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m X ... a compact metric space

m [ ... the unit interval [0, 1]

m feC(X) .. acontinuous map f: X — X
m @ ... the Zadeh's extension of f
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m X ... a compact metric space
m [ ... the unit interval [0, 1]

m feC(X) .. acontinuous map f: X — X
m @ ... the Zadeh's extension of f

m There exists (X, f) such that
h(f)=0, 0<h(f)<oo, ent(P)=cc.

m If X =10,1], then
h(f) = ent(®)
on the space of fuzzy numbers. AN

Jose Canovas, Jiri Kupka* (IRAFM) 3/26



For any fuzzy set A € F(X) a fuzzy entropy (degree of fuzziness) e(A)
can be defined by a function e : F(X) — [0, 1] satisfying the following
axioms, below A, B € F(X):

Al. e(A) =0 if and only either A = x¢ for some C C X or A = ().
A2. e(A
A3. e(A) < e(B) whenever A is less fuzzy than B, that is
A(x) < B(z) <1/20r A(z) > B(x) > 1/2 for all z € X.
A4, e(A) = e(A°).

=1lifandonlyif A= %XX-
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Basic notions

X denotes a compact metric space

m a characteristic function yg: X - Ton BCX

1 ze€B,
XB(x):{ 0 $¢B
afuzzyset A: X — 1T
fora €, a-cut of Ais [A], = {zx € X | A(x) > o}
support of A is defined by

supp(A) = {z € X | A(z) > 0}.

m F(X) ... the family of upper semicontinuous fuzzy sets on X

m F1(X) ... the family of normal upper-semicontinuous fuzzy sets on

X
m FL(X) ... the family of normal upper-semicontinuous fuzzy numbers
on X IRAFM
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Basic notions

Let (X, d) denote a (locally) compact metric space and let A, B be
nonempty compact subsets of X. The Hausdorff metric Dx between A
and B is defined by

Dx(A,B) =inf{e >0|A € U,(B) and B € U.(A)},
where

Us(A)={z € X|D(z,A) <¢e}, and D(x,A) = inzf4 d(z,a).
ac

By K(X) we denote the metric space of all nonempty compact subsets of
X.

It is well known that K(X) is compact, complete and separable whenever
X itself is compact, complete and separable, respectively.
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For any A € F(X),

end(A) = {(z,a) € X x I | A(z) > a}

and
send(A) = end(A) N (supp(A) x I).

The sendograph metric [P. E. Kloeden, 1982]
ds(A,B) = Dxy(send(A), send(B))

is defined for nonempty fuzzy sets A, B € Fo(X) and the endograph
metric [Fan, 2004] is defined for any two A, B € F(X)

dp(A,B) = Dxx(end(A),end(B)).
We define the levelwise metric [Kaleva, Seikkala, 1984] on Fo(X) by

doo(A, B) = Sup Dx ([Alas [Bla)- A
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Basic notions

For a given map f € C(X), we define its fuzzification or Zadeh’s
extension ¢ : F(X) — F(X) by

(@(A)(y) = sup {A(z)}.

ze€f~(y)
We also define f : K(X) — K(X) as a set-valued extension of f by

f(A) = f(A) for any A € K(X).
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Basic notions

Let us introduce the Bowen's definition of topological entropy for
continuous maps ([Bowen]). Let K C X be a compact subset and fix
e>0and n € N. We say that aset E C K is (n,¢, K, f)-separated (by
the map f) if for any z,y € E, © # y, there is k € {0,1,...,n — 1} such
that d(f*(x), f¥(y)) > ¢. Denote by s, (¢, K, f) the cardinality of any
maximal (n, e, K, f)-separated set in K and define

s(e, K, f) = limsup — 10gsn(€ K. f).

n—oo
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Basic notions

Let us introduce the Bowen's definition of topological entropy for
continuous maps ([Bowen]). Let K C X be a compact subset and fix
e>0and n € N. We say that aset E C K is (n,¢, K, f)-separated (by
the map f) if for any z,y € E, © # y, there is k € {0,1,...,n — 1} such
that d(f*(x), f¥(y)) > ¢. Denote by s, (¢, K, f) the cardinality of any
maximal (n, e, K, f)-separated set in K and define

s(e, K, f) = limsup — logsn(e K. f).

n—oo

Now the topological entropy of f is

hd(f) = Sup hH(l)S(E,K, f)
K €

\R{M\
Jose Canovas, Jiri Kupka* (IRAFM) 10 / 26



Basic notions

If the space X is not compact, we use the following definition of
topological entropy

ent(f) = sup{h(f|x): K € Ks(X)},

where K (X) denotes the set of f-invariant (i.e., f(A) C A for any
A C X)) compact subsets of X.
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Basic notions

For a continuous map f : X — X on a compact metric space we denote
by 5(X) the Borel sets of X. Then, a probabilistic measure

w: B(X) — [0,1] is said to be invariant (resp. f-invariant) by f if
w(f~H(A)) = u(A) for all A€ B(X). If we denote by M(X, f) the set of
f-invariant measures on X, it is known that this set is nonempty,
compact and convex.

An f-invariant measure is ergodic if either p(A) =1 or 0 for any
invariant set A. The set of ergodic measures on X will be denoted by
E(X, f). It is known that this set is also nonempty and compact in
M(X, f).
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Basic notions

For a continuous map f : X — X on a compact metric space we denote
by 5(X) the Borel sets of X. Then, a probabilistic measure

w: B(X) — [0,1] is said to be invariant (resp. f-invariant) by f if
w(f~H(A)) = u(A) for all A€ B(X). If we denote by M(X, f) the set of
f-invariant measures on X, it is known that this set is nonempty,
compact and convex.

An f-invariant measure is ergodic if either p(A) =1 or 0 for any
invariant set A. The set of ergodic measures on X will be denoted by
E(X, f). It is known that this set is also nonempty and compact in
M(X, f). For a continuous map ¢ : X — C and any z € X and

u € E(X, f) the Birkhoff's Ergodic Theorem states that

n—00 N 4

1n—1
lim — of"x:/ d
gw (2) = | wdu

p-almost everywhere.
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Basic notions

A measurable partition of a probabilistic space X is a family of
measurable pairwise disjoint subsets of X whose union is X. Let

A ={A1,..., A} be a finite partition of measurable sets of X. We define
the metric entropy of the partition A as

Zu i) log 11 (A;)

(here 0log 0 = 0). For given finite partitions A and 3, one can define a
new finite partition AV B ={A; N B; : A; € A, B; € B}. Define the
metric entropy of f over the partition A

1 n—1 )
hu(f, A) = lim ~H (\:/O f‘%) .

Then, the metric entropy (also called measure theoretical entropy) of
f is the non-negative number

byt (F) = sup by (£, A). FAN
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Basic notions

According to [Knopfmacher], we need a measure space (X, 5(X), ),
where §(X) is the Borel o-algebra, i is a nonzero finite measure, and
F(X) consists of y-measurable functions. Then, for any real-valued
function g : I — R such that

= g(0) =g(1) =0,

m g(a) =g(1 —a) forany a € I,

m g is strictly increasing on [0,1/2],

the expression
1
e (A) = —/ A(x))dp(x 1
n(4) ) 9(A(x))dp(z) (1)
defines a degree of fuzziness e(A) of a fuzzy set A € F(X). Moreover,
if A=S"" aixx, with a; € (0,1] and X; € B(X), i =1, ..., k, then

eu(A) = iy glai) pl(X).
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Basic notions

Lemma

([Knopfmacher, 1975]) The degree of fuzziness e : F(X) — R has the
following properties (A € F(X)):

Al. e(A) = 0 if and only either A = x¢ for some C C X or A "= (b,
A2. e(A) is maximal if and only if A =3 %XXr
A3. e(A) < e(B) whenever A is less fuzzy than B, that is

A(x) < B(xz) <1/2 or A(z) > B(x) > 1/2 for almost all x € X,

A4. e(A) = e(A°),

A5. e is continuous with respect to the supremum metric on F(X).
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Basic notions

SEME

Let 1 be a probabilistic measure whose support is a singleton set {ag}
and let {a;}ien be a sequence converging to ag such that a; # ag for
each i € N. Then, clearly for some fixed ¢ € (0,1) and any g as above,

eu(C+ Xag) > 0,

but
eu(c - Xa;) =0, for each i € N.

However, {c - xq, }ien converges to ¢ - xq, in the metric topology induced
by any of dg,ds and d, which implies the discontinuity of e,,.
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Basic notions

Theorem

Let X =1 =10,1], \ be the Lebesgue measure \ on the Borel o-algebra
B(I) of I and g be continuous. The degree of fuzziness ey : FL(I) — R is
continuous with respect to dyo.

\R@
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Constructions and resuls

Let e, be a degree of fuzziness, with 1 a probability measure on the Borel
sets of X. Then, for A € F1(X) we can define the degree of fuzziness
along the orbit of A as

n—1

1 .
df (A, e,) = i - Di(A).
If (A ep) im sup — ; epoP'(A)

If e, is continuous and m € £(F!(X),®), we have

n—1
1 ‘
lim — E e o P'(A) = / epdm = m(e,)
=0 F

for almost all A € F1(X).
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Constructions and resuls

We define the degree of fuzziness of @ as
df (D, e,,) = sup{df (A, e,) : A € F'(X)}.

It is easy to see that the degree of fuzziness is preserved by a conjugacy.

If e, is continuous, we can define the ergodic degree of fuzziness of the
map @ as

edf (@, e,) = sup{m(e,) : m € S(]Fl(X),@)},

which again is a measure of the fuzziness of a continuous map.
Lemma

edf (2, eu) < df(®, eu)
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Constructions and resuls

x 4 x
1o 1o
y % vy

Theorem

Let e, : F1(X) — [0,1] be a degree of fuzziness on F'(X). Let
f: X —>Xandg:Y — Y be continuous maps on compact metric
spaces. If they are conjugated, with conjugacy o, then

edf(@f, eﬂ) = edf(@g, 61’)7

where v = po0 1.
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Constructions and resuls

For a fixed degree of fuzziness e, : F(X) — [0,1] and for a € [0, 1], let

Folen) = {A€F (X) : df (A,e,) = a}.

Lemma

Foley) is P-invariant.

If e, is continuous and « € [0, 1], let
EFaley) ={A e FHX)  edf(A,e,) = a}.
EF o (ey) is P-invariant.

Lemma
EFaley) C Faley) for any o € [0,1].
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Constructions and resuls

We define the dynamic fuzzy entropy of @, denoted by fuzzent(®) in
the following way

fuzzent(®) = ent (@|Uae(0,1]]-'a(6p)) @)

If e, is continuous, we can make use of ergodic measures and the
variational principle for topological entropy to define a new notion which
we call ergodic fuzzy entropy by

efuzzent (@) = sup {hy, (D) : m € EFHX),®) and m(e,) > 0}. (3

\RQ
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Constructions and resuls

The following statements hold:

If two continuous maps f : X — X and g: Y — Y are conjugate,
then fuzzent(®y) = fuzzent(Py).

For any n € N we have that fuzzent(®") = n - fuzzent(®).
If ® is a homeomorphism, then fuzzent(®) = fuzzent(®~!).

Theorem

The following statements hold:

If two continuous maps f : X — X and g : Y — Y are conjugate,
then efuzzent(Py) = efuzzent(Py).

For any n € N we have that efuzzent(®") = n - efuzzent(®P).

If @ is a homeomorphism, then efuzzent(®) = efuzzent(d1).
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Constructions and resuls

Let f : X — X be continuous and let & : F'(X) — F1(X) be its Zadeh's
extension. Let e, be a continuous degree of fuzziness. Then

efuzzent(P) > fuzzent(P). (4)

Example

Let X =7 =10,1] and let f : I — I be continuous. Let

@ : FL(I) — FL(I) be the Zadeh's extension of f on the fuzzy numbers of
I. Let X be the Lebesgue measure on I and let e) be the degree of
fuzziness generated by A. We get fuzzent(®) = h(f).
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Conclusions

m Several instruments for dealing with degree of fuzziness in fuzzy
dynamical systems were elaborated.

m Some basic properties were studied.
= Although some questions are left open ...

m We demonstrated that in some special (but still reasonable) cases it
is sufficient to deal with fuzzy sets with zero degree of fuzziness.
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