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The problem of risk accumulation

September 112001 terrorist attacks;

the explosion of the space shuttle Challenger on January
28, 1983: the exceptionally low temperature (15 degrees
F lower than the coldest previous launch) the night
before launching led to failure of the O-rings which
caused the disaster;

environmental risks (earthquakes, flood);

civil engineering (the problem of water at flood level in
Venice).
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Danish Fire
Insurance Data
(1980-2002)

Traditional, but underestimation of the risk of joint
downside movements.

Overestimation of the risk.

Dependence in the tails, but not in the center.
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Elliptic copulas

The Normal copula is the dependence function
COw Q) = dp(@ N (un),. .., 0 ()i Q), (1)

where ®,, is the cdf for the n-variate standard normal
distribution with correlation matrix Q.

C,‘;U(u; Q) =V, (V(u,v), ..., W N umv); Q,v),
(2)
where @, denotes the cdf of an n-variate Student’s t
distribution with correlation matrix 2 and degrees of
freedom parameter v > 2.




Archimedean copula

CS(u;a) = exp<—(§n:(— log u,.)a) )

i=1

with a > 1, where a = 1 implies independence.

Upper tail dependence but lower tail independence.
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Extreme copula

An extreme copula satifies
Cuf,...,ub ... ul) = CHur,... up,...,uy) VE > 0.

MEV copulas are easily recognized from

A(x) = — log G(x),

being homogeneous of order 1, i.e., A(tx) = tA(x), for
all t >0, with G(x) = C(e™,...,e7*m).

Gaussian copula is not an extreme value copula.
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Extreme copulas

The set C of 2-copulas is compact with any of the
following topologies, equivalent on C: punctual

convergence, uniform convergence on [O7 1]2, weak
convergence of the associated probability measure.

Let £x(C) be the set of the extreme points of C. Then
Choquet's representation of C similar to the Birkhoff's
theorem:

C is the convex hull of £x(C).
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Extreme copulas

The determination of the extreme points of C is an open
problem.

Any element of C that possesses a left or right inverse is
extreme.

Ordinal sums of C~(u1, u2) = max(u; + up — 1,0) and
C*(u1,u2) = min(uy, up) are extreme points of C.
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Link between extreme value copulas
and the multivariate extreme value
theory

Denote Xt ,, = max(Xn1, .- Xnk, - - -, Xo,m) with
{Xnk}, k ii.d. random variables with the same
distribution. Let G, be the marginal distribution of the
univariate extreme X;{m- Then, the joint limit

distribution G of (XIm, X m s XJum) IS such that

G(XT s X X)) = C(G1(XT ), -+ GalXp ) - G (X ny))s

where C is an extreme value copula and G, a
non-degenerate univariate extreme value distribution.
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Topics on extreme value theory

Let us first consider m independent random variables
X1, o003 Xiey ..., Xm with the same probability function
F. The distribution of the extremes x;, = (A7, Xk) is
also given by Fisher-Tippet theorem:

If there exist some constants a,, and b, and a
non-degenerate limit distribution G such that

T —b
lim P{M < x} —G(x) VxeR

m—o00 am

then G is one of the following distributions:
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G(x) =Talx) = {
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exp(—x)
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Distributions

0 x<0
exp(—x"%) x>0

G(x) =Talx) = {

G(x) = N(x) = exp(—e™) xR



Distributions

G(x) = N(x) = exp(—e™) xR

In this case, we say that F belongs to the maximum
domain of attraction of G, F € MDA(G).




Proposition

Max-stable distribution

A non-degenerate rv X (the corresponding distribution
or df) is called max-stable if it satisfies the identity in
law

max(X4, ..., Xn) < coX + dp

fori.iid. X, Xi,...,X,, appropriate constants ¢, > 0,
d, € R and every n > 2.



Proposition

Max-stable distribution

A non-degenerate rv X (the corresponding distribution
or df) is called max-stable if it satisfies the identity in
law

max(X4, ..., Xn) < coX + dp

fori.iid. X, Xi,...,X,, appropriate constants ¢, > 0,
d, € R and every n > 2.

The class of multivariate extreme value distributions is
the class of max-stable distribution functions with
nondegenerate marginals.
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Our problem

Generic choice of copulas also depending on Kendall's 7
(which is also in the a parameter of the Gumbel through
1

the link a = 1=). Therefore, we have the following

situation:

c = 4//12 C(u,v)dC(u,v) —1 =

1
—Arch.Cop. 1+ 4/0 :;5/((?) dt
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My proposal: Diagonals

Let C :[0,1] — [0, 1] be an n-dimensional copula,
n > 2. The function

0:[0,1] = [0,1], o(t) = C(t,...,t) is called a diagonal
section or diagonal for short.

Kendall's 7 in connection with the general copula C.

1
TCc = 4/ o(t)dt — 1.
0
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Tail dependence

If a bivariate copula C is such that

lim C(u,u)

u—1 1 —u

=\

exists, then C has upper tail dependence for Ay € (0, 1]
and no upper tail dependence for Ay = 0.

If a bivariate copula C is such that

lim M =\
u—0 u

exists, then C has lower tail dependence for \; € (0, 1]
and no lower tail dependence for \; = 0.
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Tail dependence: some examples

The Gumbel family has upper tail dependence, with
1
Ay=2—2a
The Clayton family has lower tail dependence for a > 0,

since )

The Frank family has neither lower nor upper tail
dependence.
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Diagonal section of C

dc(t) = C(t,t)

Ay in connection with the general copula C by:

Ay=2— lim 1-cte) 2 — 8 (17).
t—1- 1-t
AL = lim @
t—ot t

SEMEICE The measure )\ is extensively used in extreme value
theory. It is the probability that one variable is extreme
given that the other is extreme.



Order statistics

Let U = (U1, ..., Uy) be an n-variate random variable
with uniform margins, U; ~ U(0,1), C its distribution
function (hence a copula) and § the diagonal section of
C. Then § is a distribution function of the random
variable max{Ui, ..., Uy} = Un:p.
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Application to two assets option
pricing

Let ©3, and Q) be the risk-neutral probability
distributions of S,(T) and S(T) = (S1(T)...Sn(T))".
With arbitrage theory, we can show that

Q(+00, ..., +00,5,(T),4+00,...,+0) = Qa(Sn(T)).

= The margins of Q@ are RNDs @@, of Vanilla options.



Application to two assets option
pricing

Let ©3, and Q) be the risk-neutral probability
distributions of S,(T) and S(T) = (S1(T)...Sn(T))".
With arbitrage theory, we can show that

Q(+00, ..., +00,5,(T),4+00,...,+0) = Qa(Sn(T)).

= The margins of Q@ are RNDs @@, of Vanilla options.

ACEUEICE European option prices permit to caracterize the
probability distribution of S,(T)

(T, K) := Qa(K).




For a call max option ®(T, K) is the diagonal section of
the copula

®(T, K) = C(Qu(K). Qa(K))




For a call max option ®(T, K) is the diagonal section of
the copula

(T, K) = C(Qu(K), Qa(K))
For a spread option, we have

+oo
(T, K) = /0 & C(Qu (%), Qalx + K))dQs ().
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Concluding remarks

OPEN PROBLEMS:

The parametric form of both bivariate and multivariate
copulas is not well tractable;

Current multivariate extreme value theory, from an
applied point of view, only allows for a treatment of
fairly low-dimensional problems.



THANK YOU FOR YOUR
ATTENTION!
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