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Topology, Uniformity and Proximity

Three important general topology structures:

Topological spaces

Topology: T ⊆ 2X such that
1 ∅,X ∈ T ;

2 U,V ∈ T ⇒ U ∩ V ∈ T ;

3 Ui ∈ T∀i ∈ I ⇒
⋃

i Ui ∈ T
(X ,T ) is called topological space.
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Topology, Uniformity and Proximity

Proximity spaces

Proximity: δ ⊆ 2X × 2X such that
1 (∅,X ) 6∈ δ
2 (A,B) ∈ δ ⇐⇒ (B,A) ∈ δ;

3 (A,B ∪ C) ∈ δ ⇐⇒ (A,B) ∈ δ or (A,C) ∈ δ
4 (A,B) 6∈ δ then ∃C,D: (A,C) 6∈ δ, (B,D) 6∈ δ and

C ∪ D = X .
(X , δ) is called proximity space.
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Topology, Uniformity and Proximity

V ⊂ X × X an entourage of diagonal, if ∆ ⊂ V and V = −V ,
where ∆ = {(x , x) : x ∈ X} and −V = {(x , y) : (y , x) ∈ V}.
DX family of all entourages of the diagonal.

Uniform space
Uniformity: U ⊆ DX such that

1 If V ∈ U and V ⊂W ∈ DX , then W ∈ U
2 If V1,V2 ∈ U , then V1 ∩ V2 ∈ U
3 For every V ∈ U exists W ∈ U such that 2W ⊂ V
4

⋂
U = ∆.

(X ,U) is called uniform space.
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Syntopogeneous structures in Topology

Motivation
Syntopogeneous structure is a concept which allows to develop
a unified approach to all three topological structures:

Topological spaces (open sets, closed sets, closure, limit
points, neighbourhood of point and so on)
Proximity spaces (as nearness structure)
Uniform spaces (as uniformity type properties in metric
spaces)

Syntopogeneous structures were introduced by A. Csaszar in
1963.
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Syntopogeneous structures in Topology

Situation in fuzzy Topology
In fuzzy topology we have developed theories of

1 Fuzzy topologies;
2 Fuzzy proximities;
3 Fuzzy uniformities

Problem
Find the appropriate concepts for fuzzy syntopogeneous
structures.
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Syntopogeneous structures in Topology

Syntopogeneous structures in fuzzy Topology

First time introduced by A.K.Katsaras and C.G.Petalas in
1983. Concept: [0,1]X × [0,1]X → {0,1}
Expanded by A.Šostaks 1997. Concept:
[0,1]X × [0,1]X → [0,1]

Our object: LX × LX → L, where L complete lattice

Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures



Introduction and motivation
Context and tools

Fuzzy syntopogeneous structures
Contrapositive simmetry of implicator

Conclusion

Syntopogeneous structures in Topology

Syntopogeneous structures in fuzzy Topology

First time introduced by A.K.Katsaras and C.G.Petalas in
1983. Concept: [0,1]X × [0,1]X → {0,1}
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Topogeneous orders (in crisp case)

Topogeneous order

Topogeneous order on a set X is a relation σ on it powerset 2X

such that
(∅, ∅), (X ,X ) ∈ σ
If M ′ ⊆ M and N ⊆ N ′ and (M,N) ∈ σ then (M ′,N ′) ∈ σ.
If (M,N) ∈ σ then M ⊆ N
(M1 ∪M2,N) ∈ σ ⇐⇒ (M1,N), (M2,N) ∈ σ.
(M,N1 ∩ N2) ∈ σ ⇐⇒ (M,N1), (M,N2) ∈ σ.
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Syntopogeneous structures

Syntopogeneous structures
A family S of topogeneous orders on a set X is called a
syntopogeneous structure if

1 S is directed, that is
σ1, σ2 ∈ S =⇒ ∃σ ∈ S such that σ1 ∪ σ2 ⊆ σ;

2 ∀σ ∈ S ∃σ′ ∈ S such that σ′ ◦ σ′ ⊇ σ,
where (M,N) ∈ σ1 ◦ σ2, if ∃P ∈ 2X such that (M,P) ∈ σ1
and (P,N) ∈ σ2.
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Approach to the fuzzy version

How to define fuzzy semi-topogeneous order
L-fuzzy semi-topogeneous order on a set X is a L-fuzzy relation
σ on its L powerset LX , that is σ : LX × LX → L such that

σ(0L,0L) = σ(1L,1L) = 1L

If M ′ ≤ M and N ≤ N ′ then σ(M,N) ≤ σ(M ′,N ′).
If σ(M,N) then M⊆̃N

As the substitute for the last property we take

M⊆̃N = inf
x∈X

(M(x) 7→ N(x)) =: MIN

where 7→ is an implicator on L
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Implicator

Different authors axiomatize different properties for implicator.
For our merits we take the following axioms for 7→ L× L→ L:

a1 ∨ a2 7→ b = (a1 7→ b) ∧ (a2 7→ b);
a 7→ b1 ∧ b2 = (a 7→ b1) ∧ (a 7→ b2);
0 7→ a = 1L for every a ∈ L (left boundary condition);
1 7→ a = a for every a ∈ L (left neutrality)
(a 7→ 0) 7→ (b 7→ 0) = b 7→ a.

Remark: Note that properties (1)and (2) are stronger version of
a 7→ b is non-increasing on the first argument and a 7→ b is
non-decreasing on the second argument.
Remark: From (5) and (4) we have the following important
double negation property: (a 7→ 0) 7→ 0 = a for every a ∈ L.
Thus a 7→ 0 is an order reversing involution and we write
ac = a 7→ 0.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy semi-topogeneous orders

Thus let X be a set, L a complete lattice and 7→: L× L→ L
Semi-topogeneous order on a set X is a L-fuzzy relation σ on
its L-powerset LX , that is σ : LX × LX → L such that

(1to) σ(0L,0L)) = σ(1L,1L) = 1L

(2to) If M ′ ≤ M and N ≤ N ′ then σ(M,N) ≤ σ(M ′,N ′).
(3to) σ(M,N) ≤ MIN.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

Special properties of fuzzy semi-topogeneous orders

Fuzzy semi-topogeneous order is called topogeneous if
(4to) σ(M1 ∨M2,N) = σ(M1N) ∧ σ(M2,N).
(5to) σ(M,N1 ∧ N2) = σ(M,N1) ∧ σ(M,N2)

Fuzzy topogeneous order is called perfect if
(6to) σ(

∨
i Mi ,N) =

∧
i σ(Mi ,N).

Fuzzy topogeneous order is called biperfect if it is perfect
and

(7to) σ(M,
∧

i Ni ) =
∧

i σ(M,Ni )

Fuzzy semitopogeneous order is called symmetric if
(8to) σ(M,N) = σ(Nc ,Mc)
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy syntopogeneous structures

Definition
An L-fuzzy syntopogeneous structure on a set X is a family S of
L-fuzzy topogeneous orders on X such that

S is directed, that is given two L-fuzzy topogeneous orders
σ1, σ2 ∈ S there exists σ ∈ S such that σ1 ∨ σ2 ≤ σ;
For every σ ∈ S there exists σ′ ∈ S such that σ ≤ σ′ ◦ σ′,
where σ1 ◦ σ2 = {

∨
(σ1(M,P) ∧ σ2(P,N) : P ∈ LX}.

(X ,S) is called syntopogeneous space.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy topogeneous order construction from L-fuzzy
semi-topogeneous order

Proposition

Let M,N ∈ LX be L-fuzzy semi-topogeneous order σ on X , let a
mapping σT : LX × LX → L be defined by the equality

σT (M,N) = sup{
∧
i,j

σ(Mi ,Nj ) :
m∨

i=1

Mi = M,

n∧
j=1

Nj = N}.

Then σT is an L-fuzzy topogeneous order.

Similary perfect and biperfect topogeneous orders can be obtained
from topogeneous orders.
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Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures



Introduction and motivation
Context and tools

Fuzzy syntopogeneous structures
Contrapositive simmetry of implicator

Conclusion

Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy topologies and perfect L-fuzzy topogeneous
orders

Theorem
Let σ : LX × LX → L be a perfect topogeneous fuzzy order. Then the
mapping : T : LX → L defined by

Tσ(M) = σ(M,M),M ∈ LX

is an L-fuzzy topology.
Conversely, given an L-fuzzy topology T : LX → L on X , the mapping
σT : LX × LX → L defined by the equality

σT (M,N) =
∨
{T (P) : M ≤ P ≤ N,P ∈ LX}

is a perfect topogeneous fuzzy order. Besides TσT = T and σTσ = σ

for every L-fuzzy topology T and every perfect L-fuzzy topogeneous
order σ. Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy proximities and L-fuzzy symmetric
topogeneous orders

Theorem
Let σ : LX × LX → L be a symmetric L-fuzzy topogeneous order on X .
Then the mapping δσ : LX × LX → L defined by

δ(A,B) = σ(A,Bc) 7→ 0

is an L-fuzzy proximity on X . Conversely, let δ : LX × LX → L be an
L-fuzzy proximity. Then with following equality we gain

σ(A,B) = δ(A,Bc) 7→ 0

a symmetric L-fuzzy topogeneous order on X . Besides δσδ
= δ and

σδσ = σ for every symmetric L-fuzzy topogeneous order σ and for any
L-fuzzy proximity δ.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy uniformities and L-fuzzy biperfect
topogeneous orders

Theorem
To every biperfect L-fuzzy topogeneous order σ on X there
corresponds an element Uσ ∈ DX defined by

Uσ(A, α) =
∧
{B | σ(A,B) ≥ α}.

Conversely, to every U there corresponds a biperfect L-fuzzy
topogeneous order defined by

σU(A,B) =
∨
{α | U(A, α) ≤ B}.

Moreover, UσU = U and σUσ
= σ for each biperfect L-fuzzy

topogeneous order σ and each U ∈ DX .
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders

Problem
From contrapositive simmetry

(a 7→ 0) 7→ (b 7→ 0) = b 7→ a
and left neutrality

1 7→ a = a for every a ∈ L

follows double negation law

(a 7→ 0) 7→ 0 = a for every a ∈ L

that could be too restrictive

We have to ask...
What is the influence of this property in syntopogeneous
structures theory?
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders

L-fuzzy semi-topogeneous orders

Let X be a set, L a complete lattice and 7→: L× L→ L
Semi-topogeneous order on a set X is a L-fuzzy relation σ on
its L-powerset LX , that is σ : LX × LX → L such that

(1to) σ(0L,0L)) = σ(1L,1L) = 1L

(2to) If M ′ ≤ M and N ≤ N ′ then σ(M,N) ≤ σ(M ′,N ′).
(3to) σ(M,N) ≤ MIN.
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders

Special properties of fuzzy semi-topogeneous orders

Fuzzy semi-topogeneous order is called topogeneous if
(4to) σ(M1 ∨M2,N) = σ(M1N) ∧ σ(M2,N).
(5to) σ(M,N1 ∧ N2) = σ(M,N1) ∧ σ(M,N2)

Fuzzy topogeneous order is called perfect if
(6to) σ(

∨
i Mi ,N) =

∧
i σ(Mi ,N).

Fuzzy topogeneous order is called biperfect if it is perfect
and

(7to) σ(M,
∧
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∧

i σ(M,Ni )
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders

L-fuzzy syntopogeneous structures

Definition
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L-fuzzy topologies and perfect L-fuzzy topogeneous orders

L-fuzzy topologies and perfect L-fuzzy topogeneous
orders
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mapping : T : LX → L defined by

Tσ(M) = σ(M,M),M ∈ LX

is an L-fuzzy topology.
Conversely, given an L-fuzzy topology T : LX → L on X , the mapping
σT : LX × LX → L defined by the equality

σT (M,N) =
∨
{T (P) : M ≤ P ≤ N,P ∈ LX}

is a perfect topogeneous fuzzy order. Besides TσT = T and σTσ = σ

for every L-fuzzy topology T and every perfect L-fuzzy topogeneous
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Work in progress: L-fuzzy proximities and L-fuzzy
symmetric topogeneous orders

L-fuzzy proximity
Let L be a completely distributive lattice with implicator 7→: L× L→ L.
A mapping d : LX × LX → L is called an L-fuzzy proximity on X if it
satisfies the following conditions:

(FP1) d(0X ,1X ) = 0;

(FP2) d(A,B) = d(B,A);

(FP3) d(A,B ∨ C) = d(A,B) ∨ d(A,C);

(FP4) d(A,B) ≥ (A ↪→ Bc)c ;

(FP5) d(A,B) ≥ inf{d(A,E) ∨ d(B,Ec) | E ∈ LX}.

The pair (X ,d) is called an L-fuzzy proximity space.
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Some directions for further research

To study relation between L-fuzzy uniformities and L-fuzzy
biperfect topogeneous orders in case without
contrapositive symmetry.
To develop the asymmetric version of the concept of a
syntopogenous structure and to work out the
corresponding theory.
To study categorical properties of the category of L-fuzzy
syntopogenous spaces and its relations with different
subcategories.
To define and to study (L,M)-syntopogenous structures,
that is when (semi-)topogeneous orders are defined on the
L-powersets of a set X and take their values in, probably, a
different lattice M.
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Thank you for your attention!

The presentation was supported by ESF Project No
2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045

Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures


	Introduction and motivation
	Context and tools
	Fuzzy syntopogeneous structures
	Definitions and properties
	L-fuzzy topologies and perfect L-fuzzy topogeneous orders
	L-fuzzy proximities and L-fuzzy symmetric topogeneous orders
	L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

	Contrapositive simmetry of implicator
	L-fuzzy topologies and perfect L-fuzzy topogeneous orders

	Conclusion

