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Introduction

◮ A well-known basis for games is the set of unanimity games.
Coordinates correspond to the Möbius transform.

◮ Many other transforms exist (interaction, Walsh or Fourier,
etc.), however the obvious duality basis↔linear transform has
been overlooked.

◮ As a consequence, the inverse problem for games (find all
games having the same Shapley value) has been solved in a
tedious way.

◮ The Shapley value is an example of a least square value as it
optimizes some least square criterion on games.

◮ Aim of the paper: to give a systematic analysis of the above
aspects.
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Preliminary notions

◮ N set of n players, N = 2N

◮ game v : 2N → R (here v(∅) = 0 is not imposed).

◮ The set of games on N, G(N), forms a vector space of
dimension 2n.

◮ Unanimity games ζS , S ⊆ N:

ζS =

{

1, if S ⊇ T

0, otherwise.

◮ Identity games δS , S ⊆ N:

δS =

{

1, if S = T

0, otherwise.

◮ scalar product 〈v ,w〉 =
∑

S⊆N v(S)w(S)
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Bases and linear transforms

◮ A transform is a linear invertible mapping Ψ : G(N) → G(N);
v 7→ Ψv

◮ To a game v , we make correspond a row vector v ∈ R
N

◮ To a basis (fS )S∈N , we make correspond the matrix F = [fs ]
of row vectors fS . Hence v =

∑

S∈N wS fS = wF is the
expression of v in this basis.

Lemma (Equivalence between bases and transforms)

For every basis F , there is a (unique) transform Ψ such that for
any v ∈ R

N ,

v =
∑

S∈N

Ψv(S)fS , (1)

whose inverse Ψ−1 is given by v 7→ (Ψ−1)v =
∑

S∈N v(S)fS = vF .
Conversely, to any transform Ψ corresponds a unique basis F such
that (1) holds, given by fS = (Ψ−1)δS .
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Examples

The Möbius transform: associated with the basis of unanimity
games

v(S) =
∑

T∈N

mv (T )ζT (S) =
∑

T⊆S

mv (T ), (T ⊆ N),

with
mv (S) =

∑

T⊆S

(−1)|S\T |v(T ).
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The Möbius transform: associated with the basis of unanimity
games

v(S) =
∑

T∈N

mv (T )ζT (S) =
∑

T⊆S

mv (T ), (T ⊆ N),

with
mv (S) =

∑

T⊆S

(−1)|S\T |v(T ).
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Examples

The Möbius transform: associated with the basis of unanimity
games

v(S) =
∑

T∈N

mv (T )ζT (S) =
∑

T⊆S

mv (T ), (T ⊆ N),

with
mv (S) =

∑

T⊆S

(−1)|S\T |v(T ).

The co-Möbius (or commonality) transform:

m̌v (S) =
∑

T⊇N\S

(−1)n−|T |v(T ) =
∑

T⊆S

(−1)|T |v(N \ T ) (S ∈ N )

and v(S) =
∑

T⊆N\S(−1)|T |m̌v (T ). By the Lemma, the
associated basis is

fT (S) =
∑

B⊆N\S

(−1)|B|δT (B) =

{

(−1)|T | if S ∩ T = ∅
0 otherwise.
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Examples

The (Shapley) interaction transform:

I v (S) =
∑

T⊆N\S

(n − t − s)!t!

(n − s + 1)!

∑

L⊆S

(−1)|S\L|v(T ∪ L)

and the inverse relation

v(S) =
∑

K⊆N

β
|K |
|S∩K |I

v (K ),

where

βl
k =

k
∑

j=0

(

k

j

)

Bl−j (k ≤ l),

and B0,B1, . . . are the Bernoulli numbers.
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Examples

The (Shapley) interaction transform:

I v (S) =
∑

T⊆N\S

(n − t − s)!t!

(n − s + 1)!

∑

L⊆S

(−1)|S\L|v(T ∪ L)

and the inverse relation

v(S) =
∑

K⊆N

β
|K |
|S∩K |I

v (K ),

where

βl
k =

k
∑

j=0

(

k

j

)

Bl−j (k ≤ l),

and B0,B1, . . . are the Bernoulli numbers. The associated basis
{bI

T }T∈N is

bI
T (S) = β

|T |
|T∩S| (S ∈ N )

U. Faigle & M. Grabisch c©2014 Linear transforms, bases and quadratic optimization



Examples

The Banzhaf interaction transform:

I v
B(S) =

(1

2

)n−s ∑

K⊆N

(−1)|S\K |v(K )

with inverse relation

(I−1
B

)v (S) =
∑

K⊆N

(1

2

)k

(−1)|K\S|v(K ).
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Examples

The Banzhaf interaction transform:

I v
B(S) =

(1

2

)n−s ∑

K⊆N

(−1)|S\K |v(K )

with inverse relation

(I−1
B

)v (S) =
∑

K⊆N

(1

2

)k

(−1)|K\S|v(K ).

The associated basis {bIB
T }T∈N is

bIB
T (S) =

∑

K⊆N

(1

2

)k

(−1)|K\S|δT (K ) =
(1

2

)|T |
(−1)|T\S|.
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Examples

The Hadamard transform:

Hv (S) =
1

2n/2

∑

K⊆N

(−1)|S∩K |v(K )

(self-inverse relation).
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The Hadamard transform:

Hv (S) =
1

2n/2

∑

K⊆N

(−1)|S∩K |v(K )

(self-inverse relation). The corresponding basis {bH
T }T∈N is

bH
T (S) =

1

2n/2

∑

K⊆N

(−1)|S∩K |δT (K ) =
1

2n/2
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Examples

The Walsh basis {wT }T∈N :

wT (S) = (−1)|T\S| (S ∈ N ).

It is an orthogonal basis.
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Examples

The Walsh basis {wT }T∈N :

wT (S) = (−1)|T\S| (S ∈ N ).

It is an orthogonal basis. The corresponding Walsh transform W
satisfies

v(S) =
∑
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W v (T )(−1)|T\S| (S ∈ N ),

which yields

W v (S) =
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)|S|
I v
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Examples

The Walsh basis {wT }T∈N :

wT (S) = (−1)|T\S| (S ∈ N ).

It is an orthogonal basis. The corresponding Walsh transform W
satisfies

v(S) =
∑

T⊆N

W v (T )(−1)|T\S| (S ∈ N ),

which yields

W v (S) =
(1

2

)|S|
I v
B(S) (S ∈ N )

Relation between the Hadamard basis and the Walsh basis:

bH
T (S) = bH

S (T ) =
1

2n/2
(−1)|S∩T | =

1

2n/2
(−1)|S\(N\T )| =

1

2n/2
wS(N\T )
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The inverse problem

◮ A linear value is a mapping Φ : R
N → R

N assigning to any
game a n-dim vector. Examples: the Shapley value ΦSh, the
Banzhaf value ΦB.
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The inverse problem

◮ A linear value is a mapping Φ : R
N → R

N assigning to any
game a n-dim vector. Examples: the Shapley value ΦSh, the
Banzhaf value ΦB.

◮ Fact: the Shapley (resp., Banzhaf) interaction transform
extends the Shapley (resp., Banzhaf) value in the sense that

ΦSh
i (v) = I v ({i}), ΦB

i (v) = I v
B({i}), (i ∈ N)

◮ The inverse problem: Given a linear value Φ and a game v,
find all games v ′ such that Φ(v) = Φ(v ′).

◮ Observe that v ′ is a solution iff Φ(v − v ′) = 0, i.e.,
v − v ′ ∈ ker(Φ). So its suffices to determine the kernel of the
linear map Φ.
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The inverse problem: Solution 1

Suppose you know a transform Ψ extending the value. Then the
kernel is just the space spanned by the vectors fS of the
corresponding basis with |S | > 1.

v =
∑

S∈N

I v (S)bI
S =

∑

i∈N

ΦSh
i (v)bI

{i} +
∑

|S|6=1

I v (S)bI
S ,

which implies

v ∈ ker(ΦSh) ⇐⇒ v =
∑

|S|6=1

I v (S)bI
S

i.e.,

ker(ΦSh) =
{

∑

|S|6=1

λSbI
S | λS ∈ R

}
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The inverse problem: Solution 1

Suppose you know a transform Ψ extending the value. Then the
kernel is just the space spanned by the vectors fS of the
corresponding basis with |S | > 1.
Illustration with the Shapley value:

v =
∑

S∈N

I v (S)bI
S =

∑

i∈N

ΦSh
i (v)bI

{i} +
∑

|S|6=1

I v (S)bI
S ,

which implies

v ∈ ker(ΦSh) ⇐⇒ v =
∑

|S|6=1

I v (S)bI
S

i.e.,

ker(ΦSh) =
{

∑

|S|6=1

λSbI
S | λS ∈ R

}
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The inverse problem: Solution 2

◮ Let k = dimΦ(RN ) ≤ n be the dimension of Φ, and select a
basis E = {e1, . . . , ek} of Φ(RN ).
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◮ Then {b1, . . . , bk} is a basis of Φ(RN ), which can be
completed by {bk+1, . . . , b2n} to form a basis of R

N .

◮ Denote by ǫ
(j)
1 , . . . , ǫ

(j)
k the coordinates of Φ(bj) in the basis

E , for j = k + 1, . . . , 2n.
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completed by {bk+1, . . . , b2n} to form a basis of R
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(j)
k the coordinates of Φ(bj) in the basis
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The inverse problem: Solution 2

◮ Let k = dimΦ(RN ) ≤ n be the dimension of Φ, and select a
basis E = {e1, . . . , ek} of Φ(RN ).

◮ Find b1, . . . , bk such that Φ(bi) = ei (i = 1, . . . , k).

◮ Then {b1, . . . , bk} is a basis of Φ(RN ), which can be
completed by {bk+1, . . . , b2n} to form a basis of R

N .

◮ Denote by ǫ
(j)
1 , . . . , ǫ

(j)
k the coordinates of Φ(bj) in the basis

E , for j = k + 1, . . . , 2n.

◮ Put bΦ
j = bj −

∑k
i=1 ǫ

(j)
i bi for j = k + 1, . . . , 2n.

Theorem
Let BΦ = {b1, . . . , bk , bΦ

k+1, . . . , b
Φ
2n}. Then

(i) BΦ is a basis for R
N .

(ii) BΦ
0 = {bΦ

k+1, . . . , b
Φ
2n} is a basis for ker Φ.
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Least square values

◮ A least square value Φ is given by the solution of a least
square optimization problem

min
x∈RN

∑

S∈N

αS(v(S) − x(S))2 s.t. x(N) = v(N)

for given coefficients αS ,S ∈ N , and the convention
x(S) =

∑

i∈S xi . Then Φi(v) = x∗
i , i ∈ N.
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Least square values

◮ A least square value Φ is given by the solution of a least
square optimization problem

min
x∈RN

∑

S∈N

αS(v(S) − x(S))2 s.t. x(N) = v(N)

for given coefficients αS ,S ∈ N , and the convention
x(S) =

∑

i∈S xi . Then Φi(v) = x∗
i , i ∈ N.

◮ Well-known fact 1: the Banzhaf value is the solution of the
above unweighted (αS = 1,∀S) unconstrained problem
(Hammer and Holzman 1987).
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Least square values

◮ A least square value Φ is given by the solution of a least
square optimization problem

min
x∈RN

∑

S∈N

αS(v(S) − x(S))2 s.t. x(N) = v(N)

for given coefficients αS ,S ∈ N , and the convention
x(S) =

∑

i∈S xi . Then Φi(v) = x∗
i , i ∈ N.

◮ Well-known fact 1: the Banzhaf value is the solution of the
above unweighted (αS = 1,∀S) unconstrained problem
(Hammer and Holzman 1987).

◮ Well-known fact 2: the Shapley value is the solution of the
above problem with

αS = αs =
(n − 2)!

(s − 1)!(n − 1 − s)!
(s = |S |).

(Charnes et al., 1988)

U. Faigle & M. Grabisch c©2014 Linear transforms, bases and quadratic optimization



Least square values

◮ It can be shown that the above problem reduces to

min
x∈RN

xQxT − xcT s.t. x1 = g(v)

with qij =
∑

S∋i ,j αS and ci =
∑

S∋i αSv(S). It has always a
solution, which is unique iff Q is positive definite.
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with qij =
∑

S∋i ,j αS and ci =
∑

S∋i αSv(S). It has always a
solution, which is unique iff Q is positive definite.

◮ Q is said to be regular if qii = q,∀i and qij = p for all i 6= j .
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Least square values

◮ It can be shown that the above problem reduces to

min
x∈RN

xQxT − xcT s.t. x1 = g(v)

with qij =
∑

S∋i ,j αS and ci =
∑

S∋i αSv(S). It has always a
solution, which is unique iff Q is positive definite.

◮ Q is said to be regular if qii = q,∀i and qij = p for all i 6= j .

◮ Fact: Q regular is positive definite iff q > p > 0.
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Least square values

◮ It can be shown that the above problem reduces to

min
x∈RN

xQxT − xcT s.t. x1 = g(v)

with qij =
∑

S∋i ,j αS and ci =
∑

S∋i αSv(S). It has always a
solution, which is unique iff Q is positive definite.

◮ Q is said to be regular if qii = q,∀i and qij = p for all i 6= j .

◮ Fact: Q regular is positive definite iff q > p > 0.

Theorem
If Q is regular and positive definite, the (unique) optimal solution
x∗ is given by:

z∗ = (2(q + (n − 1)p)g − C )/n (with C = c1T =
∑

i∈N ci )

x∗
i = (ci + z∗ − 2pg)/(2q − 2p) (i ∈ N).
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