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The problem of risk accumulation

September 11th2001 terrorist attacks;

the explosion of the space shuttle Challenger on January
28, 1983: the exceptionally low temperature (15 degrees
F lower than the coldest previous launch) the night
before launching led to failure of the O-rings which
caused the disaster;

environmental risks (earthquakes, flood);

civil engineering (the problem of water at flood level in
Venice).
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Generali collaboration: Solvency II and the
dependence between extreme events

Danish Fire
Insurance Data

(1980–2002)

Gaussian
copula

Traditional, but underestimation of the risk of joint
downside movements.

Gumbel copula Overestimation of the risk.

t-Student
copula

Dependence in the tails, but not in the center.
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Elliptic copulas

Gaussian
copula

The Normal copula is the dependence function

CΦ
n (u; Ω) = Φn(Φ−1(u1), . . . ,Φ−1(un); Ω), (1)

where Φn is the cdf for the n-variate standard normal
distribution with correlation matrix Ω.

t-Student
copula

CΨ
n (u; Ω, ν) = Ψn(Ψ−1(u1, ν), . . . ,Ψ−1(un; ν); Ω, ν),

(2)
where Φn denotes the cdf of an n-variate Student’s t
distribution with correlation matrix Ω and degrees of
freedom parameter ν > 2.
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Archimedean copula

Gumbel copula:
an extreme

copula
CG
n (u; a) = exp

(
−
( n∑
i=1

(− log ui )
a
) 1

a

)
, (3)

with a ≥ 1, where a = 1 implies independence.
Upper tail dependence but lower tail independence.



Extreme copula

Definition:
MEV copulas

An extreme copula satifies

C (ut1, . . . , u
t
n, . . . , u

t
N) = C t(u1, . . . , un, . . . , uN) ∀t > 0.

MEV copulas are easily recognized from

A(x) = − logG (x),

being homogeneous of order 1, i.e., A(tx) = tA(x), for
all t > 0, with Ḡ (x) = C (e−x1 , . . . , e−xm).

Remark Gaussian copula is not an extreme value copula.



Extreme copula

Definition:
MEV copulas

An extreme copula satifies

C (ut1, . . . , u
t
n, . . . , u

t
N) = C t(u1, . . . , un, . . . , uN) ∀t > 0.

MEV copulas are easily recognized from

A(x) = − logG (x),

being homogeneous of order 1, i.e., A(tx) = tA(x), for
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Extreme copulas

Topological
properties

The set C of 2-copulas is compact with any of the
following topologies, equivalent on C: punctual
convergence, uniform convergence on [0, 1]2, weak
convergence of the associated probability measure.

Let Ex(C ) be the set of the extreme points of C. Then
Choquet’s representation of C similar to the Birkhoff’s
theorem:

C is the convex hull of Ex(C ).
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Extreme copulas

The determination of the extreme points of C is an open
problem.

Theorem Any element of C that possesses a left or right inverse is
extreme.

Examples Ordinal sums of C−(u1, u2) = max(u1 + u2 − 1, 0) and
C+(u1, u2) = min(u1, u2) are extreme points of C.
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Link between extreme value copulas
and the multivariate extreme value

theory

Denote χ+
n,m = max(Xn,1, . . . ,Xn,k , . . . ,Xn,m) with

{Xn,k}, k i.i.d. random variables with the same
distribution. Let Gn be the marginal distribution of the
univariate extreme χ+

n,m. Then, the joint limit

distribution G of (χ+
1,m, . . . , χ

+
n,m, . . . , χ

+
N,m) is such that

G (χ+
1 , .., χ

+
n , .., χ

+
N) = C (G1(χ+

1 ), ..,Gn(χ+
n ), ..,GN(χ+

N)),

where C is an extreme value copula and Gn a
non-degenerate univariate extreme value distribution.
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Topics on extreme value theory

The univariate
case

Let us first consider m independent random variables
X1, . . . ,Xk , . . . ,Xm with the same probability function
F . The distribution of the extremes χ+

m = (∧mk=1Xk) is
also given by Fisher-Tippet theorem:

Theorem If there exist some constants am and bm and a
non-degenerate limit distribution G such that

lim
m→∞

P
{χ+

m − bm
am

≤ x
}

= G (x) ∀x ∈ R

then G is one of the following distributions:
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Distributions

Fréchet

G (x) = Υα(x) =

{
0 x ≤ 0

exp(−x−α) x > 0

Weibull

G (x) = Ψα(x) =

{
exp(−(−xα)) x ≤ 0

1 x > 0

Gumbel
G (x) = Λ(x) = exp(−e−x) x ∈ R

In this case, we say that F belongs to the maximum
domain of attraction of G , F ∈ MDA(G ).
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Max-stable distribution

Definition A non-degenerate rv X (the corresponding distribution
or df) is called max-stable if it satisfies the identity in
law

max(X1, . . . ,Xn)
d
= cnX + dn

for i.i.d. X ,X1, . . . ,Xn, appropriate constants cn > 0,
dn ∈ R and every n ≥ 2.

Proposition The class of multivariate extreme value distributions is
the class of max-stable distribution functions with
nondegenerate marginals.
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Our problem

General copula Generic choice of copulas also depending on Kendall’s τ
(which is also in the a parameter of the Gumbel through
the link a = 1

1−τ ). Therefore, we have the following

situation:

Kendall’s tau:
measure of
association τC = 4

∫ ∫
I 2

C (u, v)dC (u, v)− 1 =

=Arch.Cop. 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt
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My proposal: Diagonals

Definition Let C : [0, 1]→ [0, 1] be an n-dimensional copula,
n ≥ 2. The function

δ : [0, 1]→ [0, 1], δ(t) = C (t, . . . , t) is called a diagonal
section or diagonal for short.

Kendall’s τ in connection with the general copula C .

τC = 4

∫ 1

0
δ(t)dt − 1.
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Tail dependence

Upper tail
dependence

If a bivariate copula C is such that

lim
u→1

C̄ (u, u)

1− u
= λU

exists, then C has upper tail dependence for λU ∈ (0, 1]
and no upper tail dependence for λU = 0.

Lower tail
dependence

If a bivariate copula C is such that

lim
u→0

C (u, u)

u
= λL

exists, then C has lower tail dependence for λL ∈ (0, 1]
and no lower tail dependence for λL = 0.
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Tail dependence: some examples

Gumbel family The Gumbel family has upper tail dependence, with

λU = 2− 2
1
α

Clayton family The Clayton family has lower tail dependence for α > 0,
since

λL = 2−
1
α

Frank family The Frank family has neither lower nor upper tail
dependence.
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Diagonal section of C

δC (t) = C (t, t)

λU in connection with the general copula C by:

λU = 2− lim
t→1−

1− C (t, t)

1− t
= 2− δ′C (1−).

λL = lim
t→0+

δ(t)

t

Remark The measure λ is extensively used in extreme value
theory. It is the probability that one variable is extreme
given that the other is extreme.
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Order statistics

Probabilistic
interpretation

Let U = (U1, . . . ,Un) be an n-variate random variable
with uniform margins, Ui ∼ U(0, 1), C its distribution
function (hence a copula) and δ the diagonal section of
C . Then δ is a distribution function of the random
variable max{U1, . . . ,Un} = Un:n.



Application to two assets option
pricing

Multivariate
RNDs and

copulas

Let Qn and Q be the risk-neutral probability
distributions of Sn(T ) and S(T ) = (S1(T ) . . . SN(T ))>.
With arbitrage theory, we can show that

Q(+∞, . . . ,+∞, Sn(T ),+∞, . . . ,+∞) = Qn(Sn(T )).

⇒ The margins of Q are RNDs Qn of Vanilla options.

Remark European option prices permit to caracterize the
probability distribution of Sn(T )

Φ(T ,K ) := Qn(K ).
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Bivariate case For a call max option Φ(T ,K ) is the diagonal section of
the copula

Φ(T ,K ) = C (Q1(K ),Q2(K ))

For a spread option, we have

Φ(T ,K ) =

∫ +∞

0
∂1C (Q1(x),Q2(x + K ))dQ1(x).
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Concluding remarks

OPEN PROBLEMS:

1 The parametric form of both bivariate and multivariate
copulas is not well tractable;

2 Current multivariate extreme value theory, from an
applied point of view, only allows for a treatment of
fairly low-dimensional problems.
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