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Introduction and motivation

Topology, Uni

Three important general topology structures:

Topological spaces
Topology: T C 2X such that
Q0XeT,
QU VeT=UnNnVeT,
Q Uemliel=J;UeT
(X, T) is called topological space.
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Topology, Unif

Proximity spaces

Proximity: & C 2X x 2X such that

Q (0.X)g46

Q (A B)cd s (B,A) s,

Q@ (ABuUC)cd+ (A Bycdor(AC)cs

Q (A B)¢ésthen3C,D: (A C) ¢4, (B,D)¢sand
CuD=X.

(X, 9) is called proximity space.
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Introduction and motivati

text 1t

Topology, Unifc

V c X x X an entourage of diagonal,if Ac Vand V = -V,
where A = {(x,x): x € X} and -V = {(x,y) : (y,x) € V}.
Dy family of all entourages of the diagonal.
Uniform space
Uniformity: & C Dx such that

Q@ lfVecldandVcCc We Dy, then Welu

Q IfVy,VocU,thenViNnVoclU

© Forevery V € U exists W € U such that 2W c V

Q NuU=A.

(X,U) is called uniform space.
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Introduction and motivation

Syntopogeneo

Motivation

Syntopogeneous structure is a concept which allows to develop
a unified approach to all three topological structures:
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Syntopogeneo

Motivation

Syntopogeneous structure is a concept which allows to develop
a unified approach to all three topological structures:

@ Topological spaces (open sets, closed sets, closure, limit
points, neighbourhood of point and so on)

@ Proximity spaces (as nearness structure)

@ Uniform spaces (as uniformity type properties in metric
spaces)

Syntopogeneous structures were introduced by A. Csaszar in
1963.
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Introduction and motivation

Syntopogeneo

Situation in fuzzy Topology

In fuzzy topology we have developed theories of
@ Fuzzy topologies;
@ Fuzzy proximities;
© Fuzzy uniformities

Problem

Find the appropriate concepts for fuzzy syntopogeneous
structures.
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Introduction and motivation

Syntopogene

Syntopogeneous structures in fuzzy Topology

@ First time introduced by A.K.Katsaras and C.G.Petalas in
1983. Concept: [0,1]X x [0,1]X — {0,1}
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Introduction and motivation

Syntopogene

Syntopogeneous structures in fuzzy Topology
@ First time introduced by A.K.Katsaras and C.G.Petalas in
1983. Concept: [0,1]X x [0,1]X — {0,1}
@ Expanded by A.Sostaks 1997. Concept:
[0,1]X x [0,1]X — [0, 1]
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Introduction and motivation

Syntopogene

Syntopogeneous structures in fuzzy Topology

@ First time introduced by A.K.Katsaras and C.G.Petalas in
1983. Concept: [0,1]X x [0,1]X — {0,1}

@ Expanded by A.Sostaks 1997. Concept:
[0,1]% x [0,1]X — [0, 1]

@ Our object: LX x LX — L, where L complete lattice
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Topogeneous ¢

Topogeneous order

Topogeneous order on a set X is a relation ¢ on it powerset 2X
such that

(0,0),(X,X)eo

If M C Mand N C N and (M, N) € o then (M',N') € o.

If (M,N) € othen MCN

(MyUMs,N) € 0 <= (My,N),(Mz,N) € o

(M, N N N2) € o< (M, N1),(/\/I7 Ng) co

e 6 6 o
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Context and tools

Syntopogenec

Syntopogeneous structures

A family S of topogeneous orders on a set X is called a
syntopogeneous structure if
@ Sis directed, that is
01,00 € S = do € S such that o4 Uos C o;
Q@ Vo € S3o’ € Ssuchthato' oo’ Do,
where (M, N) € o4 o 0, if 3P € 2X such that (M, P) € o4
and (P, N) € o».
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Context and tools

Approach to t

How to define fuzzy semi-topogeneous order

L-fuzzy semi-topogeneous order on a set X is a L-fuzzy relation
o onits L powerset LX, thatis o : LX x LX — L such that

@ 0(0,,0) =0(1.,1) =1,
o If M < Mand N < N then o(M, N) < o(M’, N).
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Context and tools

How to define fuzzy semi-topogeneous order

L-fuzzy semi-topogeneous order on a set X is a L-fuzzy relation
o onits L powerset LX, thatis o : LX x LX — L such that

@ 0(0,,0) =0(1.,1) =1,
o If M < Mand N < N then o(M, N) < o(M’, N).
o If o(M, N) then MEN

@ As the substitute for the last property we take

MEN = inf (M(x) — N(x)) =: M3N

xeX

where — is an implicator on L
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Context and tools

Implicator

Different authors axiomatize different properties for implicator.
For our merits we take the following axioms for — L x L — L:
@ ayVa— b= (a— b)A(a— b);
@ a— by Ang(al—)b1)/\(a'—>b2);
@ 0— a=1, forevery a € L (left boundary condition);
@ 1— a=aforevery a c L (left neutrality)
@ (a—0)—(b—0)=b— a
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Context and tools

Implicator

Different authors axiomatize different properties for implicator.
For our merits we take the following axioms for — L x L — L:

@ ayVa— b= (a— b)A(a— b);

@ a— by Ang(al—)b1)/\(a'—>b2);

@ 0— a=1, forevery a € L (left boundary condition);

@ 1— a=aforevery a c L (left neutrality)

@ (a—0)—(b—0)=b— a
Remark: Note that properties (1)and (2) are stronger version of
a+— bis non-increasing on the first argument and a+— b is
non-decreasing on the second argument.
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Context and tools

Implicator

Different authors axiomatize different properties for implicator.
For our merits we take the following axioms for — L x L — L:

@ ayVa— b= (a— b)A(a— b);

@ a—biANb=(a— by)A(a— br);

@ 0— a=1, forevery a € L (left boundary condition);

@ 1+— a= aforevery a e L (left neutrality)

@ (a—0)—(b—0)=b—a
Remark: Note that properties (1)and (2) are stronger version of
a+— bis non-increasing on the first argument and a+— b is
non-decreasing on the second argument.
Remark: From (5) and (4) we have the following important
double negation property: (a+ 0) — 0 = afor every a € L.
Thus a — 0 is an order reversing involution and we write
a®=a~—0.
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

Thus let X be a set, L a complete lattice and +—: L x L — L

Semi-topogeneous order on a set X is a L-fuzzy relation o on
its L-powerset LX, that is o : LX x LX — L such that

(1t0) J(OL,OL)) = U(1L, 1L) = 1L
(2to) If M' < M and N < N’ then o(M, N) < o(M’, N').
(3to) o(M, N) < MIN.
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

Special proy

@ Fuzzy semi-topogeneous order is called topogeneous if
(4t0) o(My v Mz, N) = o(MyN) A o(Ms, N).
(5t0) o(M, Ny A No) = o(M, Ny) A o(M, Ny)

@ Fuzzy topogeneous order is called perfect if
(6to) a(\V; M, N) = A\, o(M;, N).

@ Fuzzy topogeneous order is called biperfect if it is perfect
and

(7t0) o(M, \; Ni) = N\io(M, N;)
@ Fuzzy semitopogeneous order is called symmetric if
(8to) o(M,N) = o (N°, M°)
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy synto

Definition
An L-fuzzy syntopogeneous structure on a set X is a family S of
L-fuzzy topogeneous orders on X such that

@ S is directed, that is given two L-fuzzy topogeneous orders
01,02 € S there exists ¢ € S such that o1 V 0o < 0}

@ For every o € S there exists ¢/ € S such that 0 < ¢/ 0 ¢/,
where o1 0 g2 = {\/(01(M, P) A oo(P, N) : P € LX}.

(X,S) is called syntopogeneous space.

Dace Cimoka and Aleksandrs Sostak On M-valued L-fuzzy syntopogenous structures



Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy topos
semi-topoge

Proposition

Let M, N € LX be L-fuzzy semi-topogeneous order o on X, let a
mapping o : LX x LX — L be defined by the equality

m n
oT(M,N) = sup{ \ o(M;,N;) : \/ M; = M, A\ N; = N}.
i.j =1 j=1

Then o7 is an L-fuzzy topogeneous order.
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy topog
semi-topoge

Proposition

Let M, N € LX be L-fuzzy semi-topogeneous order o on X, let a
mapping o : LX x LX — L be defined by the equality

m n
oT(M,N) = sup{ \ o(M;,N;) : \/ M; = M, A\ N; = N}.
i.j =1 j=1

Then o7 is an L-fuzzy topogeneous order.

Similary perfect and biperfect topogeneous orders can be obtained
from topogeneous orders.
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy topolo
orders

Theorem
Let o : LX x LX — L be a perfect topogeneous fuzzy order. Then the
mapping : 7 : LX — L defined by

To(M) = (M, M), M € L

is an L-fuzzy topology.
Conversely, given an L-fuzzy topology 7 : LX — L on X, the mapping
o7 LX x LX — L defined by the equality

or(M,N) = \/{T(P): M < P<N,PeL"}

is a perfect topogeneous fuzzy order. Besides 7, =T and o7, =0
for every L-fuzzy topology 7 and every perfect L-fuzzy topogeneous
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy proxi
topogeneous ¢

Theorem
Let o : LX x LX — L be a symmetric L-fuzzy topogeneous order on X.
Then the mapping d,, : LX x LX — L defined by

5(A,B) = (A, B%) 5 0

is an L-fuzzy proximity on X. Conversely, let 6 : LX x X — L be an
L-fuzzy proximity. Then with following equality we gain

o(A, B) = 6(A, B°) > 0

a symmetric L-fuzzy topogeneous order on X. Besides 4,, = ¢ and
o5, = o for every symmetric L-fuzzy topogeneous order o and for any
L-fuzzy proximity .
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Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Fuzzy syntopogeneous structures

L-fuzzy unifor
topogeneous ¢

Theorem

To every biperfect L-fuzzy topogeneous order o on X there
corresponds an element U, € Dy defined by

Us(A,a) = \{B|o(A B) > a}.

Conversely, to every U there corresponds a biperfect L-fuzzy
topogeneous order defined by

ou(A,B) =\/{a | U(A ) < B}.

Moreover, U,, = U and o, = o for each biperfect L-fuzzy
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Introduction and motivation
Con nd tools
Fuzzy syntopogeneous structures L-fuzzy topologies and perfect L-fuzzy topogeneous orders

Contrapositive simmetry of implicator
Conclusion

Problem
From contrapositive simmetry

@ (a—0)—(b—0)=b—a
and left neutrality

@ 1—a=aforeveryaclL
follows double negation law

@ (a—0)—~0=aforeveryaclL

that could be too restrictive

We have to ask...

What is the influence of this property in syntopogeneous
structures theory?
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders
Contrapositive simmetry of implicator

Let X be a set, L a complete lattice and +: L x L — L

Semi-topogeneous order on a set X is a L-fuzzy relation o on
its L-powerset LX, that is o : LX x LX — L such that

(1t0) J(OL,OL)) = U(1L, 1L) = 1L
(2to) If M' < M and N < N’ then o(M, N) < o(M’, N').
(3to) o(M, N) < MIN.
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders
Contrapositive simmetry of implicator
Conclusion

L-fuzzy syntop

Definition
An L-fuzzy syntopogeneous structure on a set X is a family S of
L-fuzzy topogeneous orders on X such that

@ S is directed, that is given two L-fuzzy topogeneous orders
01,02 € S there exists ¢ € S such that o1 V 0o < 0}

@ For every o € S there exists ¢/ € S such that 0 < ¢/ 0 ¢/,
where o1 0 g2 = {\/(01(M, P) A oo(P, N) : P € LX}.

(X,S) is called syntopogeneous space.
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders
Contrapositive simmetry of implicator

L-fuzzy topog
semi-topoge

Proposition

Let M, N € LX be L-fuzzy semi-topogeneous order o on X, let a
mapping o : LX x LX — L be defined by the equality

m n
oT(M,N) = sup{ \ o(M;,N)) : \/ M; = M, A\ N; = N}.
i.j =1 j=1

Then o7 is an L-fuzzy topogeneous order.
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders
metry of implicator
Conclusion

Theorem

Let o : LX x LX — L be a perfect topogeneous fuzzy order. Then the
mapping : 7 : LX — L defined by

To(M) = o(M, M), M € L

is an L-fuzzy topology.
Conversely, given an L-fuzzy topology 7 : LX — L on X, the mapping
o7 LX x LX — L defined by the equality

or(M,N) = \/{T(P): M < P<N,PeL"}

is a perfect topogeneous fuzzy order. Besides 7, =T and o7, =0
for every L-fuzzy topology 7 and every perfect L-fuzzy topogeneous
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Context and to

Conclusion

Work in progre
symmetric topc

L-fuzzy proximity

Let L be a completely distributive lattice with implicator —: L x L — L.
A mapping d : LX x LX — Lis called an L-fuzzy proximity on X if it
satisfies the following conditions:

(FP1) d(0x,1x) = 0;

(FP2) d(A,B) =d(B, A);

(FP3) d(A,BV C)=d(A,B)VvdA,C);

(FP4) d(A,B) > (A — B°)¢;

(FP5) d(A,B) > inf{d(A,E)V d(B, E°) | E € LX}.

The pair (X, d) is called an L-fuzzy proximity space.

Dace Cimoka and Aleksandrs Sostak On M-valued L-fuzzy syntopogenous structures



Some directi

@ To study relation between L-fuzzy uniformities and L-fuzzy
biperfect topogeneous orders in case without
contrapositive symmetry.

@ To develop the asymmetric version of the concept of a
syntopogenous structure and to work out the
corresponding theory.

@ To study categorical properties of the category of L-fuzzy
syntopogenous spaces and its relations with different
subcategories.

@ To define and to study (L, M)-syntopogenous structures,
that is when (semi-)topogeneous orders are defined on the
L-powersets of a set X and take their values in, probably, a
different lattice M.
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Conclusion

Thank you for your attention!
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