EXTREME VALUE ANALYSIS BASED ON COPULAS AND THEIR DIAGONALS

Who? Maddalena Manzi

From? Ca' Foscari University of Venice

When?

FSTA 2014, Liptovský Ján - Slovak Republic January 30, 2014 Generali collaboration: Solvency II

> The problem of risk accumulation Extreme value distributions Extreme copula

Danish data and the tails for extreme losses \Rightarrow

> Diagonals Application to two assets option pricing

Table of contents

September 11th2001 terrorist attacks;

the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;

environmental risks (earthquakes, flood);

civil engineering (the problem of water at flood level in Venice).

September 11th2001 terrorist attacks;

- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
 - environmental risks (earthquakes, flood);

civil engineering (the problem of water at flood level in Venice).

- September 11th2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);

civil engineering (the problem of water at flood level in Venice).

- September 11th2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);
- civil engineering (the problem of water at flood level in Venice).

Generali collaboration: Solvency II and the dependence between extreme events Danish Fire Insurance Data (1980 - 2002)Gaussian Traditional, but underestimation of the risk of joint copula Gumbel copula t-Student copula

Generali collaboration: Solvency II and the dependence between extreme events Danish Fire Insurance Data (1980 - 2002)Traditional, but underestimation of the risk of joint downside movements. Gumbel copula t-Student copula

Generali collaboration: Solvency II and the dependence between extreme events Danish Fire Insurance Data (1980 - 2002)Traditional, but underestimation of the risk of joint downside movements. Overestimation of the risk. t-Student copula

Generali collaboration: Solvency II and the dependence between extreme events Danish Fire Insurance Data (1980 - 2002)Traditional, but underestimation of the risk of joint downside movements. Overestimation of the risk. Dependence in the tails, but not in the center.

Elliptic copulas

Gaussian copula The Normal copula is the dependence function

$$C_n^{\Phi}(\mathbf{u};\Omega) = \Phi_n(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_n);\Omega), \quad (1)$$

where Φ_n is the cdf for the *n*-variate standard normal distribution with correlation matrix Ω .

t-Student copula

$$C_n^{\Psi}(\mathbf{u};\Omega,\nu) = \Psi_n(\Psi^{-1}(u_1,\nu),\ldots,\Psi^{-1}(u_n;\nu);\Omega,\nu),$$
(2)

where Φ_n denotes the cdf of an n-variate Student's t distribution with correlation matrix Ω and degrees of freedom parameter $\nu > 2$.

Elliptic copulas

Gaussian copula The Normal copula is the dependence function

$$C_n^{\Phi}(\mathbf{u};\Omega) = \Phi_n(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_n);\Omega), \quad (1)$$

where Φ_n is the cdf for the *n*-variate standard normal distribution with correlation matrix Ω .

t-Student copula

$$C_n^{\Psi}(\mathbf{u};\Omega,\nu) = \Psi_n(\Psi^{-1}(u_1,\nu),\ldots,\Psi^{-1}(u_n;\nu);\Omega,\nu),$$
(2)

where Φ_n denotes the cdf of an n-variate Student's t distribution with correlation matrix Ω and degrees of freedom parameter $\nu > 2$.

Gumbel copula: an extreme copula

Archimedean copula

$$C_n^G(\mathbf{u}; a) = \exp\left(-\left(\sum_{i=1}^n (-\log u_i)^a\right)^{\frac{1}{a}}\right), \qquad (3)$$

with $a \ge 1$, where a = 1 implies independence. Upper tail dependence but lower tail independence.

Definition: MEV copulas

An extreme copula satifies

 $C(u_1^t,\ldots,u_n^t,\ldots,u_N^t)=C^t(u_1,\ldots,u_n,\ldots,u_N) \ \forall t>0.$

MEV copulas are easily recognized from

 $A(\mathbf{x}) = -\log G(\mathbf{x}),$

being homogeneous of order 1, i.e., $A(t\mathbf{x}) = tA(\mathbf{x})$, for all t > 0, with $\overline{G}(\mathbf{x}) = C(e^{-x_1}, \dots, e^{-x_m})$.

Remark

Gaussian copula is not an extreme value copula.

An extreme copula satifies

 $C(u_1^t,\ldots,u_n^t,\ldots,u_N^t)=C^t(u_1,\ldots,u_n,\ldots,u_N) \ \forall t>0.$

MEV copulas are easily recognized from

 $A(\mathbf{x}) = -\log G(\mathbf{x}),$

being homogeneous of order 1, i.e., $A(t\mathbf{x}) = tA(\mathbf{x})$, for all t > 0, with $\overline{G}(\mathbf{x}) = C(e^{-x_1}, \dots, e^{-x_m})$.

Remark

Definition:

Gaussian copula is not an extreme value copula.

An extreme copula satifies

 $C(u_1^t,\ldots,u_n^t,\ldots,u_N^t)=C^t(u_1,\ldots,u_n,\ldots,u_N) \ \forall t>0.$

MEV copulas are easily recognized from

 $A(\mathbf{x}) = -\log G(\mathbf{x}),$

being homogeneous of order 1, i.e., $A(t\mathbf{x}) = tA(\mathbf{x})$, for all t > 0, with $\overline{G}(\mathbf{x}) = C(e^{-x_1}, \dots, e^{-x_m})$.

Gaussian copula is not an extreme value copula.

Remark

Definition: MEV copulas

An extreme copula satifies

 $C(u_1^t,\ldots,u_n^t,\ldots,u_N^t)=C^t(u_1,\ldots,u_n,\ldots,u_N) \ \forall t>0.$

MEV copulas are easily recognized from

 $A(\mathbf{x}) = -\log G(\mathbf{x}),$

being homogeneous of order 1, i.e., $A(t\mathbf{x}) = tA(\mathbf{x})$, for all t > 0, with $\overline{G}(\mathbf{x}) = C(e^{-x_1}, \dots, e^{-x_m})$.

Remark

MEV copulas

Gaussian copula is not an extreme value copula.

Topological properties

The set C of 2-copulas is compact with any of the following topologies, equivalent on C: punctual convergence, uniform convergence on $[0,1]^2$, weak convergence of the associated probability measure.

Let $\mathcal{E}_{x}(\mathcal{C})$ be the set of the extreme points of \mathcal{C} . Then Choquet's representation of \mathcal{C} similar to the Birkhoff's theorem:

C is the convex hull of $\mathcal{E}x(C)$.

Topological properties

The set C of 2-copulas is compact with any of the following topologies, equivalent on C: punctual convergence, uniform convergence on $[0, 1]^2$, weak convergence of the associated probability measure.

Let $\mathcal{E}_{x}(\mathcal{C})$ be the set of the extreme points of \mathcal{C} . Then Choquet's representation of \mathcal{C} similar to the Birkhoff's theorem:

C is the convex hull of $\mathcal{E}x(C)$.

The determination of the extreme points of $\ensuremath{\mathcal{C}}$ is an open problem.

Theorem Any element of C that possesses a left or right inverse is extreme.

Examples

Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.

The determination of the extreme points of $\ensuremath{\mathcal{C}}$ is an open problem.

Theorem Any element of \mathcal{C} that possesses a left or right inverse is extreme.

Examples Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.

The determination of the extreme points of $\ensuremath{\mathcal{C}}$ is an open problem.

Theorem Any element of C that possesses a left or right inverse is extreme.

Examples

Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.

Link between extreme value copulas and the multivariate extreme value theory

Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with $\{X_{n,k}\}, k$ i.i.d. random variables with the same distribution. Let G_n be the marginal distribution of the univariate extreme $\chi_{n,m}^+$. Then, the joint limit distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

 $G(\chi_1^+,..,\chi_n^+,..,\chi_N^+)=C(G_1(\chi_1^+),..,G_n(\chi_n^+),..,G_N(\chi_N^+)),$

where *C* is an extreme value copula and G_n a non-degenerate univariate extreme value distribution.

Link between extreme value copulas and the multivariate extreme value theory

Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with $\{X_{n,k}\}$, k i.i.d. random variables with the same distribution. Let G_n be the marginal distribution of the univariate extreme $\chi_{n,m}^+$. Then, the joint limit distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

 $G(\chi_1^+,..,\chi_n^+,..,\chi_N^+) = C(G_1(\chi_1^+),..,G_n(\chi_n^+),..,G_N(\chi_N^+)),$

where C is an extreme value copula and G_n a non-degenerate univariate extreme value distribution.

Link between extreme value copulas and the multivariate extreme value theory

Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with $\{X_{n,k}\}$, k i.i.d. random variables with the same distribution. Let G_n be the marginal distribution of the univariate extreme $\chi_{n,m}^+$. Then, the joint limit distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

 $G(\chi_1^+,..,\chi_n^+,..,\chi_N^+) = C(G_1(\chi_1^+),..,G_n(\chi_n^+),..,G_N(\chi_N^+)),$

where C is an extreme value copula and G_n a non-degenerate univariate extreme value distribution.

The univariate case

Let us first consider *m* independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function *F*. The distribution of the extremes $\chi_m^+ = (\wedge_{k=1}^m X_k)$ is also given by Fisher-Tippet theorem:

Theorem

If there exist some constants *a_m* and *b_m* and a non-degenerate limit distribution *G* such that

$$\lim_{m \to \infty} P\left\{\frac{\chi_m^+ - b_m}{a_m} \le x\right\} = G(x) \quad \forall x \in \mathbb{R}$$

The univariate case

Let us first consider *m* independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function *F*. The distribution of the extremes $\chi_m^+ = (\wedge_{k=1}^m X_k)$ is also given by Fisher-Tippet theorem:

Theorem

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m \to \infty} P\left\{\frac{\chi_m^+ - b_m}{a_m} \le x\right\} = G(x) \quad \forall x \in \mathbb{R}$$

The univariate case

Let us first consider *m* independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function *F*. The distribution of the extremes $\chi_m^+ = (\wedge_{k=1}^m X_k)$ is also given by Fisher-Tippet theorem:

Theorem

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m \to \infty} P\left\{\frac{\chi_m^+ - b_m}{a_m} \le x\right\} = G(x) \quad \forall x \in \mathbb{R}$$

The univariate case

Let us first consider *m* independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function *F*. The distribution of the extremes $\chi_m^+ = (\wedge_{k=1}^m X_k)$ is also given by Fisher-Tippet theorem:

Theorem

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m\to\infty} P\Big\{\frac{\chi_m^+ - b_m}{a_m} \le x\Big\} = G(x) \quad \forall x \in \mathbb{R}$$

$$G(x) = \Upsilon_{lpha}(x) = egin{cases} 0 & x \leq 0 \ \exp(-x^{-lpha}) & x > 0 \end{cases}$$

$$G(x) = \Psi_{\alpha}(x) = egin{cases} \exp(-(-x^{lpha})) & x \leq 0 \ 1 & x > 0 \end{cases}$$

$$G(x) = \Lambda(x) = \exp(-e^{-x})$$
 $x \in \mathbb{R}$

In this case, we say that F belongs to the maximum domain of attraction of $G, F \in MDA(G)$.

Fréchet

Weibull

Gumbel

$$G(x) = \Upsilon_{lpha}(x) = egin{cases} 0 & x \leq 0 \ \exp(-x^{-lpha}) & x > 0 \end{cases}$$

$$G(x)=\Psi_lpha(x)=egin{cases} \exp(-(-x^lpha)) & x\leq 0\ 1 & x>0 \end{cases}$$

$$G(x) = \Lambda(x) = \exp(-e^{-x})$$
 $x \in \mathbb{R}$

In this case, we say that F belongs to the maximum domain of attraction of $G, F \in MDA(G)$.

$$G(x) = \Upsilon_{lpha}(x) = egin{cases} 0 & x \leq 0 \ \exp(-x^{-lpha}) & x > 0 \end{cases}$$

$$G(x)=\Psi_lpha(x)=egin{cases} \exp(-(-x^lpha)) & x\leq 0\ 1 & x>0 \end{cases}$$

$$G(x) = \Lambda(x) = \exp(-e^{-x})$$
 $x \in \mathbb{R}$

In this case, we say that F belongs to the maximum domain of attraction of $G, F \in MDA(G)$.

$$G(x) = \Upsilon_{lpha}(x) = egin{cases} 0 & x \leq 0 \ \exp(-x^{-lpha}) & x > 0 \end{cases}$$

$$G(x) = \Psi_{lpha}(x) = egin{cases} \exp(-(-x^{lpha})) & x \leq 0 \ 1 & x > 0 \end{cases}$$

$$G(x) = \Lambda(x) = \exp(-e^{-x})$$
 $x \in \mathbb{R}$

In this case, we say that F belongs to the maximum domain of attraction of G, $F \in MDA(G)$.

Max-stable distribution

Definition

A non-degenerate rv X (the corresponding distribution or df) is called *max-stable* if it satisfies the identity in law

 $\max(X_1,\ldots,X_n)\stackrel{d}{=} c_n X + d_n$

for i.i.d. X, X_1, \ldots, X_n , appropriate constants $c_n > 0$, $d_n \in \mathbb{R}$ and every $n \ge 2$.

Proposition

The class of multivariate extreme value distributions is the class of max-stable distribution functions with nondegenerate marginals.

Max-stable distribution

Definition

A non-degenerate rv X (the corresponding distribution or df) is called *max-stable* if it satisfies the identity in law

 $\max(X_1,\ldots,X_n)\stackrel{d}{=} c_n X + d_n$

for i.i.d. X, X_1, \ldots, X_n , appropriate constants $c_n > 0$, $d_n \in \mathbb{R}$ and every $n \ge 2$.

Proposition

The class of multivariate extreme value distributions is the class of max-stable distribution functions with nondegenerate marginals.

General copula

Kendall's tau: measure of association

Our problem

Generic choice of copulas also depending on Kendall's τ (which is also in the *a* parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$au_C = 4 \int \int_{I^2} C(u,v) dC(u,v) - 1 =$$
 $=_{Arch.\,Cop.} 1 + 4 \int_0^1 rac{\phi(t)}{\phi'(t)} dt$

General copula

Kendall's tau: measure of association

Our problem

Generic choice of copulas also depending on Kendall's τ (which is also in the *a* parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$au_C = 4 \int \int_{I^2} C(u,v) dC(u,v) - 1 =$$
 $=_{Arch.\,Cop.} 1 + 4 \int_0^1 rac{\phi(t)}{\phi'(t)} dt$

General copula

Kendall's tau: measure of association

Our problem

Generic choice of copulas also depending on Kendall's τ (which is also in the *a* parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$au_C = 4 \int \int_{I^2} C(u,v) dC(u,v) - 1 =$$
 $=_{Arch.Cop.} 1 + 4 \int_0^1 rac{\phi(t)}{\phi'(t)} dt$

My proposal: Diagonals

n Let $C : [0, 1] \rightarrow [0, 1]$ be an *n*-dimensional copula, $n \ge 2$. The function

 $\delta : [0,1] \rightarrow [0,1], \ \delta(t) = C(t,\ldots,t)$ is called a *diagonal* section or *diagonal* for short.

Kendall's τ in connection with the general copula C.

$$\tau_C = 4 \int_0^1 \delta(t) dt - 1.$$

My proposal: Diagonals

Definition

Let $C : [0, 1] \rightarrow [0, 1]$ be an *n*-dimensional copula, $n \ge 2$. The function $\delta : [0, 1] \rightarrow [0, 1], \ \delta(t) = C(t, \dots, t)$ is called a *diagonal*

Kendall's τ in connection with the general copula C.

section or diagonal for short.

$$\tau_C = 4 \int_0^1 \delta(t) dt - 1.$$

My proposal: Diagonals

Definition

Let $C : [0,1] \rightarrow [0,1]$ be an *n*-dimensional copula, $n \ge 2$. The function

 $\delta : [0,1] \rightarrow [0,1], \ \delta(t) = C(t,\ldots,t)$ is called a *diagonal* section or *diagonal* for short.

Kendall's τ in connection with the general copula C.

$$\tau_C = 4 \int_0^1 \delta(t) dt - 1.$$

Tail dependence

Upper tail dependence

f a bivariate copula
$$C$$
 is such that

$$\lim_{u\to 1}\frac{\bar{C}(u,u)}{1-u}=\lambda_U$$

exists, then C has upper tail dependence for $\lambda_U \in (0, 1]$ and no upper tail dependence for $\lambda_U = 0$.

Lower tail dependence

f a bivariate copula C is such that

$$\lim_{u\to 0}\frac{C(u,u)}{u}=\lambda_L$$

exists, then C has lower tail dependence for $\lambda_L \in (0, 1]$ and no lower tail dependence for $\lambda_L = 0$.

Tail dependence

Upper tail dependence

If a bivariate copula C is such that

$$\lim_{u\to 1}\frac{\bar{C}(u,u)}{1-u}=\lambda_U$$

exists, then C has upper tail dependence for $\lambda_U \in (0, 1]$ and no upper tail dependence for $\lambda_U = 0$.

Lower tail dependence

If a bivariate copula C is such that

$$\lim_{u\to 0}\frac{C(u,u)}{u}=\lambda_L$$

exists, then C has lower tail dependence for $\lambda_L \in (0, 1]$ and no lower tail dependence for $\lambda_L = 0$.

Gumbel family

Tail dependence: some examples

The Gumbel family has upper tail dependence, with

$$\lambda_U = 2 - 2^{\frac{1}{\alpha}}$$

Clayton family

The Clayton family has lower tail dependence for lpha>0, since

Frank family

The Frank family has neither lower nor upper tail dependence.

Gumbel family

Tail dependence: some examples

The Gumbel family has upper tail dependence, with

$$\lambda_U = 2 - 2^{\frac{1}{\alpha}}$$

Clayton family

The Clayton family has lower tail dependence for $\alpha>$ 0, since $\lambda_{I}=2^{-\frac{1}{\alpha}}$

Frank family

The Frank family has neither lower nor upper tail dependence.

Gumbel family

Tail dependence: some examples

The Gumbel family has upper tail dependence, with

$$\lambda_U = 2 - 2^{\frac{1}{\alpha}}$$

Clayton family

The Clayton family has lower tail dependence for $\alpha > 0$, since $\lambda_I = 2^{-\frac{1}{\alpha}}$

Frank family

The Frank family has neither lower nor upper tail dependence.

Diagonal section of C

$$\delta_C(t)=C(t,t)$$

 λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t \to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t \to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.

Diagonal section of C

$$\delta_C(t)=C(t,t)$$

 λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t \to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t \to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.

Diagonal section of C

$$\delta_C(t)=C(t,t)$$

 λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t \to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t \to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.

Order statistics

Probabilistic interpretation

Let $U = (U_1, \ldots, U_n)$ be an *n*-variate random variable with uniform margins, $U_i \sim U(0, 1)$, *C* its distribution function (hence a copula) and δ the diagonal section of *C*. Then δ is a distribution function of the random variable max{ U_1, \ldots, U_n } = $U_{n:n}$.

Multivariate RNDs and copulas

Application to two assets option pricing

Let \mathbb{Q}_n and \mathbb{Q} be the risk-neutral probability distributions of $S_n(T)$ and $\mathbf{S}(T) = (S_1(T) \dots S_N(T))^\top$. With arbitrage theory, we can show that

 $\mathbb{Q}(+\infty,\ldots,+\infty,S_n(T),+\infty,\ldots,+\infty) = \mathbb{Q}_n(S_n(T)).$

 \Rightarrow The margins of \mathbb{Q} are RNDs \mathbb{Q}_n of Vanilla options.

Remark

European option prices permit to caracterize the probability distribution of $S_n(T)$

 $\Phi(T,K):=\mathbb{Q}_n(K).$

Multivariate RNDs and copulas

Application to two assets option pricing

Let \mathbb{Q}_n and \mathbb{Q} be the risk-neutral probability distributions of $S_n(T)$ and $\mathbf{S}(T) = (S_1(T) \dots S_N(T))^\top$. With arbitrage theory, we can show that

 $\mathbb{Q}(+\infty,\ldots,+\infty,S_n(T),+\infty,\ldots,+\infty) = \mathbb{Q}_n(S_n(T)).$

 \Rightarrow The margins of \mathbb{Q} are RNDs \mathbb{Q}_n of Vanilla options.

Remark

European option prices permit to caracterize the probability distribution of $S_n(T)$

 $\Phi(T,K) := \mathbb{Q}_n(K).$

Bivariate case

For a call max option $\Phi(T, K)$ is the diagonal section of the copula

$$\Phi(T,K) = C(\mathbb{Q}_1(K),\mathbb{Q}_2(K))$$

For a spread option, we have

 $\Phi(T,K) = \int_0^{+\infty} \partial_1 C(\mathbb{Q}_1(x),\mathbb{Q}_2(x+K))d\mathbb{Q}_1(x).$

Bivariate case

For a call max option $\Phi(T, K)$ is the diagonal section of the copula

$$\Phi(T,K) = C(\mathbb{Q}_1(K),\mathbb{Q}_2(K))$$

For a spread option, we have

$$\Phi(T, K) = \int_0^{+\infty} \partial_1 C(\mathbb{Q}_1(x), \mathbb{Q}_2(x+K)) d\mathbb{Q}_1(x).$$

Concluding remarks

OPEN PROBLEMS:

1

2

The parametric form of both bivariate and multivariate copulas is not well tractable;

Current multivariate extreme value theory, from an applied point of view, only allows for a treatment of fairly low-dimensional problems.

Concluding remarks

OPEN PROBLEMS:

1

2

The parametric form of both bivariate and multivariate copulas is not well tractable;

Current multivariate extreme value theory, from an applied point of view, only allows for a treatment of fairly low-dimensional problems.

THANK YOU FOR YOUR ATTENTION!