A) = \overline{d}(A)$ the common value is referred as *asymptotic density* and denoted by d(A).

For a set $A \subset \mathbb{N}$ and positive real numbers a < b we will denote by A(m, n) the cardinality of the set $A \cap [a, b)$ in the sequel.

Asymptotic density

Example (continuation): Let $A \subset \mathbb{N}$. Define

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{|A \cap \mathbf{n}|}{n} \quad \text{and} \quad \overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \mathbf{n}|}{n}$$

We call \underline{d} and \overline{d} the lower and upper asymptotic densities, respectively. If $\underline{d}(A) = \overline{d}(A)$ the common value is referred as asymptotic density and denoted by d(A).

For a set $A \subset \mathbb{N}$ and positive real numbers a < b we will denote by A(m, n) the cardinality of the set $A \cap [a, b)$ in the sequel.

Pólya density

• Let $A \subset \mathbb{N}$ and $\delta > 0$. Define

$$\underline{p}_{\delta}(A) = \liminf_{n \to \infty} \frac{A(n, (1+\delta)n)}{\delta n},$$

 $\overline{p}_{\delta}(A) = \limsup_{n \to \infty} \frac{A(n, (1+\delta)n)}{\delta n}$

and

$$\underline{p}(A) = \lim_{\delta \to 0^+} \underline{p}_{\delta}(A) \quad \text{and} \quad \overline{p}(A) = \lim_{\delta \to 0^+} \overline{p}_{\delta}(A).$$

We call \underline{p} and \overline{p} the *lower and upper Pólya densities*, respectively. If $\underline{p}(A) = \overline{p}(A)$ the common value is called *Pólya density* and denoted by p(A).

Pólya density

• Let $A \subset \mathbb{N}$ and $\delta > 0$. Define

$$\underline{p}_{\delta}(A) = \liminf_{n \to \infty} \frac{A(n, (1+\delta)n)}{\delta n},$$
$$\overline{p}_{\delta}(A) = \limsup_{n \to \infty} \frac{A(n, (1+\delta)n)}{\delta n}$$

and

$$\underline{p}(A) = \lim_{\delta \to 0^+} \underline{p}_{\delta}(A) \quad \text{and} \quad \overline{p}(A) = \lim_{\delta \to 0^+} \overline{p}_{\delta}(A).$$

We call \underline{p} and \overline{p} the *lower and upper Pólya densities*, respectively. If $\underline{p}(A) = \overline{p}(A)$ the common value is called *Pólya density* and denoted by p(A).

Banach (uniform) density

• Let $A \subset \mathbb{N}$ and $k \in \mathbb{N}$. Define

$$\underline{b}_k(A) = \liminf_{n \to \infty} \frac{A(n, n+k)}{k},$$

 $\overline{b}_k(A) = \limsup_{n \to \infty} \frac{A(n, n+k)}{k},$

 $n \rightarrow \infty$

and

$$\underline{b}(A) = \lim_{k \to \infty} \underline{b}_k$$
 and $\overline{b}(A) = \lim_{k \to \infty} \overline{b}_k(A)$.

Banach (uniform) density

• Let $A \subset \mathbb{N}$ and $k \in \mathbb{N}$. Define

$$\underline{b}_k(A) = \liminf_{n \to \infty} \frac{A(n, n+k)}{k}$$

$$ar{b}_k(A) = \limsup_{n o \infty} rac{A(n\,,n+k)}{k}$$

and

$$\underline{b}(A) = \lim_{k \to \infty} \underline{b}_k$$
 and $\overline{b}(A) = \lim_{k \to \infty} \overline{b}_k(A)$.

We call \underline{b} and \overline{b} the lower and upper Banach (uniform) densities, respectively. If $\underline{b}(A) = \overline{b}(A)$ the common value is called Banach density and denoted by b(A).

Most used densities

Inequalities

 All the three mentioned densities are related by the well known chain of inequalities

 $0 \leq \underline{b}(A) \leq \underline{p}(A) \leq \underline{d}(A) \leq \overline{d}(A) \leq \overline{p}(A) \leq \overline{b}(A) \leq 1$

holding for every $A \subset \mathbb{N}$.

Moreover, the equality $\underline{d}(A) = \overline{d}(A)$ implies also the equality $\underline{p}(A) = \overline{p}(A)$.

Most used densities

Inequalities

 All the three mentioned densities are related by the well known chain of inequalities

$$0 \leq \underline{b}(A) \leq \underline{p}(A) \leq \underline{d}(A) \leq \overline{d}(A) \leq \overline{p}(A) \leq \overline{b}(A) \leq 1$$

holding for every $A \subset \mathbb{N}$.

• Moreover, the equality $\underline{d}(A) = \overline{d}(A)$ implies also the equality $\underline{p}(A) = \overline{p}(A)$.

Aim of the talk

■ The aim of this contribution is to investigate a large class of fuzzy measures (or simply "densities") on N defined by use of cardinality of sets of positive integers. We will call them *cardinal densities*.

Φ -densities

- Denote by Φ the set of all non-decreasing functions defined on \mathbb{N} with values in \mathbb{R}^+ .
- For every $\phi \in \Phi$ and $A \subset \mathbb{N}$ define the lower and upper ϕ -density, respectively by

$$\underline{d}_{\phi}(A) = \liminf_{n \to \infty} \frac{A(n, n + \phi(n))}{\phi(n)}$$
$$\overline{d}_{\phi}(A) = \limsup_{n \to \infty} \frac{A(n, n + \phi(n))}{\phi(n)}$$

Φ -densities

- Denote by Φ the set of all non-decreasing functions defined on \mathbb{N} with values in \mathbb{R}^+ .
- For every $\phi\in \varPhi$ and $A\subset \mathbb{N}$ define the lower and upper $\phi\text{-density},$ respectively by

$$\underline{d}_{\phi}(A) = \liminf_{n \to \infty} \frac{A(n, n + \phi(n))}{\phi(n)}$$

 $\overline{d}_{\phi}(A) = \limsup_{n \to \infty} \frac{A(n, n + \phi(n))}{\phi(n)}.$

A special quantified partial order

For $\phi, \psi \in \Phi$ define

 $q(\phi,\psi) = \inf\{c > \mathbf{0} \mid \exists n_{\mathbf{0}} \in \mathbb{N} \forall n \in \mathbb{N}, n \ge n_{\mathbf{0}} :$

 $\phi(n+\lfloor\psi(n)\rfloor)\leq c\psi(n)\}.$

For φ, ψ ∈ Φ denote φ ≤* ψ if and only if φ(n) ≤ ψ(n) for all sufficiently large n ∈ N. Note that q(φ, ψ) ≤ 1 implies φ ≤* ψ.

Also note that $q(\phi, \psi)q(\psi, \phi) \ge 1$.

A special quantified partial order

For $\phi, \psi \in \Phi$ define

 $q(\phi,\psi) = \inf\{c > \mathbf{0} \mid \exists n_{\mathbf{0}} \in \mathbb{N} \forall n \in \mathbb{N}, n \ge n_{\mathbf{0}} :$

 $\phi(n+\lfloor\psi(n)\rfloor)\leq c\psi(n)\}.$

For φ, ψ ∈ Φ denote φ ≤* ψ if and only if φ(n) ≤ ψ(n) for all sufficiently large n ∈ N. Note that q(φ, ψ) ≤ 1 implies φ ≤* ψ.
Also note that q(φ, ψ)q(ψ, φ) ≥ 1.

A special quantified partial order

For $\phi, \psi \in \Phi$ define

 $q(\phi,\psi) = \inf\{c > 0 \mid \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N}, n \ge n_0 :$

$$\phi(n+\lfloor\psi(n)\rfloor)\leq c\psi(n)\}.$$

- For $\phi, \psi \in \Phi$ denote $\phi \leq^* \psi$ if and only if $\phi(n) \leq \psi(n)$ for all sufficiently large $n \in \mathbb{N}$. Note that $q(\phi, \psi) \leq 1$ implies $\phi \leq^* \psi$.
- Also note that $q(\phi, \psi)q(\psi, \phi) \ge 1$.

Comparison of cardinal densities

Order results

- Very roughly spoken, \underline{d}_{ϕ} becomes greater with ϕ being greater, on the other hand \overline{d}_{ϕ} becomes smaller with greater ϕ . More precisely, we have the following lemma which is useful if $q(\phi, \psi)$ is close to 0.
- Lemma. Let $\phi, \psi \in \Phi$. Then $\underline{d}_{\psi} \geq \underline{d}_{\phi} q(\phi, \psi)$ and $\overline{d}_{\psi} \leq \overline{d}_{\phi} + q(\phi, \psi)$.
- Corollary. If $q(\phi,\psi)=$ 0 then $\underline{d}_\psi\geq \underline{d}_\phi$ and $\overline{d}_\psi\leq \overline{d}_\phi$.

Comparison of cardinal densities

Order results

- Very roughly spoken, \underline{d}_{ϕ} becomes greater with ϕ being greater, on the other hand \overline{d}_{ϕ} becomes smaller with greater ϕ . More precisely, we have the following lemma which is useful if $q(\phi, \psi)$ is close to 0.
- Lemma. Let $\phi, \psi \in \Phi$. Then $\underline{d}_{\psi} \geq \underline{d}_{\phi} q(\phi, \psi)$ and $\overline{d}_{\psi} \leq \overline{d}_{\phi} + q(\phi, \psi)$.
- Corollary. If $q(\phi,\psi)=0$ then $\underline{d}_\psi\geq \underline{d}_\phi$ and $\overline{d}_\psi\leq \overline{d}_\phi.$

Comparison of cardinal densities

Order results

- Very roughly spoken, \underline{d}_{ϕ} becomes greater with ϕ being greater, on the other hand \overline{d}_{ϕ} becomes smaller with greater ϕ . More precisely, we have the following lemma which is useful if $q(\phi, \psi)$ is close to 0.
- Lemma. Let $\phi, \psi \in \Phi$. Then $\underline{d}_{\psi} \geq \underline{d}_{\phi} q(\phi, \psi)$ and $\overline{d}_{\psi} \leq \overline{d}_{\phi} + q(\phi, \psi)$.
- Corollary. If $q(\phi, \psi) = 0$ then $\underline{d}_{\psi} \geq \underline{d}_{\phi}$ and $\overline{d}_{\psi} \leq \overline{d}_{\phi}$.

Construction of general cardinal densities

\wedge and $\vee\text{-densities}$

• Let $\mathcal{F} \subset \Phi$. For every $A \subset \mathbb{N}$ define $\wedge \underline{d}_{\mathcal{F}}(A) = \inf\{\underline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\},\$ $\vee \underline{d}_{\mathcal{F}}(A) = \sup\{\underline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\}\$ and $\wedge \overline{d}_{\mathcal{F}}(A) = \inf\{\overline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\},\$ $\vee \overline{d}_{\phi}(A) = \inf\{\overline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\},\$

Construction of general cardinal densities

\wedge and $\vee\text{-densities}$

• Let $\mathcal{F} \subset \Phi$. For every $A \subset \mathbb{N}$ define $\wedge \underline{d}_{\mathcal{F}}(A) = \inf\{\underline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\},\$ $\vee \underline{d}_{\mathcal{F}}(A) = \sup\{\underline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\}\$ and • $\wedge \overline{d}_{\mathcal{F}}(A) = \inf\{\overline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\},\$ $\vee \overline{d}_{\mathcal{F}}(A) = \sup\{\overline{d}_{\phi}(A) \mid \phi \in \mathcal{F}\}.$

Classification of cardinal densities

Four natural classes

We have seen that the values of both the lower and upper φ-densities are somehow dependent on the order of growth of the function φ.
 Thus we will classify the elements of the set F as follows. Let

 $\varPhi_1 = \{ \phi \in \varPhi \mid \phi \text{ is bounded} \},\$

 $\varPhi_2 = \{\phi \in \varPhi \mid \phi \text{ is unbounded and } \phi(n) = o(n)\},$

 $\Phi_{3} = \{ \phi \in \Phi \mid \phi \approx n,$ i.e. $\exists \ 0 < c < C \mid \forall n \in \mathbb{N} \ cn \le \phi(n) \le Cn \},$

$$\Phi_4 = \{ \phi \in \Phi \mid n = o(\phi(n)) \}.$$

Classification of cardinal densities

Four natural classes

We have seen that the values of both the lower and upper φ-densities are somehow dependent on the order of growth of the function φ. Thus we will classify the elements of the set F as follows. Let

 $\varPhi_1 = \{ \phi \in \varPhi \mid \phi \text{ is bounded} \},\$

 $\varPhi_2 = \{\phi \in \varPhi \mid \phi \text{ is unbounded and } \phi(n) = o(n)\},$

 $\Phi_{3} = \{ \phi \in \Phi \mid \phi \approx n, \\ \text{i.e. } \exists \ \mathbf{0} < c < C \mid \forall n \in \mathbb{N} \ cn \le \phi(n) \le Cn \},$

$$\Phi_4 = \{ \phi \in \Phi \mid n = o(\phi(n)) \}.$$

Classification of cardinal densities

Four natural classes

We have seen that the values of both the lower and upper φ-densities are somehow dependent on the order of growth of the function φ. Thus we will classify the elements of the set F as follows. Let

$$\Phi_1 = \{ \phi \in \Phi \mid \phi \text{ is bounded} \},$$

$$\varPhi_2 = \{\phi \in \varPhi \mid \phi ext{ is unbounded and } \phi(n) = o(n)\},$$

 $\Phi_{3} = \{ \phi \in \Phi \mid \phi \approx n,$ i.e. $\exists \ 0 < c < C \mid \forall n \in \mathbb{N} \ cn \le \phi(n) \le Cn \},$

$$\Phi_4 = \{ \phi \in \Phi \mid n = o(\phi(n)) \}.$$

Classification of cardinal densities

Four natural classes

We have seen that the values of both the lower and upper φ-densities are somehow dependent on the order of growth of the function φ. Thus we will classify the elements of the set F as follows. Let

$$\Phi_1 = \{ \phi \in \Phi \mid \phi \text{ is bounded} \},$$

$$\Phi_2 = \{\phi \in \Phi \mid \phi \text{ is unbounded and } \phi(n) = o(n)\},$$

$$\Phi_3 = \{ \phi \in \Phi \mid \phi \approx n, \\ \text{i.e. } \exists \ \mathbf{0} < c < C \mid \forall n \in \mathbb{N} \ cn \le \phi(n) \le Cn \},$$

$$\Phi_4 = \{ \phi \in \Phi \mid n = o(\phi(n)) \}.$$

Classification of cardinal densities

Four natural classes

We have seen that the values of both the lower and upper φ-densities are somehow dependent on the order of growth of the function φ. Thus we will classify the elements of the set F as follows. Let

$$\Phi_1 = \{ \phi \in \Phi \mid \phi \text{ is bounded} \},$$

$$\Phi_2 = \{\phi \in \Phi \mid \phi \text{ is unbounded and } \phi(n) = o(n)\},$$

$$\Phi_3 = \{ \phi \in \Phi \mid \phi \approx n, \\ \text{i.e. } \exists \ \mathbf{0} < c < C \mid \forall n \in \mathbb{N} \ cn \le \phi(n) \le Cn \},$$

$$\Phi_{4} = \{ \phi \in \Phi \mid n = o(\phi(n)) \}.$$

Classification of cardinal densities

Classification and order of densities

- It can be easily seen that for every $i \in \{1, 2, 3\}$ and every choice of $\phi \in \Phi_i, \ \psi \in \Phi_{i+1}$ we have $\phi \leq^* \psi$. Moreover, also $q(\phi, \psi) = 0$ holds in this case.
- **Corollary** Let $1 \leq i < j \leq 4$ and $\phi \in \Phi_i$ and $\psi \in \Phi(j)$. Then $\underline{d}_{\psi} \geq \underline{d}_{\phi}$ and $\overline{d}_{\psi} \leq \overline{d}_{\phi}$.

Classification of cardinal densities

Classification and order of densities

- It can be easily seen that for every $i \in \{1, 2, 3\}$ and every choice of $\phi \in \Phi_i, \ \psi \in \Phi_{i+1}$ we have $\phi \leq^* \psi$. Moreover, also $q(\phi, \psi) = 0$ holds in this case.
- Corollary Let $1 \le i < j \le 4$ and $\phi \in \Phi_i$ and $\psi \in \Phi(j)$. Then $\underline{d}_{\psi} \ge \underline{d}_{\phi}$ and $\overline{d}_{\psi} \le \overline{d}_{\phi}$.

used densities form natural bounds of d_{ϕ} densities for ϕ belonging to above defined classes.

Theorem.

(i) $\underline{b} = \vee \underline{d}_{\Phi_1}, \quad \overline{b} = \wedge \overline{d}_{\Phi_1}.$ (ii) $\underline{b} = \wedge \underline{d}_{\Phi_2}, \quad \overline{b} = \vee \overline{d}_{\Phi_2}, \quad \underline{p} = \vee \underline{d}_{\Phi_2}, \quad \overline{p} = \wedge \overline{d}_{\Phi_2}$ (ii) $\underline{p} = \wedge \underline{d}_{\Phi_3}, \quad \overline{p} = \vee \overline{d}_{\Phi_3}, \quad \overline{d} = \wedge \overline{d}_{\Phi_3}, \quad \overline{d} = \wedge \overline{d}_{\Phi_3}$ (iv) $\underline{d} = \wedge \underline{d}_{\Phi_4}, \quad \overline{d} = \vee \overline{d}_{\Phi_4},$

and for all $A \subset \mathbb{N}$

 $\{\underline{d}_{\phi}(A) \mid \phi \in \Phi_4\} = \{\overline{d}_{\phi}(A) \mid \phi \in \Phi_4\} = [\underline{d}(A), \overline{d}(A)].$

• The following theorem shows that the well-known and frequently used densities form natural bounds of d_{ϕ} densities for ϕ belonging to above defined classes.

Theorem.

(i)
$$\underline{b} = \vee \underline{d}_{\Phi_1}, \quad \overline{b} = \wedge \overline{d}_{\Phi_1}.$$

(ii) $\underline{b} = \wedge \underline{d}_{\Phi_2}, \quad \overline{b} = \vee \overline{d}_{\Phi_2}, \quad \underline{p} = \vee \underline{d}_{\Phi_2}, \quad \overline{p} = \wedge \overline{d}_{\Phi_2}$
(ii) $\underline{p} = \wedge \underline{d}_{\Phi_3}, \quad \overline{p} = \vee \overline{d}_{\Phi_3}, \quad \overline{d} = \wedge \overline{d}_{\Phi_3}, \quad \overline{d} = \wedge \overline{d}_{\Phi_3}$
(iv) $\underline{d} = \wedge \underline{d}_{\Phi_4}, \quad \overline{d} = \vee \overline{d}_{\Phi_4},$

and for all $A \subset \mathbb{N}$

 $\{\underline{d}_{\phi}(A) \mid \phi \in \Phi_4\} = \{\overline{d}_{\phi}(A) \mid \phi \in \Phi_4\} = [\underline{d}(A), \overline{d}(A)].$

• The following theorem shows that the well-known and frequently used densities form natural bounds of d_{ϕ} densities for ϕ belonging to above defined classes.

Theorem.

(i)
$$\underline{b} = \vee \underline{d}_{\Phi_1}, \quad \overline{b} = \wedge \overline{d}_{\Phi_1}.$$

(ii) $\underline{b} = \wedge \underline{d}_{\Phi_2}, \quad \overline{b} = \vee \overline{d}_{\Phi_2}, \quad \underline{p} = \vee \underline{d}_{\Phi_2}, \quad \overline{p} = \wedge \overline{d}_{\Phi_2}$
(ii) $\underline{p} = \wedge \underline{d}_{\Phi_3}, \quad \overline{p} = \vee \overline{d}_{\Phi_3}, \quad \overline{d} = \wedge \overline{d}_{\Phi_3}$
(iv) $\underline{d} = \wedge \underline{d}_{\Phi_4}, \quad \overline{d} = \vee \overline{d}_{\Phi_4},$

and for all $A \subset \mathbb{N}$

 $\{\underline{d}_{\phi}(A) \mid \phi \in \Phi_{4}\} = \{\overline{d}_{\phi}(A) \mid \phi \in \Phi_{4}\} = [\underline{d}(A), \overline{d}(A)].$