On M-valued L-fuzzy syntopogenous structures

Dace Čimoka and Aleksandrs Šostak

Institute of Mathematics and Computer Science, University of Latvia and Department of Mathematics, University of Latvia

International Conference Fuzzy Set Theory and Applications January 26 - January 31, 2014 Liptovský Jan

ヘロン ヘアン ヘビン ヘビン

Topology, Uniformity and Proximity

Three important general topology structures:

Topological spaces

Topology: $T \subseteq 2^X$ such that

$$0 \emptyset, X \in T;$$

$$2 \quad U, V \in T \Rightarrow U \cap V \in T;$$

$$U_i \in T \forall i \in I \Rightarrow \bigcup_i U_i \in T$$

(X, T) is called topological space.

ヘロン ヘアン ヘビン ヘビン

э

Topology, Uniformity and Proximity

Proximity spaces

Proximity: $\delta \subseteq 2^X \times 2^X$ such that

- $\bigcirc (\emptyset, X) \not\in \delta$
- $(A, B) \in \delta \iff (B, A) \in \delta;$

$$(A, B \cup C) \in \delta \iff (A, B) \in \delta \text{ or } (A, C) \in \delta$$

④ (*A*, *B*) ∉ δ then ∃*C*, *D*: (*A*, *C*) ∉ δ, (*B*, *D*) ∉ δ and $C \cup D = X$.

 (X, δ) is called proximity space.

ヘロン ヘアン ヘビン ヘビン

-

Topology, Uniformity and Proximity

 $V \subset X \times X$ an entourage of diagonal, if $\Delta \subset V$ and V = -V, where $\Delta = \{(x, x) : x \in X\}$ and $-V = \{(x, y) : (y, x) \in V\}$. \mathcal{D}_X family of all entourages of the diagonal.

Uniform space

Uniformity: $\mathcal{U} \subseteq \mathcal{D}_X$ such that

• If
$$V \in \mathcal{U}$$
 and $V \subset W \in \mathcal{D}_X$, then $W \in \mathcal{U}$

2 If
$$V_1, V_2 \in \mathcal{U}$$
, then $V_1 \cap V_2 \in \mathcal{U}$

③ For every $V \in \mathcal{U}$ exists $W \in \mathcal{U}$ such that $2W \subset V$

(X, U) is called uniform space.

イロト イポト イヨト イヨト

э

Syntopogeneous structures in Topology

Motivation

Syntopogeneous structure is a concept which allows to develop a unified approach to all three topological structures:

- Topological spaces (open sets, closed sets, closure, limit points, neighbourhood of point and so on)
- Proximity spaces (as nearness structure)
- Uniform spaces (as uniformity type properties in metric spaces)

Syntopogeneous structures were introduced by A. Csaszar in 1963.

Syntopogeneous structures in Topology

Motivation

Syntopogeneous structure is a concept which allows to develop a unified approach to all three topological structures:

- Topological spaces (open sets, closed sets, closure, limit points, neighbourhood of point and so on)
- Proximity spaces (as nearness structure)
- Uniform spaces (as uniformity type properties in metric spaces)

Syntopogeneous structures were introduced by A. Csaszar in 1963.

Syntopogeneous structures in Topology

Motivation

Syntopogeneous structure is a concept which allows to develop a unified approach to all three topological structures:

- Topological spaces (open sets, closed sets, closure, limit points, neighbourhood of point and so on)
- Proximity spaces (as nearness structure)
- Uniform spaces (as uniformity type properties in metric spaces)

Syntopogeneous structures were introduced by A. Csaszar in 1963.

Syntopogeneous structures in Topology

Motivation

Syntopogeneous structure is a concept which allows to develop a unified approach to all three topological structures:

- Topological spaces (open sets, closed sets, closure, limit points, neighbourhood of point and so on)
- Proximity spaces (as nearness structure)
- Uniform spaces (as uniformity type properties in metric spaces)

Syntopogeneous structures were introduced by A. Csaszar in 1963.

Syntopogeneous structures in Topology

Motivation

Syntopogeneous structure is a concept which allows to develop a unified approach to all three topological structures:

- Topological spaces (open sets, closed sets, closure, limit points, neighbourhood of point and so on)
- Proximity spaces (as nearness structure)
- Uniform spaces (as uniformity type properties in metric spaces)

Syntopogeneous structures were introduced by A. Csaszar in 1963.

Syntopogeneous structures in Topology

Situation in fuzzy Topology

In fuzzy topology we have developed theories of

- Fuzzy topologies;
- Puzzy proximities;
- Fuzzy uniformities

Problem

Find the appropriate concepts for fuzzy syntopogeneous structures.

・ロット (雪) () () () ()

Syntopogeneous structures in Topology

Syntopogeneous structures in fuzzy Topology

- First time introduced by A.K.Katsaras and C.G.Petalas in 1983. Concept: [0, 1]^X × [0, 1]^X → {0, 1}
- Expanded by A.Šostaks 1997. Concept: $[0, 1]^X \times [0, 1]^X \rightarrow [0, 1]$
- Our object: $L^X \times L^X \to L$, where *L* complete lattice

Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures

・ロト ・ 理 ト ・ ヨ ト ・

Syntopogeneous structures in Topology

Syntopogeneous structures in fuzzy Topology

- First time introduced by A.K.Katsaras and C.G.Petalas in 1983. Concept: [0, 1]^X × [0, 1]^X → {0, 1}
- Expanded by A.Šostaks 1997. Concept: $[0, 1]^X \times [0, 1]^X \rightarrow [0, 1]$
- Our object: $L^X \times L^X \to L$, where *L* complete lattice

Dace Čimoka and Aleksandrs Šostak On M-valued L-fuzzy syntopogenous structures

・ロト ・ 理 ト ・ ヨ ト ・

Syntopogeneous structures in Topology

Syntopogeneous structures in fuzzy Topology

- First time introduced by A.K.Katsaras and C.G.Petalas in 1983. Concept: [0, 1]^X × [0, 1]^X → {0, 1}
- Expanded by A.Šostaks 1997. Concept: $[0, 1]^X \times [0, 1]^X \rightarrow [0, 1]$
- Our object: $L^X \times L^X \to L$, where L complete lattice

・ロト ・ 理 ト ・ ヨ ト ・

Topogeneous orders (in crisp case)

Topogeneous order

Topogeneous order on a set X is a relation σ on it powerset 2^X such that

- $(\emptyset, \emptyset), (X, X) \in \sigma$
- If $M' \subseteq M$ and $N \subseteq N'$ and $(M, N) \in \sigma$ then $(M', N') \in \sigma$.
- If $(M, N) \in \sigma$ then $M \subseteq N$
- $(M_1 \cup M_2, N) \in \sigma \iff (M_1, N), (M_2, N) \in \sigma.$
- $(M, N_1 \cap N_2) \in \sigma \iff (M, N_1), (M, N_2) \in \sigma.$

イロト イポト イヨト イヨト

Syntopogeneous structures

Syntopogeneous structures

A family S of topogeneous orders on a set X is called a syntopogeneous structure if

3 S is directed, that is $\sigma_1, \sigma_2 \in S \implies \exists \sigma \in S$ such that $\sigma_1 \cup \sigma_2 \subseteq \sigma$:

②
$$\forall \sigma \in S \exists \sigma' \in S \text{ such that } \sigma' \circ \sigma' \supseteq \sigma,$$

where $(M, N) \in \sigma_1 \circ \sigma_2$, if $\exists P \in 2^X$ such that $(M, P) \in \sigma_1$
and $(P, N) \in \sigma_2$.

・ロット (雪) () () () ()

Approach to the fuzzy version

How to define fuzzy semi-topogeneous order

L-fuzzy semi-topogeneous order on a set *X* is a *L*-fuzzy relation σ on its *L* powerset L^X , that is $\sigma : L^X \times L^X \to L$ such that

•
$$\sigma(\mathbf{0}_L,\mathbf{0}_L) = \sigma(\mathbf{1}_L,\mathbf{1}_L) = \mathbf{1}_L$$

- If $M' \leq M$ and $N \leq N'$ then $\sigma(M, N) \leq \sigma(M', N')$.
- If $\sigma(M, N)$ then $M \subseteq N$

• As the substitute for the last property we take

$$M \subseteq N = \inf_{x \in X} (M(x) \mapsto N(x)) =: M \Im N$$

where \mapsto is an implicator on L

・ロト ・ 日本 ・ 日本 ・ 日本

Approach to the fuzzy version

How to define fuzzy semi-topogeneous order

L-fuzzy semi-topogeneous order on a set *X* is a *L*-fuzzy relation σ on its *L* powerset L^X , that is $\sigma : L^X \times L^X \to L$ such that

•
$$\sigma(\mathbf{0}_L,\mathbf{0}_L) = \sigma(\mathbf{1}_L,\mathbf{1}_L) = \mathbf{1}_L$$

- If $M' \leq M$ and $N \leq N'$ then $\sigma(M, N) \leq \sigma(M', N')$.
- If $\sigma(M, N)$ then $M \subseteq N$

• As the substitute for the last property we take

$$M \subseteq N = \inf_{x \in X} (M(x) \mapsto N(x)) =: M \Im N$$

where \mapsto is an implicator on L

イロト 不得 とくほ とくほう

Approach to the fuzzy version

How to define fuzzy semi-topogeneous order

L-fuzzy semi-topogeneous order on a set *X* is a *L*-fuzzy relation σ on its *L* powerset L^X , that is $\sigma : L^X \times L^X \to L$ such that

•
$$\sigma(\mathbf{0}_L,\mathbf{0}_L) = \sigma(\mathbf{1}_L,\mathbf{1}_L) = \mathbf{1}_L$$

- If $M' \leq M$ and $N \leq N'$ then $\sigma(M, N) \leq \sigma(M', N')$.
- If $\sigma(M, N)$ then $M \subseteq N$
- As the substitute for the last property we take

$$M \subseteq N = \inf_{x \in X} (M(x) \mapsto N(x)) =: M \Im N$$

where \mapsto is an implicator on L

Implicator

Different authors axiomatize different properties for implicator. For our merits we take the following axioms for $\mapsto L \times L \rightarrow L$:

• $a_1 \lor a_2 \mapsto b = (a_1 \mapsto b) \land (a_2 \mapsto b);$

•
$$a \mapsto b_1 \wedge b_2 = (a \mapsto b_1) \wedge (a \mapsto b_2);$$

- $0 \mapsto a = 1_L$ for every $a \in L$ (left boundary condition);
- 1 \mapsto *a* = *a* for every *a* \in *L* (left neutrality)

•
$$(a\mapsto 0)\mapsto (b\mapsto 0)=b\mapsto a_{\cdot}$$

Remark: Note that properties (1) and (2) are stronger version of $a \mapsto b$ is non-increasing on the first argument and $a \mapsto b$ is non-decreasing on the second argument. **Remark:** From (5) and (4) we have the following important double negation property: $(a \mapsto 0) \mapsto 0 = a$ for every $a \in L$. Thus $a \mapsto 0$ is an order reversing involution and we write $a^c = a \mapsto 0$.

Implicator

Different authors axiomatize different properties for implicator. For our merits we take the following axioms for $\mapsto L \times L \rightarrow L$:

• $a_1 \lor a_2 \mapsto b = (a_1 \mapsto b) \land (a_2 \mapsto b);$

•
$$a \mapsto b_1 \wedge b_2 = (a \mapsto b_1) \wedge (a \mapsto b_2);$$

• $0 \mapsto a = 1_L$ for every $a \in L$ (left boundary condition);

• 1
$$\mapsto$$
 a = *a* for every *a* \in *L* (left neutrality)

•
$$(a \mapsto 0) \mapsto (b \mapsto 0) = b \mapsto a$$
.

Remark: Note that properties (1) and (2) are stronger version of $a \mapsto b$ is non-increasing on the first argument and $a \mapsto b$ is non-decreasing on the second argument.

Remark: From (5) and (4) we have the following important double negation property: $(a \mapsto 0) \mapsto 0 = a$ for every $a \in L$. Thus $a \mapsto 0$ is an order reversing involution and we write $a^c = a \mapsto 0$.

Implicator

Different authors axiomatize different properties for implicator. For our merits we take the following axioms for $\mapsto L \times L \rightarrow L$:

• $a_1 \lor a_2 \mapsto b = (a_1 \mapsto b) \land (a_2 \mapsto b);$

•
$$a \mapsto b_1 \wedge b_2 = (a \mapsto b_1) \wedge (a \mapsto b_2);$$

• $0 \mapsto a = 1_L$ for every $a \in L$ (left boundary condition);

• 1
$$\mapsto$$
 a = *a* for every *a* \in *L* (left neutrality)

•
$$(a \mapsto 0) \mapsto (b \mapsto 0) = b \mapsto a$$
.

Remark: Note that properties (1) and (2) are stronger version of $a \mapsto b$ is non-increasing on the first argument and $a \mapsto b$ is non-decreasing on the second argument.

Remark: From (5) and (4) we have the following important double negation property: $(a \mapsto 0) \mapsto 0 = a$ for every $a \in L$. Thus $a \mapsto 0$ is an order reversing involution and we write $a^c = a \mapsto 0$.

Definitions and properties

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

L-fuzzy semi-topogeneous orders

Thus let *X* be a set, *L* a complete lattice and $\mapsto: L \times L \rightarrow L$

Semi-topogeneous order on a set *X* is a *L*-fuzzy relation σ on its *L*-powerset L^X , that is $\sigma : L^X \times L^X \to L$ such that (1to) $\sigma(0_L, 0_L)) = \sigma(1_L, 1_L) = 1_L$ (2to) If $M' \leq M$ and $N \leq N'$ then $\sigma(M, N) \leq \sigma(M', N')$.

(3to) $\sigma(M, N) \leq M \Im N$.

Definitions and properties

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

ヘロン ヘアン ヘビン ヘビン

Special properties of fuzzy semi-topogeneous orders

- Fuzzy semi-topogeneous order is called topogeneous if

 (4to) σ(M₁ ∨ M₂, N) = σ(M₁N) ∧ σ(M₂, N).
 (5to) σ(M, N₁ ∧ N₂) = σ(M, N₁) ∧ σ(M, N₂)
- Fuzzy topogeneous order is called perfect if (6to) $\sigma(\bigvee_i M_i, N) = \bigwedge_i \sigma(M_i, N)$.
- Fuzzy topogeneous order is called biperfect if it is perfect and
 - (7to) $\sigma(M, \bigwedge_i N_i) = \bigwedge_i \sigma(M, N_i)$
- Fuzzy semitopogeneous order is called symmetric if
 (8to) σ(M, N) = σ(N^c, M^c)

Definitions and properties

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

ヘロン ヘアン ヘビン ヘビン

L-fuzzy syntopogeneous structures

Definition

An *L*-fuzzy syntopogeneous structure on a set X is a family S of *L*-fuzzy topogeneous orders on X such that

- S is directed, that is given two *L*-fuzzy topogeneous orders *σ*₁, *σ*₂ ∈ S there exists *σ* ∈ S such that *σ*₁ ∨ *σ*₂ ≤ *σ*;
- For every σ ∈ S there exists σ' ∈ S such that σ ≤ σ' ∘ σ', where σ₁ ∘ σ₂ = { \(σ₁(M, P) ∧ σ₂(P, N) : P ∈ L^X }.

(X, S) is called syntopogeneous space.

Definitions and properties

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

ヘロン ヘロン ヘビン ヘビン

L-fuzzy topogeneous order construction from *L*-fuzzy semi-topogeneous order

Proposition

Let $M, N \in L^X$ be *L*-fuzzy semi-topogeneous order σ on X, let a mapping $\sigma^T : L^X \times L^X \to L$ be defined by the equality

$$\sigma^{T}(\boldsymbol{M},\boldsymbol{N}) = \sup\{\bigwedge_{i,j} \sigma(\boldsymbol{M}_{i},\boldsymbol{N}_{j}) : \bigvee_{i=1}^{m} \boldsymbol{M}_{i} = \boldsymbol{M}, \bigwedge_{j=1}^{n} \boldsymbol{N}_{j} = \boldsymbol{N}\}.$$

Then σ^{T} is an *L*-fuzzy topogeneous order.

Similary perfect and biperfect topogeneous orders can be obtained from topogeneous orders.

Definitions and properties

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

・ロト ・ 理 ト ・ ヨ ト ・

L-fuzzy topogeneous order construction from *L*-fuzzy semi-topogeneous order

Proposition

Let $M, N \in L^X$ be *L*-fuzzy semi-topogeneous order σ on X, let a mapping $\sigma^T : L^X \times L^X \to L$ be defined by the equality

$$\sigma^{T}(\boldsymbol{M},\boldsymbol{N}) = \sup\{\bigwedge_{i,j} \sigma(\boldsymbol{M}_{i},\boldsymbol{N}_{j}) : \bigvee_{i=1}^{m} \boldsymbol{M}_{i} = \boldsymbol{M}, \bigwedge_{j=1}^{n} \boldsymbol{N}_{j} = \boldsymbol{N}\}.$$

Then σ^{T} is an *L*-fuzzy topogeneous order.

Similary perfect and biperfect topogeneous orders can be obtained from topogeneous orders.

Definitions and properties

L-fuzzy topologies and perfect L-fuzzy topogeneous orders L-fuzzy proximities and L-fuzzy symmetric topogeneous orders L-fuzzy uniformities and L-fuzzy biperfect topogeneous orders

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders

Theorem

Let $\sigma: L^X \times L^X \to L$ be a perfect topogeneous fuzzy order. Then the mapping : $\mathcal{T}: L^X \to L$ defined by

$$\mathcal{T}_{\sigma}(M) = \sigma(M, M), M \in L^X$$

is an *L*-fuzzy topology.

Conversely, given an *L*-fuzzy topology $T: L^X \to L$ on *X*, the mapping $\sigma_T: L^X \times L^X \to L$ defined by the equality

$$\sigma_{\mathcal{T}}(\boldsymbol{M},\boldsymbol{N}) = \bigvee \{\mathcal{T}(\boldsymbol{P}) : \boldsymbol{M} \leq \boldsymbol{P} \leq \boldsymbol{N}, \boldsymbol{P} \in \boldsymbol{L}^{\boldsymbol{X}}\}$$

is a perfect topogeneous fuzzy order. Besides $\mathcal{T}_{\sigma_{\mathcal{T}}} = \mathcal{T}$ and $\sigma_{\mathcal{T}_{\sigma}} = \sigma$ for every *L*-fuzzy topology \mathcal{T} and every perfect *L*-fuzzy topogeneous

Dace Čimoka and Aleksandrs Šostak

On M-valued L-fuzzy syntopogenous structures

Definitions and properties *L*-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

L-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders

Theorem

Let $\sigma : L^X \times L^X \to L$ be a symmetric *L*-fuzzy topogeneous order on *X*. Then the mapping $\delta_{\sigma} : L^X \times L^X \to L$ defined by

$$\delta(\mathbf{A}, \mathbf{B}) = \sigma(\mathbf{A}, \mathbf{B}^{c}) \mapsto \mathbf{0}$$

is an *L*-fuzzy proximity on *X*. Conversely, let $\delta : L^X \times L^X \to L$ be an *L*-fuzzy proximity. Then with following equality we gain

$$\sigma(A,B) = \delta(A,B^c) \mapsto 0$$

a symmetric *L*-fuzzy topogeneous order on *X*. Besides $\delta_{\sigma_{\delta}} = \delta$ and $\sigma_{\delta_{\sigma}} = \sigma$ for every symmetric *L*-fuzzy topogeneous order σ and for any *L*-fuzzy proximity δ .

Dace Čimoka and Aleksandrs Šostak

Definitions and properties *L*-fuzzy topologies and perfect *L*-fuzzy topogeneous orders *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

L-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders

Theorem

To every biperfect *L*-fuzzy topogeneous order σ on *X* there corresponds an element $U_{\sigma} \in \mathcal{D}_X$ defined by

$$U_{\sigma}(\boldsymbol{A},\alpha) = \bigwedge \{\boldsymbol{B} \mid \sigma(\boldsymbol{A},\boldsymbol{B}) \geq \alpha\}.$$

Conversely, to every U there corresponds a biperfect L-fuzzy topogeneous order defined by

$$\sigma_{U}(\boldsymbol{A},\boldsymbol{B}) = \bigvee \{ \alpha \mid \boldsymbol{U}(\boldsymbol{A},\alpha) \leq \boldsymbol{B} \}.$$

Moreover, $U_{\sigma_U} = U$ and $\sigma_{U_{\sigma}} = \sigma$ for each biperfect *L*-fuzzy topogeneous order σ and each $U \in \mathcal{D}_X$.

Dace Čimoka and Aleksandrs Šostak

On M-valued L-fuzzy syntopogenous structures

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

Problem

From contrapositive simmetry

•
$$(a\mapsto 0)\mapsto (b\mapsto 0)=b\mapsto a$$

and left neutrality

• 1 \mapsto *a* = *a* for every *a* \in *L*

follows double negation law

•
$$(a \mapsto 0) \mapsto 0 = a$$
 for every $a \in L$

that could be too restrictive

We have to ask...

What is the influence of this property in syntopogeneous structures theory?

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

・ロット (雪) () () () ()

L-fuzzy semi-topogeneous orders

Let *X* be a set, *L* a complete lattice and $\mapsto: L \times L \rightarrow L$

Semi-topogeneous order on a set *X* is a *L*-fuzzy relation σ on its *L*-powerset L^X , that is $\sigma : L^X \times L^X \to L$ such that (1to) $\sigma(0_L, 0_L)) = \sigma(1_L, 1_L) = 1_L$ (2to) If $M' \leq M$ and $N \leq N'$ then $\sigma(M, N) \leq \sigma(M', N')$. (3to) $\sigma(M, N) \leq M\Im N$.

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

・ロト ・ 理 ト ・ ヨ ト ・

Special properties of fuzzy semi-topogeneous orders

- Fuzzy semi-topogeneous order is called topogeneous if

 (4to) σ(M₁ ∨ M₂, N) = σ(M₁N) ∧ σ(M₂, N).
 (5to) σ(M, N₁ ∧ N₂) = σ(M, N₁) ∧ σ(M, N₂)
- Fuzzy topogeneous order is called perfect if (6to) $\sigma(\bigvee_i M_i, N) = \bigwedge_i \sigma(M_i, N)$.
- Fuzzy topogeneous order is called biperfect if it is perfect and
 - (7to) $\sigma(M, \bigwedge_i N_i) = \bigwedge_i \sigma(M, N_i)$
- Fuzzy semitopogeneous order is called symmetric if (8to) $\sigma(M, N) = \sigma(N^c, M^c)$

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

ヘロン ヘアン ヘビン ヘビン

L-fuzzy syntopogeneous structures

Definition

An *L*-fuzzy syntopogeneous structure on a set X is a family S of *L*-fuzzy topogeneous orders on X such that

- S is directed, that is given two *L*-fuzzy topogeneous orders *σ*₁, *σ*₂ ∈ S there exists *σ* ∈ S such that *σ*₁ ∨ *σ*₂ ≤ *σ*;
- For every σ ∈ S there exists σ' ∈ S such that σ ≤ σ' ∘ σ', where σ₁ ∘ σ₂ = {\(σ₁(M, P) ∧ σ₂(P, N) : P ∈ L^X)}.

(X, S) is called syntopogeneous space.

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

ヘロア 人間 アメヨア 人口 ア

L-fuzzy topogeneous order construction from *L*-fuzzy semi-topogeneous order

Proposition

Let $M, N \in L^X$ be *L*-fuzzy semi-topogeneous order σ on X, let a mapping $\sigma^T : L^X \times L^X \to L$ be defined by the equality

$$\sigma^{T}(\boldsymbol{M},\boldsymbol{N}) = \sup\{\bigwedge_{i,j} \sigma(\boldsymbol{M}_{i},\boldsymbol{N}_{j}) : \bigvee_{i=1}^{m} \boldsymbol{M}_{i} = \boldsymbol{M}, \bigwedge_{j=1}^{n} \boldsymbol{N}_{j} = \boldsymbol{N}\}.$$

Then σ^{T} is an *L*-fuzzy topogeneous order.

L-fuzzy topologies and perfect L-fuzzy topogeneous orders

L-fuzzy topologies and perfect *L*-fuzzy topogeneous orders

Theorem

Let $\sigma: L^X \times L^X \to L$ be a perfect topogeneous fuzzy order. Then the mapping : $\mathcal{T}: L^X \to L$ defined by

$$\mathcal{T}_{\sigma}(M) = \sigma(M, M), M \in L^X$$

is an *L*-fuzzy topology. Conversely, given an *L*-fuzzy topology $\mathcal{T} : L^X \to L$ on *X*, the mapping $\sigma_{\mathcal{T}} : L^X \times L^X \to L$ defined by the equality

$$\sigma_{\mathcal{T}}(\boldsymbol{M},\boldsymbol{N}) = \bigvee \{\mathcal{T}(\boldsymbol{P}) : \boldsymbol{M} \leq \boldsymbol{P} \leq \boldsymbol{N}, \boldsymbol{P} \in \boldsymbol{L}^{\boldsymbol{X}}\}$$

is a perfect topogeneous fuzzy order. Besides $\mathcal{T}_{\sigma_{\mathcal{T}}} = \mathcal{T}$ and $\sigma_{\mathcal{T}_{\sigma}} = \sigma$ for every *L*-fuzzy topology \mathcal{T} and every perfect *L*-fuzzy topogeneous

Dace Čimoka and Aleksandrs Šostak

On M-valued L-fuzzy syntopogenous structures

 $) \land ()$

Work in progress: *L*-fuzzy proximities and *L*-fuzzy symmetric topogeneous orders

L-fuzzy proximity

Let *L* be a completely distributive lattice with implicator $\mapsto: L \times L \to L$. A mapping $d: L^X \times L^X \to L$ is called an *L*-fuzzy proximity on *X* if it satisfies the following conditions:

$$(\mathrm{FP1}) \ d(\mathbf{0}_X,\mathbf{1}_X)=\mathbf{0}$$

$$(\mathrm{FP2}) \ d(A,B) = d(B,A);$$

(FP3)
$$d(A, B \lor C) = d(A, B) \lor d(A, C);$$

(FP4)
$$d(A, B) \ge (A \hookrightarrow B^c)^c;$$

(FP5) $d(A,B) \ge \inf\{d(A,E) \lor d(B,E^c) \mid E \in L^X\}.$

The pair (X, d) is called an *L*-fuzzy proximity space.

Some directions for further research

- To study relation between *L*-fuzzy uniformities and *L*-fuzzy biperfect topogeneous orders in case without contrapositive symmetry.
- To develop the asymmetric version of the concept of a syntopogenous structure and to work out the corresponding theory.
- To study categorical properties of the category of *L*-fuzzy syntopogenous spaces and its relations with different subcategories.
- To define and to study (*L*, *M*)-syntopogenous structures, that is when (semi-)topogeneous orders are defined on the *L*-powersets of a set *X* and take their values in, probably, a different lattice *M*.

Thank you for your attention!

IEGULDĪJUMS TAVĀ NĀKOTNĒ

EIROPAS SAVIENĪBA

The presentation was supported by ESF Project No 2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045