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Does it even make sense?
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3-D’s in Data Analysis

1. Dimensions

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



3-D’s in Data Analysis

1. Dimensions

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



High Dimensional Data

Occurence
Images - 256× 256 resolution -

No. of dimensions m = 65536

Gene Expression data - m = 10’s of thousands

Need
More dimensions =⇒ More information

=⇒ Better Inference
Ex: Diagnosis of a disease.

Why is large m a problem?
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This talk: At a Glance!

Dimension

DistributionDistance

Supervised

Classification

Unsupervised

Clustering

Supervised

NN-Search

Unsupervised

Fuzzy C-Means
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Algorithms in Data Analysis

Query Searching & Clustering
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Nearest Neighbour Search - A Pictorial Example

Consider the data points in the figure.
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Nearest Neighbour Search - A Pictorial Example

Its nearest neighbour is the point in green
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Nearest Neighbour Search - A Pictorial Example

NN1(x̄) = arg min
x̄i∈X

{‖x̄− x̄i‖}.
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Nearest Neighbour Search - A Pictorial Example

Consider another query point in red.
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Nearest Neighbour Search - A Pictorial Example

Who is his nearest neighbour?

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Nearest Neighbour Search - A Pictorial Example

Who is his nearest neighbour?

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Nearest Neighbour Search - A Pictorial Example

Who is his nearest neighbour?

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



k-NN Search - A Pictorial Example

Find k-nearest neighbours of the query point in red.
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k-NN Search - A Pictorial Example

NNk(x̄) - k-nearest neighbours of x̄.
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k-NN Search - A Pictorial Example

Find 5-nearest neighbours of the query point in red.
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ε-Neighbourhood - A Pictorial Example

NN ε(x̄) = {ȳ ∈ X | ‖x̄− ȳ‖ < ε}.
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Data Clustering

Clustering - General Idea
Minimise intra-cluster distances.

Maximise inter-cluster distances.
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Data to be clustered
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Fuzzy C-Means
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Fuzzy C-Means - In Low Dimensions
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Issues with Fuzzy C-Means

FCM Collapses in High Dimensions
Winkler et al. (2010) investigated FCM in High-Dimension

It collapses !!!

All the prototypes move towards the center of the data

Converges only if properly initialised !!
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Issues in High Dimensional Data

Data Analysis - A Math Challenge!!

Hilbert’s Lecture at ICM 1900.

Prof. David Donoho - August 8, 2000 by AMS.

Math Challenges of the 21st Century.

Curse of Dimensionality.
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Curse of Dimensionality
1.

Combinatorial Explosion in Search Space
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Curse of Dimensionality - Aspect 1

Combinatorial Explosion in Search Space
Richard Bellman (1961).

If we have m variables each of which can take ni values ...

... then there is a total of n1 × . . .× nm possibilities.

Think of finding the joint probabilities P (X1, X2, . . . , Xm) !!

Think of a complete fuzzy If-Then rule base !!

What does it affect?
Increases Computational Complexity.
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Curse of Dimensionality
2.

Need for Greed

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Curse of Dimensionality
2. Need for Greed

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Curse of Dimensionality - Aspect 2

Classify the point marked x.
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Curse of Dimensionality - Aspect 2

Partition the space into grids.
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Partition the space into grids.

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Curse of Dimensionality - Aspect 2

Count the no. of points in each class in the grid containing x.
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Curse of Dimensionality - Aspect 2

Assign x to the class having most points in the same grid.

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



2. Need for Greed - (N � m)

As m increases, the no. of points N also should increase!
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2. Need for Greed - (N � m)

Increases Storage Complexity.
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Curse of Dimensionality
3.

The Empty Space Phenomenon
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Curse of Dimensionality - Aspect 3

Consider uniformly distributed data on [0, 1].

Consider data at the edges, (distance < 0.05 from the
edges).

Roughly 10% of the data are in the edges.
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Curse of Dimensionality - Aspect 3

Consider uniformly distributed data on [0, 1]2.

Roughly 19% of the data are in the edges.
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Curse of Dimensionality - Aspect 3

Consider uniformly distributed data on [0, 1]3.

Roughly 27% of the data are in the edges.
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3. The Empty Space Phenomenon

How many data points are close to the edges?

In 1-D: 1− 0.9 = 0.1 = 10%

In 2-D: 1− (0.9)2 = 0.19 = 19%

In 3-D: 1− (0.9)3 = 0.271 = 27.1%

In 50-D: 1− (0.9)50 = 0.995 = 99.5%

Bm
ε be the volume of the edge set in [0, 1]m for a fixed ε.

lim
m→∞

Bm
ε = lim

m→∞
[1− (1− 2ε)m] = 1 .

The Empty Space Phenomenon !!
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Curse of Dimensionality
4.

Relations among the Dimensions

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Curse of Dimensionality
4. Relations among the Dimensions

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Curse of Dimensionality - Aspect 4

Correlation among the Dimensions

Let the data set X ⊂ R6.

Dimensionality of X , m = 6.

However, if x̄ = (x1, x2, 3x1, x1 + x2, 2x2, x
2
1) ∈ X , then ...

... x̄ essentially depends only on x1, x2.

Embedding Dimn m vs. Intrinsic Dimn `.

Data may lie in a low-dimensional manifold, i.e., `� m.
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4. Intrinsic dimn far less than Embedding dimn - `� m

Linear Manifolds - ` = 2 < m = 3
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4. Intrinsic dimn far less than Embedding dimn - `� m

Non-Linear Manifold - ` = 2 < m = 3
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Non-Linear Manifold - ` = 2 < m = 3
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The story so far ...

Dimension

Combinatorial
ExplosionNeed for Greed

Empty Space
Phenomenon

Relations among
Dimensions

Explosion

Complexity

Need for Greed

Storage
Relevance of

the Dimensions
Hubness

Phenomenon

Empty Space

Affect / Effect?

Relations

Affect / Effect?
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The story ahead ...

Dimension

Empty Space
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Relations
among Dimns

Distance Distribution
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The story ahead ...

Dimension

Empty Space
Phenomenon

Relations
among Dimns

Distance Distribution

How D & D are affected by the above issues.

In turn, can D & D mitigate the above effects?
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3-D’s in Data Analysis

2. Distance
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Importance of Distance Measures

In Similarity Searches
Similarity and Distance are in some sense dual concepts.

k-nearest neighbours of a point, NNk(x̄).

ε-neighbourhood of a point, NN ε(x̄).

In Clustering
Most of the clustering algorithms are distance based.

If not directly, indirectly !!
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Appropriateness of Distance Functions

Consider the Swiss Roll data set.
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Appropriateness of Distance Functions

Are these two points close or far?
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Appropriateness of Distance Functions

Intrinsic dimension ` = 2, while Embedding dimension m = 3.
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Appropriateness of Distance Functions

Distance in which dimension - Intrinsic or Embedding ?
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Relation between Dimensions - Revisited

Distance in which dimension - Intrinsic or Embedding ?
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Relation between Dimensions - Revisited

Distance along which manifold ?
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Distribution of Euclidean Distances

X = {x̄i ∈ U ([0, 1]m) | 1 ≤ i ≤ 20, 000}.

Distribution of ‖x̄i‖ for m = 1, 2, 5, 10, 20.
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Distribution of Euclidean Distances

‖x̄i‖ is small iff all m-components are small.

When m = 10, P {x̄ | ‖x̄‖ ≤ 1} is extremely small.
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Distribution of lengths w.r.to any Lp Norm

Let x̄ = (x1, x2, . . . , xm).

‖x̄‖2 =
(
x2

1 + x2
2 + . . .+ x2

m

) 1
2 .

If x̄ ∈ [0, 1]m, 0 ≤ ‖x̄‖2
2
≤ m.

Let us consider the normalised lengths, i.e.,
1
m
‖x̄‖2

2
.

Let us consider a general Lp norm, i.e.,

‖x̄‖p = (|x1|p + |x2|p + . . .+ |xm|p)
1
p .

Let us consider a modified general Lp norm, i.e.,
‖x̄‖pp = |x1|p + |x2|p + . . .+ |xm|p .
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Distribution of lengths of vectors in unit hypercube

The expected value of the modified p-norm of a ...

... random vector x̄ ...

... from the m-dimensional unit hypercube is

E

(
1
m
‖x̄‖pp

)
=

1
p+ 1

.

The corresponding variance is

V ar

(
1
m
‖x̄‖pp

)
=

1
m
· p2

(2p+ 1) (p+ 1)2 .

lim
m→∞

V ar

(
1
m
‖x̄‖pp

)
= 0 .
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Distribution of distances to the Origin

m = 1, p = 2
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Distribution of distances to the Origin

m = 2, p = 2
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Distribution of distances to the Origin

m = 3, p = 2
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Distribution of distances to the Origin

m = 5, p = 2
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Distribution of distances to the Origin

m = 10, p = 2
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Distribution of distances to the Origin

m = 20, p = 2
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Distribution of distances to the Origin

m = 50, p = 2
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Distribution of distances to the Origin

m = 100, p = 2
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Distribution of distances to the Origin

m = 200, p = 2
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Distribution of lengths w.r.to any ‖ · ‖

X1, X2, . . . , Xm be i.i.d. random variables.

x̄m = (x1, x2, . . . , xm) be a r.v̄, where xi ∼ Xi.

q̄m be the query point. W.l.o.g. q̄m = 0̄m.

D
(max)
m - largest distance between any x̄m to q̄m w.r.to ‖ · ‖.

D
(min)
m - smallest distance between any x̄m to q̄m.

Theorem [Beyer et al, 1999]

lim
m→∞

V ar

(
‖x̄m‖

E (‖x̄m‖)

)
= 0 =⇒ D

(max)
m −D(min)

m

D
(min)
m

→p 0 .
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Meaningfulness of distance functions in HD

Theorem [Beyer et al, 1999]
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When the relative variance (w.r.to the mean distance) ...

... of the distances to the origin converges to 0, then ...

... the relative difference between the ...

... closest and the farthest points to the origin ...

... goes to 0 with increasing dimensions.

Concentration of Norms phenomenon!!
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Concentration of Norms

lim
m→∞
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(
‖x̄m‖

E (‖x̄m‖)

)
= 0 =⇒ D

(max)
m −D(min)

m

D
(min)
m

→p 0 .

Inability of a distance function to separate points well in HD.

Result is valid ...
... for any q̄m 6= 0̄m.

... under some mild assumptions on Xi, e.g., µi, σ2
i <∞.

... for most distance functions.
Lp norms, p ∈ [1,∞) - Beyer et al., ICDT 1999 .
Lp norms, p ∈ (0, 1) - Francois et al. 2007, IEEE TKDE.
Aggarwal 2001, Hsu & Chen 2009, Jayaram & Klawonn
2012.
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Concentration of Norms
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Inability of a distance function to separate points well in HD.

What is its effect?

Distance between any two points in HD seems the same!!

Affects Query searches !

Who is your nearest neighbour?

Cause?
The Empty Space phenomenon?
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Interplay between the 3D’s - 1
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Distance Distribution
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Classification
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Distribution

Do Something?
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3-D’s in Data Analysis

3. Distribution
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Data from a mixture of distributions

So far, X contained r.v̄ from a single distribution.

Now, let, X contain r.v̄ from a mixture of distributions.
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Data from a mixture of distributions

Let there be c Gaussian clusters in m-dimensions.
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Data from a mixture of distributions

Let there be c Gaussian clusters in m-dimensions.

Is not nearest neighbour query meaningful now?
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NN-Queries can be meaningful!!

When data come from mixture of distributions ...

... (as is usually the case with real data sets) ...

... nearest neighbour searches can be meaningful !

Theoretical results do exist - Bennett et al. (2001).

The Empty Space or CoN phenomena do not mean much
for NN now!!.

Really?!
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Intrinsic dimn vs. Embedding dimn
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How do we get clusters of data?

Do we see clusters here ?
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How do we get clusters of data?

Clusterable data ∼ Data from a mixture of distributions.

Balasubramaniam Jayaram Data Analysis: A 3-D Perspective



Intrinsic dimn far less than Embedding dimn - `� m

What is its effect on algorithms, say clustering?
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Intrinsic dimn far less than Embedding dimn - `� m

Data are distributed as two well-separated clusters.
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Intrinsic dimn far less than Embedding dimn - `� m

Data are distributed on a 3D-sphere =⇒ ` = 2 < 3 = m
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Intrinsic dimn far less than Embedding dimn - `� m

FCM proceeds by finding the centroid of the clusters.
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Intrinsic dimn far less than Embedding dimn - `� m

The centroids of both the clusters converge!!!
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Clustering on the basis of correlation

M.E. Houle et al.(2010)
”Can Shared-Neighbor Distances Defeat the Curse of
Dimensionality?”

Used secondary similarity measures on the basis of the
rankings ...

... induced by a distance measure

Their recommendation
Rank-based similarity measures.

Can result in better performance.
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Robust Rank Correlation Based Clustering (RaCoCl)

Brief overview [Krone et al, 2013]
Based on the rank correlation of every pair of points w.r.t.
all other points in the dataset.

Any rank correlation measure can be used.

Classical measures: Spearman’s ρ and Kendall’s τ .

Known to be not ideally suited in the presence of noise.

Fuzzy/robust γ (Bodenhofer & Klawonn, 2008).

Generalization of Goodman and Kruskal’s γ.

Shown to be more robust to noise in the data.
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Shown to be more robust to noise in the data.
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Robust Rank Correlation Based Clustering (RaCoCl)

Our Findings
Appears to work well, especially with HD data.

FCM was shown to break down in those cases.

Seems well suited for sparsely populated data.

Take Home Message!!

Fuzzy Set Theory (still) has its role to play!!
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Thanks for your patient listening !!!

Any Questions ???
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