

First-order EQ-logic with equality

Martin Dyba, Vilém Novák

Centre of excellence IT4Innovations
Division of the University of Ostrava
Institute for Research and Applications of Fuzzy Modeling
Martin.Dyba@osu.cz, Vilem.Novak@osu.cz

FSTA 2014, Liptovský Ján, Slovak Republic January 26–31, 2014

Outline

- Motivation
- 2 EQ-algebras
- Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_△-logic
- Predicate EQ-logic
- Conclusion

Outline

- Motivation
- EQ-algebras
- 3 Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_▲-logic
- Predicate EQ-logic
- Conclusion

How did EQ-logic arise?

- Motivation comes from G. W. Leibniz, L. Wittgenstein and F. P. Ramsey. To develop logic on the basis of identity (equality) as the principle connective.
- Henkin's type theory (higher ordered logic) was developed.
 [L. Henkin, A theory of propositional types, Fundamenta Math., 52: 323–344, (1963).]
 A fully satisfactory logical calculus must be an equational one."
- Classical equality-based logic:
 [D. Gries, F. B. Schneider. Equational propositional logic. Information Processing Letters, 53:145-152, 1995.]
 [G. Tourlakis. Mathematical Logic. New York, J.Wiley & Sons, 2008.]

How did EQ-logic arise?

How could fuzzy logic be developed on the basis of fuzzy equality?

- Residuated lattice $a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a)$ [V. Novák. On fuzzy type theory. Fuzzy Sets and Systems, 149:235-273, 2005.]
- EQ-algebra

[M. Dyba and V. Novák. EQ-logics: Non-commutative fuzzy logics based on fuzzy equality. *Fuzzy Sets and Systems*, 2011, sv. 172, 13–32.]

[Dyba, M., Novák, V., EQ-logics with delta connective. Iranian Journal of Fuzzy Systems, submitted.]

[V. Novák. EQ-algebra-based fuzzy type theory and ist extensions. *Logic Journal of the IGPL*, 2011, 19, 512–542.]

4 D > 4 P > 4 B > 4 B > B

Outline

- Motivation
- 2 EQ-algebras
- Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_△-logic
- Predicate EQ-logic
- Conclusion

Definition

Non-commutative EQ-algebra is the algebra

$$\mathcal{E} = \langle \mathbf{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$$

of type (2, 2, 2, 0)

- **(E1)** $\langle E, \wedge, \mathbf{1} \rangle$ is a commutative idempotent monoid (i.e. \wedge -semilattice with top element **1**) with the ordering: $a \leq b$ iff $a \wedge b = a$
- **(E2)** $\langle E, \otimes, \mathbf{1} \rangle$ is a monoid and \otimes is isotone w.r.t. \leq

Definition

Non-commutative EQ-algebra is the algebra

$$\mathcal{E} = \langle \mathcal{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$$

of type (2, 2, 2, 0)

- **(E1)** $\langle E, \wedge, \mathbf{1} \rangle$ is a commutative idempotent monoid (i.e. \wedge -semilattice with top element $\mathbf{1}$) with the ordering: $a \leq b$ iff $a \wedge b = a$
- **(E2)** $\langle E, \otimes, \mathbf{1} \rangle$ is a monoid and \otimes is isotone w.r.t. \leq

Definition (continued)

(E3)
$$a \sim a = 1$$
 (reflexivity)

(E4)
$$((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b)$$
 (substitution)

(E5)
$$(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d)$$
 (congruence)

(E6)
$$(a \land b \land c) \sim a \le (a \land b) \sim a$$
 (monotonicity)

(E7)
$$a \otimes b \leq a \sim b$$
 (boundedness)

Implication: $a \rightarrow b = (a \land b) \sim a$

Definition (continued)

(E3)
$$a \sim a = 1$$
 (reflexivity)

(E4)
$$((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b)$$
 (substitution)

(E5)
$$(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d)$$
 (congruence)

(E6)
$$(a \land b \land c) \sim a \le (a \land b) \sim a$$
 (monotonicity)

(E7)
$$a \otimes b \leq a \sim b$$
 (boundedness)

Implication: $a \rightarrow b = (a \land b) \sim a$

Special EQ-algebras

EQ-algebra is

- (a) good if $a \sim 1 = a$
- (b) residuated if $(a \otimes b) \wedge c = a \otimes b$ iff $a \wedge ((b \wedge c) \sim b) = a$
- (c) involutive if $\neg \neg a = a$ (IEQ-algebra)
- (d) prelinear if for all $a, b \in E$ sup $\{a \to b, b \to a\} = 1$.
- (e) lattice EQ-algebra if it is a lattice-ordered and for all $a,b,c,d \in E$ $((a \lor b) \sim c) \otimes (d \sim a) \leq (d \lor b) \sim c$ $(\ell EQ-algebra)$

Special EQ-algebras

A lattice EQ_{Δ} -algebra (ℓEQ_{Δ} -algebra)

$$\mathcal{E}_{\Delta} = \langle E, \wedge, \vee, \otimes, \sim, \Delta, \mathbf{0}, \mathbf{1} \rangle$$

- $\langle E, \wedge, \vee, \otimes, \sim, \mathbf{0}, \mathbf{1} \rangle$ is a good non-commutative and bounded ℓ EQ-algebra.
- $\Delta 1 = 1$
- $\Delta a \leq \Delta \Delta a$
- $\Delta(a \sim b) \leq \Delta a \sim \Delta b$

- $\Delta(a \lor b) \le \Delta a \lor \Delta b$
- $\Delta a \vee \neg \Delta a = 1$
- $\Delta(a \sim b) \leq (a \otimes c) \sim (b \otimes c)$
- $\Delta(a \sim b) \leq (c \otimes a) \sim (c \otimes b)$

Representation of ℓEQ_△-algebras

Lemma

If a good EQ-algebra $\mathcal E$ satisfies

$$(a \to b) \lor (d \to (d \otimes (c \to ((b \to a) \otimes c)))) = \mathbf{1}$$
 (1)

for all $a, b, c, d \in E$ then it is prelinear.

Theorem

Let \mathcal{E}_{Δ} be ℓEQ_{Δ} -algebra. The following are equivalent:

- (a) \mathcal{E}_{Δ} is subdirectly embeddable into a product of linearly ordered good ℓEQ_{Δ} -algebras.
- **(b)** \mathcal{E}_{Δ} satisfies (1).

Outline

- Motivation
- 2 EQ-algebras
- Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_△-logic
- Predicate EQ-logic
- Conclusion

Why EQ-logics

EQ-logics — special class of many-valued logics truth values form an EQ-algebra

- Equivalence as the basic connective instead of implication
- Proofs in equational style
- Even more general than MTL-logics

Why EQ-logics

EQ-logics — special class of many-valued logics truth values form an EQ-algebra

- Equivalence as the basic connective instead of implication
- Proofs in equational style
- Even more general than MTL-logics

Why EQ-logics

EQ-logics — special class of many-valued logics truth values form an EQ-algebra

- Equivalence as the basic connective instead of implication
- Proofs in equational style
- Even more general than MTL-logics

Language

- Propositional variables p_1, p_2, \dots
- Connectives: \land (conjunction), & (fusion), \equiv (equivalence),
- Logical constant ⊤ (true)

Implication:

$$A \Rightarrow B := (A \land B) \equiv A$$

Language

- Propositional variables p_1, p_2, \dots
- Connectives: ∧ (conjunction), & (fusion), ≡ (equivalence),
- Logical constant ⊤ (true)

Implication:

$$A \Rightarrow B := (A \land B) \equiv A$$

Logical axioms

(EQ11) $(A \Rightarrow (B \land C)) \Rightarrow (A \Rightarrow B)$

(EQ1)
$$(A \equiv \top) \equiv A$$

(EQ2) $A \land B \equiv B \land A$
(EQ3) $(A \bigcirc B) \bigcirc C \equiv A \bigcirc (B \bigcirc C)$, $\bigcirc \in \{\land, \&\}$
(EQ4) $A \land A \equiv A$
(EQ5) $A \land \top \equiv A$
(EQ6) $A \& \top \equiv A$
(EQ7) $\top \& A \equiv A$
(EQ8a) $((A \land B) \& C) \Rightarrow (B \& C)$
(EQ8b) $(C \& (A \land B)) \Rightarrow (C \& B)$
(EQ9) $((A \land B) \equiv C) \& (D \equiv A) \Rightarrow (C \equiv (D \land B))$ (substitution)
(EQ10) $(A \equiv B) \& (C \equiv D) \Rightarrow (A \equiv C) \equiv (B \equiv D)$ (congruence)

Inference rules

Equanimity rule

From A and $A \equiv B$ infer B

Leibniz rule

From $A \equiv B$ infer $C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]$

 $C[\mathbf{p} := A]$ denotes a formula resulting from C by replacing all occurrences of a variable \mathbf{p} in C by the formula A.

Semantics

Truth values

The set of truth values is a good non-commutative EQ-algebra $\mathcal{E} = \langle \mathcal{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$

Theorem (Completeness)

For every formula $A \in F_J$ the following is equivalent:

- (a) ⊢ A
- **(b)** e(A) = 1 for every truth evaluation $e : F_J \longrightarrow E$ and every good non-commutative EQ-algebra \mathcal{E} .

Other EQ-logics

- Involutive EQ-logic (with double negation)
- Prelinear EQ-logic (stronger variant of the completeness theorem)
- EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

- Basic EQ_△-logic (weaker variant of the completeness theorem)
- Prelinear EQ_△-logic

Theorem (Deduction)

For each theory T and formulas $A, B, C \in F_J : T \cup \{A \equiv B\} \vdash C$ iff $T \vdash \Delta(A \equiv B) \Rightarrow C$

Other EQ-logics

- Involutive EQ-logic (with double negation)
- Prelinear EQ-logic (stronger variant of the completeness theorem)
- EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

- Basic EQ_Δ-logic (weaker variant of the completeness theorem)
- Prelinear EQ_△-logic

Theorem (Deduction)

For each theory T and formulas $A, B, C \in F_J : T \cup \{A \equiv B\} \vdash C$ iff $T \vdash \Delta(A \equiv B) \Rightarrow C$

Other EQ-logics

- Involutive EQ-logic (with double negation)
- Prelinear EQ-logic (stronger variant of the completeness theorem)
- EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

- Basic EQ_Δ-logic (weaker variant of the completeness theorem)
- Prelinear EQ_△-logic

Theorem (Deduction)

For each theory T and formulas $A, B, C \in F_J$:

$$T \cup \{A \equiv B\} \vdash C \quad iff \quad T \vdash \Delta(A \equiv B) \Rightarrow C$$

Language

The language of basic EQ-logic extended by unary connective Δ , binary connective \vee and logical constant \perp .

Negation
$$\neg A := A \equiv \bot$$

Axioms (EQ1)–(EQ11) and
$$((((A \land B) \lor C) \equiv D) \& (F \equiv C)) \& (E \equiv A) \Rightarrow (D \equiv (F \lor (B \land E)))$$

(EQ12)
$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

(EQ13)
$$A \lor (A \land B) \equiv A$$

(EQ14)
$$(A \wedge \bot) \equiv \bot$$

(EQ15)
$$(A \Rightarrow B) \lor (D \Rightarrow (D \& (C \Rightarrow ((B \Rightarrow A) \& C))))$$

Language

The language of basic EQ-logic extended by unary connective Δ , binary connective \vee and logical constant \perp .

Negation
$$\neg A := A \equiv \bot$$

Axioms (EQ1)–(EQ11) and
$$((((A \land B) \lor C) \equiv D) \& (F \equiv C)) \& (E \equiv A) \Rightarrow (D \equiv (F \lor (B \land E)))$$

(EQ12)
$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

(EQ13)
$$A \lor (A \land B) \equiv A$$

(EQ14)
$$(A \wedge \bot) \equiv \bot$$

(EQ15)
$$(A \Rightarrow B) \lor (D \Rightarrow (D \& (C \Rightarrow ((B \Rightarrow A) \& C))))$$

Axioms (continued)

$$(EQ\Delta 1) \Delta A \Rightarrow \Delta \Delta A$$

(EQ
$$\Delta$$
2) Δ ($A \equiv B$) \Rightarrow ($\Delta A \equiv \Delta B$)

(EQ
$$\triangle$$
3) \triangle ($A \land B$) \equiv ($\triangle A \land \triangle B$)

$$(EQ\Delta 4) \Delta A \equiv (\Delta A \& \Delta A)$$

$$(EQ\Delta 5) \ \Delta(A \lor B) \Rightarrow (\Delta A \lor \Delta B)$$

(EQ
$$\triangle$$
6) $\triangle A \lor \neg \triangle A$

$$(EQ\Delta7) \ \Delta(A \equiv B) \Rightarrow ((A\&C) \equiv (B\&C))$$

(EQ
$$\triangle$$
8) \triangle ($A \equiv B$) \Rightarrow (($C \& A$) \equiv ($C \& B$))

Inference rules

- Equanimity rule
- Leibniz rule
- Necessitation rule

From A infer $\triangle A$

Semantics

An ℓEQ_{Λ} -algebras in which (1) is satisfied

Inference rules

- Equanimity rule
- Leibniz rule
- Necessitation rule

From A infer $\triangle A$

Semantics

An ℓEQ_{Δ} -algebras in which (1) is satisfied.

Theorem (Completeness)

For every formula $A \in F_J$ and every theory T the following is equivalent:

- (a) *T* ⊢ *A*
- (b) e(A) = 1 for every truth evaluation $e : F_J \longrightarrow E$ and every linearly ordered, ℓEQ_{Δ} -algebra \mathcal{E} .
- (c) e(A) = 1 for every truth evaluation $e : F_J \longrightarrow E$ and every ℓEQ_{Δ} -algebra \mathcal{E} satisfying (1).

Outline

- Motivation
- 2 EQ-algebras
- Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_△-logic
- Predicate EQ-logic
- Conclusion

Fuzzy equality

Definition

Let \mathcal{E} be a noncommutative EQ-algebra with the support E and M be a set. A fuzzy equality $\stackrel{.}{=}$ on M is a binary fuzzy relation on M, i.e. a function

$$\doteq$$
: $M \times M \longrightarrow E$

such that the following holds for all $m, m', m'' \in M$:

(i)
$$(m \doteq m) = 1$$
, (reflexivity)

(ii)
$$(m \doteq m') = (m' \doteq m)$$
, (symmetry)

(iii)
$$(m \doteq m') \otimes (m' \doteq m'') \leq (m \doteq m'')$$
 (transitivity)

Function $f: M^n \longrightarrow M$ is weakly extensional if $(m_1 \doteq m'_1) = \mathbf{1}, \dots, (m_n \doteq m'_n) = \mathbf{1}$ implies $(f(m_1, \dots, m_n) \doteq f(m'_1, \dots, m'_n)) = \mathbf{1}$.

Syntax

Language

- Object variables x, y,
- Set of object constants Const = $\{\mathbf{u}, \mathbf{v}, \dots\}$.
- Set of n-ary functional symbols Func = $\{f, g, \dots\}$.
- Non-empty set of n-ary predicate symbols $Pred = \{P, Q, \dots\}.$
- Binary connectives $\Lambda, V, \&, \equiv$ and unary connective Δ .
- Binary symbol ^a for fuzzy equality between objects.
- Logical (truth) constants \top (true) and \bot (false).
- Quantifiers \forall , \exists .
- Auxiliary symbols: brackets.

Syntax

Terms

Object variables and object constants are terms.

Formulas

- If P is an n-ary predicate symbol and t_1, \ldots, t_n are terms then $P(t_1, \ldots, t_n)$ and $t_1 \stackrel{\circ}{=} t_2$ are atomic formulas.
- Logical constants ⊤ and ⊥ are formulas.
- If A, B are formulas then $A \wedge B, A \vee B, A \& B, A \equiv B, \Delta A$ are formulas.
- If A is formula and x is an object variable then $(\forall x)A$, $(\exists x)A$ are formulas.

Semantics

Structure for language J

$$\mathcal{M}^{\mathcal{E}} = \langle (M, \doteq), \mathcal{E}, \{r_P\}_{P \in \mathsf{Pred}}, \{f_M\}_{f \in \mathsf{Func}}, \{m_{\mathbf{u}}\}_{\mathbf{u} \in \mathsf{Const}} \rangle$$

 \doteq is a fuzzy equality on M,

 $\mathcal{E} = \langle E, \wedge, \vee, \otimes, \sim, \Delta, \mathbf{0}, \mathbf{1} \rangle$ is a non-commutative linearly ordered $\ell E Q_{\Delta}$ -algebra,

 $r_P: M^n \longrightarrow E$ is n-ary weakly extensional relation,

 $f_M: M^n \longrightarrow M$ is n-ary weakly extensional function,

 $m_u \in M$.

Interpretation of terms and formulas

v — assignment of elements from M to variables $\mathcal{M}_{v}^{\mathcal{E}}(x) = v(x), \mathcal{M}_{v}^{\mathcal{E}}(\mathbf{u}) = m_{u},$ $\mathcal{M}_{v}^{\mathcal{E}}(f(t_{1}, \dots, t_{p})) = f_{M}(\mathcal{M}_{v}^{\mathcal{E}}(t_{1}), \dots, \mathcal{M}_{v}^{\mathcal{E}}(t_{p}))$

$$\mathcal{M}_{v}^{\mathcal{E}}(P(t_{1},\ldots,t_{n})) = r_{P}(\mathcal{M}^{\mathcal{E}}(t_{1}),\ldots,\mathcal{M}^{\mathcal{E}}(t_{n})),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(t_{1} \stackrel{.}{=} t_{2}) = \mathcal{M}_{v}^{\mathcal{E}}(t_{1}) \stackrel{.}{=} \mathcal{M}_{v}^{\mathcal{E}}(t_{2}),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(A \wedge B) = \mathcal{M}_{v}^{\mathcal{E}}(A) \wedge \mathcal{M}_{v}^{\mathcal{E}}(B),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(A \vee B) = \mathcal{M}_{v}^{\mathcal{E}}(A) \vee \mathcal{M}_{v}^{\mathcal{E}}(B),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(A \& B) = \mathcal{M}_{v}^{\mathcal{E}}(A) \otimes \mathcal{M}_{v}^{\mathcal{E}}(B),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(A \equiv B) = \mathcal{M}_{v}^{\mathcal{E}}(A) \sim \mathcal{M}_{v}^{\mathcal{E}}(B),$$

$$\mathcal{M}_{v}^{\mathcal{E}}(\Delta A) = \Delta \mathcal{M}_{v}^{\mathcal{E}}(A), \mathcal{M}_{v}^{\mathcal{E}}(\top) = \mathbf{1}, \mathcal{M}_{v}^{\mathcal{E}}(\bot) = \mathbf{0},$$

$$\mathcal{M}_{v}^{\mathcal{E}}((\forall x)A) = \inf\{\mathcal{M}_{v'}^{\mathcal{E}}(A) \mid v' = v \setminus x\},$$

$$\mathcal{M}_{v}^{\mathcal{E}}((\exists x)A) = \sup\{\mathcal{M}_{v'}^{\mathcal{E}}(A) \mid v' = v \setminus x\}.$$

Logical Axioms

```
(EQ1)–(EQ15), (EQ\Delta1-EQ\Delta8) plus
```

```
(EQ\forall1) (\forall x)A(x) \Rightarrow A(t) (t substituable for x in A(x)),

(EQ\exists1) A(t) \Rightarrow (\exists x)A(x) (t substituable for x in A(x)),

(EQ\forall2) \Delta(\forall x)(A \Rightarrow B) \Rightarrow (A \Rightarrow (\forall x)B) (x not free in A),

(EQ\exists2) (\forall x)(A \Rightarrow B) \Rightarrow ((\exists x)A \Rightarrow B) (x not free in x),

(EQ\Rightarrow3) (\forall x)(A \lor B) \Rightarrow ((\forall x)A \lor B) (x not free in x),
```


Logical Axioms (continued)

```
(EQE1) t \stackrel{\circ}{=} t,

(EQE2) (s \stackrel{\circ}{=} t) \equiv (t \stackrel{\circ}{=} s),

(EQE3) (r \stackrel{\circ}{=} s) \& (s \stackrel{\circ}{=} t) \Rightarrow (r \stackrel{\circ}{=} t),

(EQE4) (s \stackrel{\circ}{=} t) \& (r \stackrel{\circ}{=} s) \Rightarrow (r \stackrel{\circ}{=} t),

(EQE5) \Delta(t_1 \stackrel{\circ}{=} s_1) \Rightarrow (\dots \Rightarrow (\Delta(t_n \stackrel{\circ}{=} s_n) \Rightarrow (f(t_1, \dots, t_n) \stackrel{\circ}{=} f(s_1, \dots, s_n)) \dots)),

(EQE6) \Delta(t_1 \stackrel{\circ}{=} s_1) \Rightarrow (\dots \Rightarrow (\Delta(t_n \stackrel{\circ}{=} s_n) \Rightarrow (P(t_1, \dots, t_n) \equiv P(s_1, \dots, s_n)) \dots)).
```

Inference Rules

- Equanimity rule
- Leibniz rule

From
$$A \equiv B$$
 infer $C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]$, provided that \mathbf{p} is not in the scope of a quantifier in C .

- Necessitation rule
- Rule of Generalization

From A infer
$$(\forall x)A$$

Model

Definition

Structure $\mathcal{M}^{\mathcal{E}}$ is a model of a theory T if $\mathcal{M}_{\nu}^{\mathcal{E}}(A) = \mathbf{1}$ holds for all axioms A of T.

Theorem (Soundness)

If $T \vdash A$ then $\mathcal{M}_{v}^{\mathcal{E}}(A) = \mathbf{1}$ holds for every assignment v and every model $\mathcal{M}^{\mathcal{E}}$ of T.

Main properties

Lemma

(i)
$$\vdash (\forall x)(A \Rightarrow B) \equiv (A \Rightarrow (\forall x)B)$$
, x not free in A

(ii)
$$\vdash (\forall x)(B \Rightarrow A) \equiv ((\exists x)B \Rightarrow A)$$
, x not free in A

(iii)
$$\vdash \Delta(\forall x)(A \Rightarrow B) \Rightarrow ((\forall x)A \Rightarrow (\forall x)B)$$

(iv)
$$\vdash (\forall x)(A \Rightarrow B) \Rightarrow ((\exists x)A \Rightarrow (\exists x)B)$$

Theorem (Deduction)

For each theory T, closed formulas A, B and arbitrary formula C:

$$T \cup \{A \equiv B\} \vdash C \quad iff \quad T \vdash \Delta(A \equiv B) \Rightarrow C.$$

Completeness

Definition

- (i) Theory T is consistent if there is a formula A unprovable in T.
- (ii) T is linear (complete) if for every two formulas A, B, $T \vdash A \Rightarrow B$ or $T \vdash B \Rightarrow A$.
- (iii) T is extensionally complete if for every closed formula $(\forall x)(A(x) \equiv B(x)), T \not\vdash (\forall x)(A(x) \equiv B(x))$ there is a constant \mathbf{u} such that $T \not\vdash (A_x[\mathbf{u}] \equiv B_x[\mathbf{u}])$

Completeness

Theorem

Every consistent theory T can be extended to a maximally consistent linear theory.

Theorem

Every consistent theory T can be extended to an extensionally complete consistent theory T.

Completeness

Theorem (Completeness)

- (a) A theory T is consistent iff it has a safe model \mathcal{M} .
- **(b)** $T \vdash A$ iff $T \models A$

Outline

- Motivation
- 2 EQ-algebras
- Propositional EQ-logics
 - Basic EQ-logic
 - Extensions
 - Prelinear EQ_△-logic
- Predicate EQ-logic
- Conclusion

Conclusion

- Formal system of predicate EQ-logic with fuzzy equality in which equivalence is the main connective.
- Δ-connective (deduction theorem) is indispensable for development of the first-order EQ-logic.
- Truth structure (ℓEQ_{Δ} -algebra) must be linearly ordered.

Thank you for your attention.