The General Nilpotent System

József Dombi^{1,2} Orsolya Csiszár ¹

¹Óbuda University, Budapest, Hungary

²University of Szeged, Hungary

FSTA, Liptovský Ján, 2014

The General Nilpotent System

OUTLINE

MOTIVATION AND BACKGROUND

BASIC PRELIMINARIES

- Negations
- Triangular norms and conorms
- Nilpotent operators

3 Connective Systems

- Notations
- Consistency

1 Results

- Bounded Systems
- Examples

Motivation and background

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

NILPOTENT CONNECTIVE SYSTEMS

FUZZY SET THEORY

Proper choice of fuzzy connectives

NILPOTENT OPERATORS

Nilpotent t-norms and t-conorms: preferable properties

Operators – **Systems**

Instead of pure operators, we examine connective SYSTEMS

OUR RESULTS

Consistent nilpotent connective systems which are **not** isomorphic to Łukasiewicz system

Basic preliminaries

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

NEGATIONS

DEFINITION

A decreasing function $n(x) : [0,1] \rightarrow [0,1]$ is a fuzzy negation, if n(0) = 1and n(1) = 0.

DEFINITION

A fuzzy negation is

strict, if it is strictly decreasing and continuous

• strong, if it is involutive, i.e. n(n(x)) = x for $\forall x \in [0, 1]$.

TRILLAS' THEOREM

n(x) is a strong negation if and only if

$$n(x) = f_n(x)^{-1}(1 - f_n(x)),$$

where $f_n(x): [0,1] \rightarrow [0,1]$ is continuous and strictly increasing.

TRIANGULAR NORMS AND CONORMS (Schweizer and Sklar, 1960)

T-NORM T (CONJUNCTION)

A t-norm T is a function on $[0,1]^2$ that satisfies, for all $x, y, z \in [0,1]$:

- T(x,1) = x (neutral element 1);
- $x \le y \Rightarrow T(x,z) \le T(y,z)$ (monotonicity);
- T(x, y) = T(y, x) (commutativity);
- T(T(x,y),z) = T(x,T(y,z)) (associativity).

T-CONORM S (DISJUNCTION)

• S(x,0) = x (neutral element 0) plus the other three properties above.

イロト イポト イヨト イヨト 二日

Representable T-norms and T-conorms

A continuous t-norm T is said to be

- Archimedean if T(x,x) < x holds for all $x \in (0,1)$,
- strict if T is strictly monotone i.e. T(x, y) < T(x, z) whenever $x \in [0, 1]$ and y < z, and
- nilpotent if there exist $x, y \in (0, 1)$ such that T(x, y) = 0.

A continuous t-conorm S is said to be

- Archimedean if S(x,x) > x holds for every $x, y \in (0,1)$,
- strict if S is strictly monotone i.e. S(x, y) < S(x, z) whenever $x \in [0, 1]$ and y < z, and
- nilpotent if there exist $x, y \in (0, 1)$ such that S(x, y) = 1.

(D) (A) (A) (A) (A)

Additive generators

A function $T : [0,1]^2 \rightarrow [0,1]$ is a continuous Archimedean t-norm iff it has a continuous additive generator, i.e. there exists a continuous strictly decreasing function $t : [0,1] \rightarrow [0,\infty]$ with t(1) = 0, which is uniquely determined up to a positive multiplicative constant, such that

$$T(x,y) = t^{-1}(\min(t(x) + t(y), t(0)), \quad x, y \in [0,1].$$
 (1)

A function $S : [0,1]^2 \rightarrow [0,1]$ is a continuous Archimedean t-conorm iff it has a continuous additive generator, i.e. there exists a continuous strictly increasing function $s : [0,1] \rightarrow [0,\infty]$ with s(0) = 0, which is uniquely determined up to a positive multiplicative constant, such that

$$S(x,y) = s^{-1}(\min(s(x) + s(y), s(1))), \quad x, y \in [0,1].$$

(2)

Additive generators

A t-norm T is strict if and only if $t(0) = \infty$.

A t-norm T is nilpotent if and only if $t(0) < \infty$.

A t-conorm S is strict if and only if $s(1) = \infty$.

A t-conorm S is nilpotent if and only if $s(1) < \infty$.

NILPOTENT OPERATORS

PREFERABLE PROPERTIES

$$\cong T_L(x,y) = \max(x+y-1,0)$$

$$\cong S_L(x,y) = \min(x+y,1)$$

Law of contradiction c(x, n(x)) = 0

Excluded middle d(x, n(x)) = 1

Coincidence of residual and S-implications

CSISZAR.ORSOLYA@NIK.UNI-OBUDA.HU

The General Nilpotent System

FSTA, 2014 11 /

NOTATIONS

Normalized generator functions - uniquely determined

$$f_c(x) := \frac{t(x)}{t(0)}, \qquad f_d(x) := \frac{s(x)}{s(1)}.$$

$$f_c(x), f_d(x), f_n(x) : [0,1] \to [0,1].$$

CUTTING OPERATION

$$[x] = \begin{cases} 0 & if \quad x < 0 \\ x & if \quad 0 \le x \le 1 \\ 1 & if \quad 1 < x \end{cases}$$

SISZAR.ORSOLYA@NIK.UNI-OBUDA.HU

CUTTING FUNCTION

$$c(x, y) = f_c^{-1}[f_c(x) + f_c(y)]$$

$$d(x, y) = f_d^{-1}[f_d(x) + f_d(y)]$$

$$Min(x, y) = f_c^{-1} \left[f_c(x) + \left[f_c(y) - f_c(x) \right] \right]$$

 $Max(x, y) = n \left(f_c^{-1} \left[f_c(n(x)) + \left[f_c(n(y)) - f_c(n(x)) \right] \right] \right)$

$$T_L(x, y) = [x + y - 1]$$
$$S_L(x, y) = [x + y]$$

CSISZAR.ORSOLYA@NIK.UNI-OBUDA.HU

The General Nilpotent System

FSTA, 2014 13 /

Connective Systems

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

CONNECTIVE SYSTEMS

• strong negation n(x)

FSTA, 2014

- conjunction c(c, y)
- disjunction d(x, y)

DEFINITION

The triple (c(x, y), d(x, y), n(x)), where c(x, y) is a t-norm, d(x, y) is a t-conorm and n(x) is a strong negation, is called a connective system.

DEFINITION

A connective system is nilpotent, if the conjunction is a nilpotent t-norm, and the disjunction is a nilpotent t-conorm.

DEFINITION

Two connective systems $(c_1(x, y), d_1(x, y), n_1(x))$ and $(c_2(x, y), d_2(x, y), n_2(x))$ are isomorphic, if there exists a bijection $\phi : [0, 1] \rightarrow [0, 1]$ such that

$$\phi^{-1} (c_1 (\phi(x), \phi(y))) = c_2(x, y)$$

$$\phi^{-1} (d_1 (\phi(x), \phi(y))) = d_2(x, y)$$

$$\phi^{-1} (n_1 (\phi(x))) = n_2(x)$$

DEFINITION

A connective system is called Łukasiewicz system, if it is isomorphic to ([x + y - 1], [x + y], 1 - x), i.e. it has the form $(\phi^{-1}[\phi(x) + \phi(y) - 1], \phi^{-1}[\phi(x) + \phi(y)], \phi^{-1}[1 - \phi(x)])$.

CONSISTENCY OF CONNECTIVE SYSTEMS

CLASSIFICATION PROPERTY:

Iaw of contradiction:

c(x,n(x))=0,

• excluded middle:

d(x,n(x))=1.

DE MORGAN LAWS:

$$c(n(x), n(y)) = n(d(x, y))$$

or

$$d(n(x), n(y)) = n(c(x, y)).$$

IS IT SENSIBLE TO USE MORE THAN ONE GENERATOR FUNCTIONS?

SZAR.ORSOLYA@NIK.UNI-OBUDA.HU THE GENERAL NILPOTENT SYSTEM

FSTA, 2014 18 / 30

Results

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

NILPOTENT CONNECTIVE SYSTEMS

Among nilpotent systems,

Lukasiewicz connective system (T_L , S_L , standard negation) is characterized by $f_c(x) + f_d(x) = 1$, $\forall x \in [0, 1]$.

For $f_c(x) + f_d(x) < 1$, $\forall x \in [0, 1]$: the system is not consistent.

For $f_c(x) + f_d(x) > 1, \forall x \in [0, 1]$: BOUNDED SYSTEMS

BOUNDED SYSTEMS

THREE DIFFERENT NEGATIONS

 $n_d(x) = f_d^{-1}(1 - f_d(x)) < n(x) < n_c(x) = f_c^{-1}(1 - f_c(x)).$

$$f_c(x) + f_d(x) = 1 \Leftrightarrow n_c(x) = n(x) = n_d(x)$$

CONSISTENCY

THEOREM

In a connective structure the classification property holds if and only if

 $n_d(x) \leq n(x) \leq n_c(x), \quad \forall x \in [0,1].$

CONSISTENCY

THEOREM

In a connective structure the classification property holds if and only if

$$n_d(x) \leq n(x) \leq n_c(x), \quad \forall x \in [0,1].$$

Theorem

In a connective system the De Morgan law holds if and only if

$$n(x) = f_c^{-1}(f_d(x)) = f_d^{-1}(f_c(x)), \quad \forall x \in [0, 1].$$

CONSISTENCY

- If c(x, y), d(x, y) and n(x) fulfil the De Morgan identity and the classification property (i.e. they form a consitent system), then $f_c(x) + f_d(x) \ge 1$, $\forall x \in [0, 1]$.
- If f_c(x) + f_d(x) ≥ 1, ∀x ∈ [0,1] and the De Morgan law holds, then the classification property also holds (which now means that the system is consistent).

EXAMPLE FOR $f_c(x) + f_d(x) > 1$

For $f_c(x) := 1 - x^{\alpha}$, $f_d(x) := 1 - (1 - x)^{\alpha}$, n(x) := 1 - x, $\alpha \in (1, \infty)$.

• the connective system is consistent,

•
$$f_c(x) + f_d(x) > 1$$
, $\forall x \in [0, 1]$
(or equivalently $n_d(x) < n(x) < n_c(x)$, $\forall x \in [0, 1]$).

RATIONAL GENERATORS

For the Dombi functions (from 'pliant systems')

$$f_n(x) = \frac{1}{1 + \frac{\nu}{1 - \nu} \frac{1 - x}{x}}$$
$$f_c(x) = \frac{1}{1 + \frac{\nu_c}{1 - \nu_c} \frac{x}{1 - x}}$$
$$f_d(x) = \frac{1}{1 + \frac{\nu_d}{1 - \nu_d} \frac{1 - x}{x}}$$

the following statements are equivalent:

The connective structure defined by the Dombi functions satisfies the De Morgan law.

$$\left(\frac{1-\nu}{\nu}\right)^2 = \frac{\nu_c}{1-\nu_c}\frac{1-\nu_d}{\nu_d}$$

(2)

EXAMPLES

RATIONAL GENERATORS

For the Dombi functions (from 'pliant systems')

$$f_n(x) = \frac{1}{1 + \frac{\nu}{1 - \nu} \frac{1 - x}{x}}$$
$$f_c(x) = \frac{1}{1 + \frac{\nu_c}{1 - \nu_c} \frac{x}{1 - x}}$$
$$f_d(x) = \frac{1}{1 + \frac{\nu_d}{1 - \nu_d} \frac{1 - x}{x}}$$

the following statements are equivalent:

•
$$n_d(x) < n(x) < n_c(x)$$

• Given that the De Morgan property holds, $f_c(x) + f_d(x) > 1$, or equivalently $\nu_c + \nu_d < 1$.

EXAMPLES

EXAMPLES RATIONAL GENERATORS

 $\nu_c = 0.4$ and $\nu_d = 0.2$

Conclusion and further work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CONCLUSION AND FURTHER WORK

• Consistent nilpotent connective systems using more than one generator functions (not new operators, new system)

$$f_c(x) + f_d(x) > 1$$

$$n_d(x) < n(x) < n_c(x)$$

- 2 naturally derived thresholds (ν_c, ν_d)
- Further work: implication, equivalence

Conclusion and further work

THANK YOU FOR YOUR ATTENTION!

"Life is like riding a bicycle. To keep your balance you must keep moving." /Einstein/

CSISZAR.ORSOLYA@NIK.UNI-OBUDA.HU

The General Nilpotent System

FSTA, 2014 30 / 30