On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems

Jose Cánovas, Jiří Kupka*

*) Institute for Research and Applications of Fuzzy Modeling University of Ostrava Ostrava, Czech Republic

Jiri.Kupka@osu.cz

October 3, 2013

2 Basic notions

3 Constructions and resuls

4 Conclusions

Jose Cánovas, Jiří Kupka* (IRAFM)

Motivation

- X ... a compact metric space
- \blacksquare I ... the unit interval [0,1]
- $f \in C(X)$... a continuous map $f: X \to X$
- $\blacksquare \ \varPhi \ \dots \$ the Zadeh's extension of f

$$\begin{array}{cccc} X & \stackrel{f}{\to} & X \\ \downarrow & & \downarrow \\ \mathbb{F}(X) & \stackrel{\Phi}{\to} & \mathbb{F}(X) \end{array}$$

There exists (X, f) such that

$$h(f) = 0, \quad 0 < h(\bar{f}) < \infty, \quad ent(\Phi) = \infty.$$

If X = [0, 1], then

$$h(f) = ent(\Phi)$$

on the space of fuzzy numbers.

Motivation

- X ... a compact metric space
- $\blacksquare~I~\ldots$ the unit interval [0,1]
- $f \in C(X)$... a continuous map $f: X \to X$
- $\blacksquare \ \varPhi \ \dots \$ the Zadeh's extension of f

$$\begin{array}{cccc} X & \stackrel{f}{\to} & X \\ \downarrow & & \downarrow \\ \mathbb{F}(X) & \stackrel{\Phi}{\to} & \mathbb{F}(X) \end{array}$$

• There exists (X, f) such that

$$h(f) = 0, \quad 0 < h(\bar{f}) < \infty, \quad ent(\Phi) = \infty.$$

If X = [0, 1], then

$$h(f) = ent(\Phi)$$

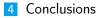
on the space of fuzzy numbers.

For any fuzzy set $A \in \mathbb{F}(X)$ a fuzzy entropy (degree of fuzziness) e(A) can be defined by a function $e : \mathbb{F}(X) \to [0, 1]$ satisfying the following axioms, below $A, B \in \mathbb{F}(X)$:

A1. e(A) = 0 if and only either $A = \chi_C$ for some $C \subseteq X$ or $A = \emptyset$. A2. e(A) = 1 if and only if $A = \frac{1}{2}\chi_X$. A3. $e(A) \le e(B)$ whenever A is less fuzzy than B, that is $A(x) \le B(x) \le 1/2$ or $A(x) \ge B(x) \ge 1/2$ for all $x \in X$. A4. $e(A) = e(A^c)$.

2 Basic notions

3 Constructions and resuls



- X denotes a compact metric space
- a characteristic function $\chi_B: X \to I$ on $B \subseteq \mathbb{X}$

$$\chi_B(x) = \begin{cases} 1 & x \in B, \\ 0 & x \notin B. \end{cases}$$

 $\blacksquare \text{ a fuzzy set } A: X \to I$

for $\alpha \in I$, α -cut of A is $[A]_{\alpha} = \{x \in X \mid A(x) \ge \alpha\}$

support of A is defined by

$$supp(A) = \overline{\{x \in X \mid A(x) > 0\}}.$$

- F(X) ... the family of upper semicontinuous fuzzy sets on X
 F¹(X) ... the family of normal upper-semicontinuous fuzzy sets on X
- $\blacksquare \ \mathbb{F}^1_c(X) \ ... \ \text{the family of normal upper-semicontinuous fuzzy numbers}$ on X

Let (X, d) denote a (locally) compact metric space and let A, B be nonempty compact subsets of X. The **Hausdorff metric** D_X between Aand B is defined by

$$D_X(A, B) = \inf \{ \varepsilon > 0 \mid A \in U_{\varepsilon}(B) \text{ and } B \in U_{\varepsilon}(A) \},\$$

where

$$U_{\varepsilon}(A) = \{ x \in X \mid D(x, A) < \varepsilon \}, \text{ and } D(x, A) = \inf_{a \in A} d(x, a).$$

By $\mathbb{K}(X)$ we denote the metric space of all nonempty compact subsets of X.

It is well known that $\mathbb{K}(X)$ is compact, complete and separable whenever X itself is compact, complete and separable, respectively.

For any $A \in \mathbb{F}(X)$,

$$end(A) = \{(x, a) \in X \times I \,|\, A(x) \ge a\}$$

and

$$send(A) = end(A) \cap (supp(A) \times I).$$

The sendograph metric [P. E. Kloeden, 1982]

$$d_S(A, B) = D_{X \times I}(send(A), send(B))$$

is defined for nonempty fuzzy sets $A, B \in \mathbb{F}_0(X)$ and the endograph metric [Fan, 2004] is defined for any two $A, B \in \mathbb{F}(X)$

$$d_E(A, B) = D_{X \times I}(end(A), end(B)).$$

We define the **levelwise** metric [Kaleva, Seikkala, 1984] on $\mathbb{F}_0(X)$ by

$$d_{\infty}(A,B) = \sup_{\alpha \in I} D_X([A]_{\alpha}, [B]_{\alpha}).$$

For a given map $f \in C(X)$, we define its fuzzification or Zadeh's extension $\Phi : \mathbb{F}(X) \to \mathbb{F}(X)$ by

$$(\varPhi(A))(y) = \sup_{x \in f^{-1}(y)} \{A(x)\}.$$

We also define $\overline{f} : \mathbb{K}(X) \to \mathbb{K}(X)$ as a set-valued extension of f by

$$\overline{f}(A) = f(A)$$
 for any $A \in \mathbb{K}(X)$.

Let us introduce the Bowen's definition of **topological entropy** for continuous maps ([Bowen]). Let $K \subset X$ be a compact subset and fix $\varepsilon > 0$ and $n \in \mathbb{N}$. We say that a set $E \subset K$ is (n, ε, K, f) -separated (by the map f) if for any $x, y \in E, x \neq y$, there is $k \in \{0, 1, ..., n - 1\}$ such that $d(f^k(x), f^k(y)) > \varepsilon$. Denote by $s_n(\varepsilon, K, f)$ the cardinality of any maximal (n, ε, K, f) -separated set in K and define

$$s(\varepsilon, K, f) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(\varepsilon, K, f).$$

Now the **topological entropy** of f is

$$h_d(f) = \sup_K \lim_{\varepsilon \to 0} s(\varepsilon, K, f).$$

Let us introduce the Bowen's definition of **topological entropy** for continuous maps ([Bowen]). Let $K \subset X$ be a compact subset and fix $\varepsilon > 0$ and $n \in \mathbb{N}$. We say that a set $E \subset K$ is (n, ε, K, f) -separated (by the map f) if for any $x, y \in E, x \neq y$, there is $k \in \{0, 1, ..., n - 1\}$ such that $d(f^k(x), f^k(y)) > \varepsilon$. Denote by $s_n(\varepsilon, K, f)$ the cardinality of any maximal (n, ε, K, f) -separated set in K and define

$$s(\varepsilon, K, f) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(\varepsilon, K, f).$$

Now the **topological entropy** of f is

$$h_d(f) = \sup_K \lim_{\varepsilon \to 0} s(\varepsilon, K, f).$$

If the space \boldsymbol{X} is not compact, we use the following definition of topological entropy

$$\operatorname{ent}(f) = \sup\{h(f|_K) : K \in \mathcal{K}_f(X)\},\$$

where $\mathcal{K}_f(X)$ denotes the set of *f*-invariant (i.e., $f(A) \subseteq A$ for any $A \subseteq X$) compact subsets of *X*.

For a continuous map $f: X \to X$ on a compact metric space we denote by $\beta(X)$ the Borel sets of X. Then, a probabilistic measure $\mu: \beta(X) \to [0,1]$ is said to be **invariant** (resp. *f*-invariant) by f if $\mu(f^{-1}(A)) = \mu(A)$ for all $A \in \beta(X)$. If we denote by $\mathcal{M}(X, f)$ the set of *f*-invariant measures on X, it is known that this set is nonempty, compact and convex.

An *f*-invariant measure is **ergodic** if either $\mu(A) = 1$ or 0 for any invariant set A. The set of ergodic measures on X will be denoted by $\mathcal{E}(X, f)$. It is known that this set is also nonempty and compact in $\mathcal{M}(X, f)$. For a continuous map $\varphi : X \to \mathbb{C}$ and any $x \in X$ and $\mu \in \mathcal{E}(X, f)$ the Birkhoff's Ergodic Theorem states that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi \circ f^n(x) = \int_X \varphi d\mu$$

 μ -almost everywhere.

For a continuous map $f: X \to X$ on a compact metric space we denote by $\beta(X)$ the Borel sets of X. Then, a probabilistic measure $\mu: \beta(X) \to [0,1]$ is said to be **invariant** (resp. *f*-invariant) by f if $\mu(f^{-1}(A)) = \mu(A)$ for all $A \in \beta(X)$. If we denote by $\mathcal{M}(X, f)$ the set of *f*-invariant measures on X, it is known that this set is nonempty, compact and convex.

An f-invariant measure is **ergodic** if either $\mu(A) = 1$ or 0 for any invariant set A. The set of ergodic measures on X will be denoted by $\mathcal{E}(X, f)$. It is known that this set is also nonempty and compact in $\mathcal{M}(X, f)$. For a continuous map $\varphi: X \to \mathbb{C}$ and any $x \in X$ and $\mu \in \mathcal{E}(X, f)$ the Birkhoff's Ergodic Theorem states that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi \circ f^n(x) = \int_X \varphi d\mu$$

 μ -almost everywhere.

Basic notions

A measurable partition of a probabilistic space X is a family of measurable pairwise disjoint subsets of X whose union is X. Let $\mathcal{A} = \{A_1, ..., A_k\}$ be a finite partition of measurable sets of X. We define the **metric entropy** of the partition \mathcal{A} as

$$H_{\mu}(\mathcal{A}) = -\sum_{i=1}^{k} \mu(A_i) \log \mu(A_i)$$

(here $0 \log 0 = 0$). For given finite partitions \mathcal{A} and \mathcal{B} , one can define a new finite partition $\mathcal{A} \vee \mathcal{B} = \{A_i \cap B_j : A_i \in \mathcal{A}, B_j \in \mathcal{B}\}$. Define the **metric entropy** of f over the partition \mathcal{A}

$$h_{\mu}(f, \mathcal{A}) = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} f^{-i} \mathcal{A}\right).$$

Then, the **metric entropy** (also called **measure theoretical entropy**) of f is the non-negative number

$$h_{\mu}(f) = \sup_{\mathcal{A}} h_{\mu}(f, \mathcal{A}).$$

According to [Knopfmacher], we need a measure space $(X, \beta(X), \mu)$, where $\beta(X)$ is the Borel σ -algebra, μ is a nonzero finite measure, and $\mathbb{F}(X)$ consists of μ -measurable functions. Then, for any real-valued function $g: I \to \mathbb{R}$ such that

$$g(0) = g(1) = 0,$$

$$g(\alpha) = g(1 - \alpha) \text{ for any } \alpha \in I,$$

$$lacksim g$$
 is strictly increasing on $[0,1/2],$

the expression

$$e_{\mu}(A) = \frac{1}{\mu(X)} \int g(A(x))d\mu(x) \tag{1}$$

defines a degree of fuzziness e(A) of a fuzzy set $A \in \mathbb{F}(X)$. Moreover, if $A = \sum_{i=1}^{k} a_i \chi_{X_i}$, with $a_i \in (0,1]$ and $X_i \in \beta(X)$, i = 1, ..., k, then $e_{\mu}(A) = \sum_{i=1}^{k} g(a_i)\mu(X_i)$.

Lemma

([Knopfmacher, 1975]) The degree of fuzziness e : F(X) → R has the following properties (A ∈ F(X)):
A1. e(A) = 0 if and only either A ^{a.e.} ₌ χ_C for some C ⊆ X or A ^{a.e.} ₌ Ø_X,
A2. e(A) is maximal if and only if A ^{a.e.} ₁ ₂ χ_X,
A3. e(A) ≤ e(B) whenever A is less fuzzy than B, that is A(x) ≤ B(x) ≤ 1/2 or A(x) ≥ B(x) ≥ 1/2 for almost all x ∈ X,
A4. e(A) = e(A^c),

A5. *e* is continuous with respect to the supremum metric on $\mathbb{F}(X)$.

Example

Let μ be a probabilistic measure whose support is a singleton set $\{a_0\}$ and let $\{a_i\}_{i\in\mathbb{N}}$ be a sequence converging to a_0 such that $a_i \neq a_0$ for each $i \in \mathbb{N}$. Then, clearly for some fixed $c \in (0, 1)$ and any g as above,

 $e_{\mu}(c \cdot \chi_{a_0}) > 0,$

but

$$e_{\mu}(c \cdot \chi_{a_i}) = 0, \quad for \ each \ i \in \mathbb{N}.$$

However, $\{c \cdot \chi_{a_i}\}_{i \in \mathbb{N}}$ converges to $c \cdot \chi_{a_0}$ in the metric topology induced by any of d_E, d_S and d_{∞} , which implies the discontinuity of e_{μ} .

Theorem

Let X = I = [0, 1], λ be the Lebesgue measure λ on the Borel σ -algebra $\beta(I)$ of I and g be continuous. The degree of fuzziness $e_{\lambda} : \mathbb{F}_{c}^{1}(I) \to \mathbb{R}$ is continuous with respect to d_{∞} .

Let e_{μ} be a degree of fuzziness, with μ a probability measure on the Borel sets of X. Then, for $A \in \mathbb{F}^1(X)$ we can define the **degree of fuzziness** along the orbit of A as

$$df(A, e_{\mu}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} e_{\mu} \circ \Phi^{i}(A).$$

If e_{μ} is continuous and $m \in \mathcal{E}(\mathbb{F}^1(X), \Phi)$, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} e_{\mu} \circ \Phi^i(A) = \int_{\mathbb{F}^1(X)} e_{\mu} dm = m(e_{\mu})$$

for almost all $A \in \mathbb{F}^1(X)$.

We define the degree of fuzziness of \varPhi as

$$df(\Phi, e_{\mu}) = \sup\{df(A, e_{\mu}) : A \in \mathbb{F}^{1}(X)\}.$$

It is easy to see that the degree of fuzziness is preserved by a conjugacy. If e_{μ} is continuous, we can define the **ergodic degree of fuzziness** of the map Φ as

$$edf(\Phi, e_{\mu}) = \sup\{m(e_{\mu}) : m \in \mathcal{E}(\mathbb{F}^{1}(X), \Phi)\},\$$

which again is a measure of the fuzziness of a continuous map.

Lemma

 $edf(\varPhi,e_{\mu}) \leq df(\varPhi,e_{\mu})$

$$\begin{array}{cccc} X & \stackrel{f}{\to} & X \\ \downarrow & \varphi & & \downarrow & \varphi \\ Y & \stackrel{g}{\to} & Y \end{array}$$

Theorem

Let $e_{\mu} : \mathbb{F}^1(X) \to [0,1]$ be a degree of fuzziness on $\mathbb{F}^1(X)$. Let $f : X \to X$ and $g : Y \to Y$ be continuous maps on compact metric spaces. If they are conjugated, with conjugacy φ , then

$$edf(\Phi_f, e_\mu) = edf(\Phi_g, e_\nu),$$

where $\nu = \mu \circ \varphi^{-1}$.

For a fixed degree of fuzziness $e_{\mu}: \mathbb{F}(X) \to [0,1]$ and for $\alpha \in [0,1]$, let

$$\mathcal{F}_{\alpha}(e_{\mu}) = \left\{ A \in \mathbb{F}^{1}(X) : df(A, e_{\mu}) = \alpha \right\}.$$

Lemma

 $\mathcal{F}_{\alpha}(e_{\mu})$ is Φ -invariant.

If e_{μ} is continuous and $\alpha \in [0, 1]$, let

$$\mathcal{EF}_{\alpha}(e_{\mu}) = \left\{ A \in \mathbb{F}^{1}(X) : edf(A, e_{\mu}) = \alpha \right\}.$$

Lemma

 $\mathcal{E}F_{\alpha}(e_{\mu})$ is Φ -invariant.

Lemma

$$\mathcal{EF}_{\alpha}(e_{\mu}) \subset \mathcal{F}_{\alpha}(e_{\mu})$$
 for any $\alpha \in [0,1]$.

We define the dynamic fuzzy entropy of Φ , denoted by $\mathrm{fuzzent}(\Phi)$ in the following way

$$fuzzent(\Phi) = ent(\Phi|_{\bigcup_{\alpha \in (0,1]} \mathcal{F}_{\alpha}(e_{\mu})})$$
(2)

If e_{μ} is continuous, we can make use of ergodic measures and the variational principle for topological entropy to define a new notion which we call **ergodic fuzzy entropy** by

efuzzent
$$(\Phi) = \sup \left\{ h_m(\Phi) : m \in \mathcal{E}(\mathbb{F}^1(X), \Phi) \text{ and } m(e_\mu) > 0 \right\}.$$
 (3)

Theorem

The following statements hold:

- I If two continuous maps $f : X \to X$ and $g : Y \to Y$ are conjugate, then $fuzzent(\Phi_f) = fuzzent(\Phi_g)$.
- **2** For any $n \in \mathbb{N}$ we have that $\operatorname{fuzzent}(\Phi^n) = n \cdot \operatorname{fuzzent}(\Phi)$.
- **3** If Φ is a homeomorphism, then fuzzent $(\Phi) =$ fuzzent (Φ^{-1}) .

Theorem

The following statements hold:

- I If two continuous maps $f : X \to X$ and $g : Y \to Y$ are conjugate, then $efuzzent(\Phi_f) = efuzzent(\Phi_g)$.
- **2** For any $n \in \mathbb{N}$ we have that $efuzzent(\Phi^n) = n \cdot efuzzent(\Phi)$.
- 3 If Φ is a homeomorphism, then $efuzzent(\Phi) = efuzzent(\Phi^{-1})$.

Theorem

Let $f: X \to X$ be continuous and let $\Phi: \mathbb{F}^1(X) \to \mathbb{F}^1(X)$ be its Zadeh's extension. Let e_μ be a continuous degree of fuzziness. Then

$$efuzzent(\Phi) \ge fuzzent(\Phi).$$
 (4)

Example

Let X = I = [0, 1] and let $f : I \to I$ be continuous. Let $\Phi : \mathbb{F}_c^1(I) \to \mathbb{F}_c^1(I)$ be the Zadeh's extension of f on the fuzzy numbers of I. Let λ be the Lebesgue measure on I and let e_{λ} be the degree of fuzziness generated by λ . We get $fuzzent(\Phi) = h(f)$.

- Several instruments for dealing with degree of fuzziness in fuzzy dynamical systems were elaborated.
- Some basic properties were studied.
- Although some questions are left open ...
- We demonstrated that in some special (but still reasonable) cases it is sufficient to deal with fuzzy sets with zero degree of fuzziness.

Conclusions

Thanksgiving

Thank You for Your Attention

