A topology on residuated lattices

Michal Krupka

INVESTMENTS IN EDUCATION DEVELOPMENT

Continuity of fuzzy sets Is this fuzzy set continuous?

Continuity of fuzzy sets Is this fuzzy set continuous?

But doesn't continuity depend on t-norm?

 \otimes : a left-continuous t-norm, \rightarrow : its residuum.

Biresiduum: $a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a)$, the degree of similarity of a and b.

Continuity of fuzzy sets Is this fuzzy set continuous?

But doesn't continuity depend on t-norm?

 \otimes : a left-continuous t-norm, \rightarrow : its residuum.

Biresiduum: $a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a)$, the degree of similarity of a and b.

Example

If \otimes is the product t-norm, then for each x > 0, $x \leftrightarrow 0 = 0$. Why should then $\lim \frac{1}{n} = 0$? And for the above fuzzy set, if $x_n \to x_0$ from the left, should $f(x_n) \to f(x_0)$?

Convergence and continuity depends on topology. Our main goal is:

Convergence and continuity depends on topology. Our main goal is:

Define a topology on [0,1] (and, more general, on any residuated lattice) which would take into account proximity given by \leftrightarrow

Topology

Definition (topology)

A topology on a set X is a system τ of subsets of X such that

- $earlier{0} If \ \mathcal{U} \subseteq \tau, \ then \ \bigcup \ \mathcal{U} \in \tau,$
- $\textbf{ if } U, V \in \tau \text{, then } U \cap V \in \tau.$

Elements of τ : open sets.

Definition (basis of topology)

A basis of topology τ is a system $\sigma \subseteq \tau$ such that for each open set U, $x \in U$ there is a $V \in \sigma$ s.t. $x \in V \subseteq U$.

A system σ of subsets of X is a basis of some topology on X iff it is a covering of X and for each $V_1, V_2 \in \sigma$ and $x \in V_1 \cap V_2$ there exists $W \in \sigma$ such that $x \in W \subseteq V_1 \cap V_2$.

Continuous mappings

Definition (continuous mappings)

Let $f: X \to Y$ be a mapping of topological spaces. f is continuous if for each open set $V \subseteq Y$ the set $f^{-1}(V) \subseteq X$ is open.

Residuated lattices

Definition

A residuated lattice: algebra $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$

- $\textcircled{0} \ \langle L, \wedge, \vee, 0, 1 \rangle \text{ is a lattice}$
- 2 $\langle L, \otimes, 1 \rangle$ is a commutative monoid
- **3** \otimes and \rightarrow satisfy adjointness property: $a \otimes b \leq c$ iff $a \leq b \rightarrow c$.

Three important examples on [0, 1]

 $\mathbf{L} = \langle [0,1], \min, \max, \otimes, \rightarrow, 0, 1 \rangle \text{ given by left-continuous (continuous) } \otimes.$

- Łukasiewicz: $a \otimes b = \max(a+b-1,0)$, $a \to b = \min(1-a+b,1)$.
- Gödel (minimum): $a \otimes b = \min(a, b)$, $a \to b = \begin{cases} 1 & \text{if } a \leq b, \\ b & \text{otherwise.} \end{cases}$

- Goguen (product): $a \otimes b = a \cdot b$, $a \to b = \begin{cases} 1 & \text{if } a \leq b, \\ \frac{b}{a} & \text{otherwise.} \end{cases}$

Open ball topology

Let ${\bf L}$ be a residuated lattice.

Definition (radius)

 $r \in L$ is a *radius*, if $r \lor s = 1$ implies s = 1.

Definition (relation \prec)

a is totally smaller than b, if $b \to a$ is a radius. We write $a \prec b$, or $b \succ a$.

Definition (open ball)

The open ball with center a and radius $r: B^r_{\mathbf{L}}(a) = \{x \in L \mid (x \leftrightarrow a) \succ r\}.$

Theorem

The system of all open balls in \mathbf{L} forms a basis of a topology on L.

The topology will be denoted $\tau_{\mathbf{L}}$ and called *the open ball topology*.

Michal Krupka (DAMOL)

If ${\bf L}$ is linearly ordered

- Each r < 1 is a radius,
- $\prec = <$,
- open balls are intervals: $|r \otimes a, r \rightarrow a|$.
- Thus, $\tau_{\mathbf{L}}$ is always stronger than the order topology (natural topology in the case of [0, 1]).
- Thus, some L-sets, continuous in the usual sense, are not continuous w.r.t. $\tau_{\rm L}$.

Continuity of residuated lattice operations

Definition

continuity condition L is said to satisfy the continuity condition, if for each radius r there is a radius s such that $a \succ s$ implies $a \otimes a \succ r$.

Theorem

If L satisfies the continuity condition, then all the operations $\land,\lor,\otimes,\rightarrow$ are continuous w.r.t. τ_{L} .

- ${\bf L}$ satisfies the continuity condition.
- Thus, all the operations $\land,\lor,\otimes,\rightarrow$ are continuous w.r.t. $\tau_{\mathbf{L}}$.
- Even if \otimes or \rightarrow is not continuous in the usual sense.

Further remarks

- Extensional fuzzy sets are continuous.
- A generalization to L-similarity spaces is possible: if \approx is an L-equivalence on a set X, then sets

$$B^r_X(x) = \{y \in X \mid y \approx x \succ r\}, \ x \in X, r \text{ is a radius,}$$

form a basis of a topology on X.

- De Baets, Mesiar (1999): continuous Archimedean t-norms define a metric on [0, 1]. The topology of this metric is exactly the open ball topology.

Some things to do

- investigate properties of $\tau_{\mathbf{L}}$
- connection to uniformity
- find applications!
- (and more...)