DIAGONAL COPULAS AND QUASI-COPULAS

Radko Mesiar, Jana Kalická and Ladislav Šipeky

Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia

FSTA 2014, January 28, 2014

Contents

1 Introduction

- 2 Diagonal sections of n-dimensional copulas
- 3 2 dimensional copula with an a priori given diagonal section
- In-dimensional diagonal copula with an a priori given diagonal section

5 Examples

6 Concluding remarks

Diagonal section of n-dimensional copula

Definition 1. For an n-dimensional copula

$$C: [0,1]^n \to [0,1], n \ge 2,$$

its diagonal section $\delta_C(x)$ is defined by

$$\delta_C(x) = C(x, ..., x).$$

We will discus the reverse problem, i.e., how to find for an a priori given diagonal section $\delta : [0,1]^n \to [0,1]$ (of some unknown copula) an n-dimensional copula $C : [0,1]^n \to [0,1]$ so that $\delta = \delta_C$.

Let for a fixed $n \in \{2, 3, ...\}$, C_n be the class of all n-dimensional copulas and D_n be the class of all diagonal sections of copulas from C_n .

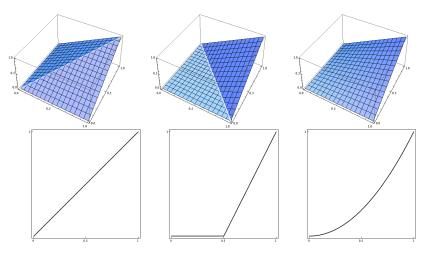
If the function $d: [0,1] \rightarrow [0,1]$ is an element of \mathcal{D}_n then it satisfies the next conditions: (D1) d is non-decreasing, (D2) $d \leq id_{[0,1]}$, (D3) d(1) = 1, (D4) d is n-Lipschitz, i.e., $|d(x) - d(y)| \leq n|x - y|$ for all $x, y \in [0,1]$.

Proposition 1.

Let $d : [0,1] \to [0,1]$ be a function and $n \in \{2,3,...\}$ be a fixed dimension. Then d is a diagonal section of some n-dimensional copula, i.e., $d \in \mathcal{D}_n$ if and only if d satisfies conditions (D1) - (D4).

- 4 国际 - 4 国际

Copulas $M(x,y), W(x,y), \Pi(x,y)$ and their diagonal sections δ_M, δ_W and δ_Π



Radko Mesiar, Jana Kalická and Ladislav Šipeky DIAGONAL COPULAS AND QUASI-COPULAS

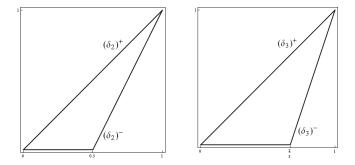
- The classes C_n and D_n are convex.
- \mathcal{D}_n is closed under suprema (infima).
- The smallest element of \mathcal{D}_n is given by

$$d_{n}^{-}(x) = max(0, nx - n + 1),$$

while its greatest element is given by $d_n^+(x) = x$.

- The class C_n is not closed under suprema (infima).
- The greatest element of C_n is the comonotonicity copula M, $M(x_1, ..., x_n) = min(x_1, ..., x_n)$.
- The smallest element in C_n , n > 2 does not exist.
- In the case of C_2 , the smallest element is the countermonotonicity copula W, $W(x_1, x_2) = max(0, x_1 + x_2 - 1)$.

The smallest and the greatest elements of \mathcal{D}_n for n=2 and n=3



Bertino copulas

Bertino copulas ^a

For any $d \in \mathcal{D}_2$, the function $B_d : [0,1]^2 \to [0,1]$ given by

$$B_d(x,y) = \bigvee_{t \in [x \land y, x \lor y]} \left(d(t) - (t-x)^+ - (t-y)^+ \right)^+, \quad (1)$$

where $u^+ = max(u, 0)$ for $u \in R$, is a copula. B_d is the smallest copula with diagonal section d, and it is simultaneously the smallest quasi-copula possessing diagonal section d.

^a(Bertino, S., 1977, Fredricks, G.A., Nelsen, R.B., 2002)

Diagonal copulas

Diagonal copulas^a

For any $d \in \mathcal{D}_2$, the function $K_d : [0,1]^2 \rightarrow [0,1]$ given by

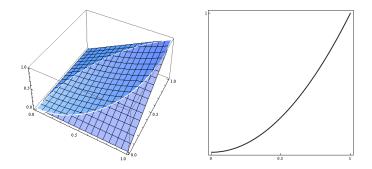
$$K_{d}(x,y) = \min\left(x, y, \frac{d(x) + d(y)}{2}\right)$$
(2)

is a copula.

 K_d is the greatest symmetric copula with diagonal section d, but not necessarily the greatest one.

^a(Fredricks, G.A., Nelsen, R.B., 1997)

Copula $K_d(x, y)$ for $d(x) = x^2$



 There are several other constructions of a copula with an a priori given diagonal section d, however, these methods are not universal, they can be applied to diagonal sections from some special subdomains of \mathcal{D}_2 .

This is, for example, the case of semilinear copulas, biconic copulas, or the construction methods based on patchwork techniques.

Proposition 2.

Let A and B be symmetric copulas from C_2 with the same diagonal section $d \in \mathcal{D}_2$. Then the function $C_{A,B} : [0,1]^2 \to [0,1]$ given by

$$C_{A,B}(x,y) = \begin{cases} A(x,y) & if \quad x \le y, \\ B(x,y) & else, \end{cases}$$
(3)

is a copula from C_2 , and $d_{C_{A,B}} = d_A = d_B = d$.

The proposition allow to introduce for any $d \in \mathcal{D}_2$ two copulas C_{B_d,K_d} and C_{K_d,B_d} with diagonal section d. For any $d \in \mathcal{D}_2$, $d \neq d^+$, $card\{B_d, K_d, C_{B_d,K_d}, C_{K_d,B_d}\} = 4$.

n-dimensional diagonal copulas

Proposition 3.

For a fixed $n \in \{2, 3, ...\}$, let $d \in \mathcal{D}_n$. Then the function

$$J_d: [0,1]^n \to [0,1]$$

given by

$$J_d(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n \min\left(f(x_{i+1}), ..., f(x_{i+n-1}), d(x_{i+n})\right)$$
(4)

where $f:[0,1]\rightarrow [0,1]$ is given by

$$f\left(x\right) = \frac{nx - d\left(x\right)}{n - 1}$$

and $x_j = x_{j-n}$ for $j \in \{n+1,...,2n\}$, is a copula, $J_d \in \mathcal{C}_n$.

For
$$n = 2$$
, $f(x) = 2x - d(x)$, and
 $J_d(x_1, x_2) = \frac{1}{2} (min(2x_2 - d(x_2), d(x_1)) + min(2x_1 - d(x_1), d(x_2))) =$
 $= min\left(x_1, x_2, \frac{d(x_1) + d(x_2)}{2}\right) = K_d(x_1, x_2),$
i.e., copula introduced by Jaworski coincide with diagonal copula K_d .

Radko Mesiar, Jana Kalická and Ladislav Šipeky DIAGONAL COPULAS AND QUASI-COPULAS

æ

The generalization of Bertino copula B_d for $n > 2, d \in \mathcal{D}_n$ is not a universal method for n-dimensional copulas. $B_{d^-}(x_1, x_2, ..., x_n) = W(x_1, x_2, ..., x_n) = max (0, \sum_{i=1}^n x_i - (n-1))$ is not a copula.

Similarly, the generalization of diagonal copulas K_d for fixed $d \in \mathcal{D}_n, n > 2$, given by

$$K_d(x_1, x_2, ..., x_n) = \min\left(x_1, x_2, ..., x_n, \frac{d(x_1) + ... + d(x_n)}{n}\right)$$

is not a universal method for n-dimensional copulas. K_d is a symmetric quasi-copula for any $d \in \mathcal{D}_n$.

Due to ordinal sum representation of copulas, we can introduce a notion of the ordinal sums of diagonal sections,

$$d = \left(\left\langle a_k, b_k, d_k \right\rangle | k \in \mathcal{K} \right),$$

where \mathcal{K} is an index system, $(]a_k, b_k[]_{k \in \mathcal{K}}$ is a disjoint system of open subintervals of [0, 1], and $d_k \in \mathcal{D}_n$ for each $k \in \mathcal{K}$. Then

$$\begin{aligned} d: [0,1] &\to [0,1] \text{ is given by} \\ d\left(x\right) &= \begin{cases} a_k + (b_k - a_k) \, d_k \left(\frac{x - a_k}{b_k - a_k}\right) & \text{ if } x \in]a_k, b_k[\text{ for some } k \in \mathcal{K}, \\ x & \text{ else.} \end{cases} \end{aligned}$$

The corresponding function $f:[0,1]\rightarrow [0,1]$ given by

$$f\left(x\right) = \frac{nx - d\left(x\right)}{n - 1}$$

can be written in the form

$$f(x) = \begin{cases} a_k + (b_k - a_k) f_k \left(\frac{x - a_k}{b_k - a_k}\right) & \text{if } x \in]a_k, b_k[& \text{for some } k \in \mathcal{K}, \\ x & \text{else.} \end{cases}$$

()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < (

Proposition 4.

For a fixed $n \in \{2, 3, ...\}$, let $d \in \mathcal{D}_n$ be an ordinal sum,

$$d = \left(\left\langle a_k, b_k, d_k \right\rangle | k \in \mathcal{K} \right).$$

Then J_d is an ordinal sum copula $J_d = (\langle a_k, b_k, J_{d_k} \rangle | k \in \mathcal{K})$.

Construction (4) and ordinal sum constructions commute, construction (4) does not commute with convex sums construction. The only elements of \mathcal{D}_n which do not admit a non-trivial convex sum decomposition are the ordinal sums of type $(\langle a_k, b_k, d^- \rangle | k \in \mathcal{K})$. We denote their class by \mathcal{E}_n .

Proposition 5.

For a fixed $n \in \{2, 3, ...\}$, let $d \in \mathcal{D}_n \setminus \mathcal{E}_n$, i.e.,

$$d = \lambda d_1 + (1 - \lambda) d_2$$

for some $d_1, d_2 \in \mathcal{D}_n, \ d_1 \neq d_2, \ \lambda \in \left]0,1\right[$. Then

$$J_{\lambda,d_1,d_2} = \lambda J_{d_1} + (1-\lambda) J_{d_2}$$

is a copula from C_n with diagonal section d, and $J_{\lambda,d_1,d_2} \neq J_d$, in general.

→ Ξ → →

For n = 2, any construction of a binary copula from an a priori given diagonal section $d \in \mathcal{D}_2$ can be "dualized", using the notion of a survival diagonal section.

Example 1. Consider the weakest diagonal section $d^- \in \mathcal{D}_3$. Then J_{d^-} and K_{d^-} are described in Table 1.

domain	J _d -	<i>K</i> _{<i>d</i>} -
$ \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix}^{3} \\ \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}^{3} \\ \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \\ \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} \\ \begin{bmatrix} 2, \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} \\ \begin{bmatrix} 2, \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix} $	$0 x_1 + x_2 + x_3 - 2 min(\frac{x_1}{2}, \frac{x_2}{2}, x_3 - \frac{2}{3}) min(\frac{x_1}{2}, x_2 - \frac{2}{3}, \frac{x_3}{2}) min(x_1 - \frac{2}{3}, \frac{x_2}{2}, \frac{x_3}{2}) min(x_1 - \frac{2}{3}, \frac{x_2}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) $ (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_2 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_1 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_3 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_4 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_5 - x_3, \frac{x_3}{2}, \frac{x_3}{2}) (x_5 - x_3, \frac{x_3}{2}	0 $x_1 + x_2 + x_3 - 2$ $min(x_1, x_2, x_3 - \frac{2}{3})$ $min(x_1, x_2 - \frac{2}{3}, x_3)$ $min(x_1 - \frac{2}{3}, x_2, x_3)$
$ \begin{bmatrix} 0, \frac{3}{3} \\ 2, \frac{3}{3} \end{bmatrix} \times \begin{bmatrix} 2, \frac{3}{3}, 1 \\ 3, \frac{3}{3} \end{bmatrix} \times \begin{bmatrix} 0, \frac{2}{3} \\ 0, \frac{2}{3} \end{bmatrix} $	$ \min \left(\frac{x_1}{2}, \frac{x_2}{2}, -\frac{2}{3}\right) + \min \left(\frac{x_1}{2}, x_3, -\frac{2}{3}\right) \\ \min \left(\frac{x_2}{2}, x_1, -\frac{2}{3}\right) + \min \left(\frac{x_2}{2}, x_3, -\frac{2}{3}\right) \\ \min \left(\frac{x_3}{3}, x_1, -\frac{2}{3}\right) + \min \left(\frac{x_3}{3}, x_2, -\frac{2}{3}\right) \\ \end{array} $	$ \min \left(x_1, x_2 + x_3 - \frac{4}{3} \right) \\ \min \left(x_2, x_1 + x_3 - \frac{4}{3} \right) \\ \min \left(x_3, x_1 + x_2 - \frac{4}{3} \right) $

Table 1 Formulae for copula J_{d-} and quasi-copula K_{d-} , n = 3

 $J_{d^-} \leq K_{d^-}.$

 J_{d^-} is singular copula from C_3 .

Its support consists of 3 segments connecting the point $(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) and the mass 1 is uniformly distributed over the support of J_{d^-} .

The proper quasi-copula K_{d^-} has a negative mass $-\frac{1}{3}$ on each of rectangles

$$\begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}, \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix} \times \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix}.$$

and

Example 2. For the product copula $\Pi \in C_n$, $n \ge 2$, the corresponding diagonal section $d \in D_n$ is given by $d_{\Pi}(x) = x^n$. For $0 \le x_1 \le x_2 \le ... \le x_n \le 1$, it holds

$$J_{d_{\Pi}}(x_1, ..., x_n) = \frac{1}{n} \left(x_1^n + \sum_{i=2}^n \min\left(\frac{nx_1 - x_1^n}{n-1}, x_i^n\right) \right)$$

Consider diagonal sections $d_1, d_2 \in \mathcal{D}_3$ given by

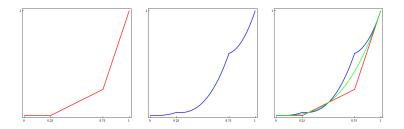
$$d_{1}(x) = \begin{cases} 0 & if \quad x \leq \frac{1}{4}, \\ \frac{x}{2} - \frac{1}{8} & if \quad \frac{1}{4} \leq x \leq \frac{3}{4}, \\ 3x - 2 & else. \end{cases}$$

and

$$d_2(x) = \begin{cases} 2x^3 & if \quad x \le \frac{1}{4}, \\ 2x^3 - \frac{x}{2} + \frac{1}{8} & if \quad \frac{1}{4} \le x \le \frac{3}{4}, \\ 2x^3 - 3x + 2 & else. \end{cases}$$

Then $\frac{d_1+d_2}{2} = d_{\Pi}$ and thus the copula $\frac{1}{2}(J_{d_1}+J_{d_2})$ has d_{Π} as its diagonal section.

Diagonal sections d_1, d_2 and d_{Π} .



Concluding remarks

- We have opened the problem of constructing n-dimensional copulas with a predescribed diagonal section, with the stress on higher dimen- sions, i.e., n ∈ {3,4,...}.
- Though there are some similarities with well developed case n = 2, several techniques cannot be used for higher dimensions.
- Especially, there is no universal construction leading to a smallest copula having a given diagonal section (for n > 2, there is no smallest copula in C_n).
- We aim to focus on extension of particular methods known for the case n = 2, starting from a diagonal section $d \in \mathcal{D}_n$ with some specific properties, such as semilinear copulas or biconic copulas in the 2-dimensional case.

Thanks for attention

Radko Mesiar, Jana Kalická and Ladislav Šipeky DIAGONAL COPULAS AND QUASI-COPULAS

- Bertino, S.: Sulla dissomiglianza tra mutabili cicliche. Metron **35**, 53–88 (1977)
- Fredricks, G., A., Nelsen, R., B.: Copula constructed from diagonal section. Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht, 1129–136 (1997)
- Fredricks, G., A., Nelsen, R., B.: The Bertino family of copulas. Distributions with Given Marginals and Statistical Modelling. Kluwer, Dordrecht, 81–91 (2002)
 - Jaworski, P.: On copulas and their diagonals. Information Sciences **179**, 2863–2871 (2009)
- Nelsen, R., B., Fredricks, G., A.: Diagonal copulas. Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht,121–127 (1997)
- Rychlik, T.: Distribution and expectations of order statistics for possibly depend random variables. Journal of Multivariate Analysis
 48, 31–42 (1994)

伺 と く ヨ と く ヨ と