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Motivation

X ... a compact metric space
I ... the unit interval [0, 1]

f ∈ C(X) ... a continuous map f : X → X

Φ ... the Zadeh’s extension of f

X
f→ X

� �

F(X)
Φ→ F(X)

There exists (X, f) such that

h(f) = 0, 0 < h(f̄) <∞, ent(Φ) =∞.

If X = [0, 1], then
h(f) = ent(Φ)

on the space of fuzzy numbers.
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Motivation

For any fuzzy set A ∈ F(X) a fuzzy entropy (degree of fuzziness) e(A)
can be defined by a function e : F(X)→ [0, 1] satisfying the following
axioms, below A,B ∈ F(X):

A1. e(A) = 0 if and only either A = χC for some C ⊆ X or A = ∅.
A2. e(A) = 1 if and only if A = 1

2χX .
A3. e(A) ≤ e(B) whenever A is less fuzzy than B, that is

A(x) ≤ B(x) ≤ 1/2 or A(x) ≥ B(x) ≥ 1/2 for all x ∈ X.
A4. e(A) = e(Ac).
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Basic notions

X denotes a compact metric space
a characteristic function χB : X → I on B ⊆ X

χB(x) =

{
1 x ∈ B,
0 x 6∈ B.

a fuzzy set A : X → I

for α ∈ I, α-cut of A is [A]α = {x ∈ X |A(x) ≥ α}
support of A is defined by

supp(A) = {x ∈ X |A(x) > 0}.

F(X) ... the family of upper semicontinuous fuzzy sets on X
F1(X) ... the family of normal upper-semicontinuous fuzzy sets on
X

F1
c(X) ... the family of normal upper-semicontinuous fuzzy numbers

on X
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Basic notions

Let (X, d) denote a (locally) compact metric space and let A,B be
nonempty compact subsets of X. The Hausdorff metric DX between A
and B is defined by

DX(A,B) = inf{ε > 0 |A ∈ Uε(B) and B ∈ Uε(A)},

where

Uε(A) = {x ∈ X |D(x,A) < ε}, and D(x,A) = inf
a∈A

d(x, a).

By K(X) we denote the metric space of all nonempty compact subsets of
X.
It is well known that K(X) is compact, complete and separable whenever
X itself is compact, complete and separable, respectively.
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Basic notions

For any A ∈ F(X),

end(A) = {(x, a) ∈ X × I |A(x) ≥ a}

and
send(A) = end(A) ∩ (supp(A)× I).

The sendograph metric [P. E. Kloeden, 1982]

dS(A,B) = DX×I(send(A), send(B))

is defined for nonempty fuzzy sets A,B ∈ F0(X) and the endograph
metric [Fan, 2004] is defined for any two A,B ∈ F(X)

dE(A,B) = DX×I(end(A), end(B)).

We define the levelwise metric [Kaleva, Seikkala, 1984] on F0(X) by

d∞(A,B) = sup
α∈I

DX([A]α, [B]α).
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Basic notions

For a given map f ∈ C(X), we define its fuzzification or Zadeh’s
extension Φ : F(X)→ F(X) by

(Φ(A))(y) = sup
x∈f−1(y)

{A(x)}.

We also define f̄ : K(X)→ K(X) as a set-valued extension of f by

f̄(A) = f(A) for any A ∈ K(X).
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Basic notions

Let us introduce the Bowen’s definition of topological entropy for
continuous maps ([Bowen]). Let K ⊂ X be a compact subset and fix
ε > 0 and n ∈ N. We say that a set E ⊂ K is (n, ε,K, f)-separated (by
the map f) if for any x, y ∈ E, x 6= y, there is k ∈ {0, 1, ..., n− 1} such
that d(fk(x), fk(y)) > ε. Denote by sn(ε,K, f) the cardinality of any
maximal (n, ε,K, f)-separated set in K and define

s(ε,K, f) = lim sup
n→∞

1

n
log sn(ε,K, f).

Now the topological entropy of f is

hd(f) = sup
K

lim
ε→0

s(ε,K, f).
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Basic notions

If the space X is not compact, we use the following definition of
topological entropy

ent(f) = sup{h(f |K) : K ∈ Kf (X)},

where Kf (X) denotes the set of f-invariant (i.e., f(A) ⊆ A for any
A ⊆ X) compact subsets of X.
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Basic notions

For a continuous map f : X → X on a compact metric space we denote
by β(X) the Borel sets of X. Then, a probabilistic measure
µ : β(X)→ [0, 1] is said to be invariant (resp. f -invariant) by f if
µ(f−1(A)) = µ(A) for all A ∈ β(X). If we denote byM(X, f) the set of
f -invariant measures on X, it is known that this set is nonempty,
compact and convex.
An f -invariant measure is ergodic if either µ(A) = 1 or 0 for any
invariant set A. The set of ergodic measures on X will be denoted by
E(X, f). It is known that this set is also nonempty and compact in
M(X, f). For a continuous map ϕ : X → C and any x ∈ X and
µ ∈ E(X, f) the Birkhoff’s Ergodic Theorem states that

lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ fn(x) =

∫
X
ϕdµ

µ-almost everywhere.
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Basic notions

A measurable partition of a probabilistic space X is a family of
measurable pairwise disjoint subsets of X whose union is X. Let
A = {A1, ..., Ak} be a finite partition of measurable sets of X. We define
the metric entropy of the partition A as

Hµ(A) = −
k∑
i=1

µ (Ai) logµ (Ai)

(here 0 log 0 = 0). For given finite partitions A and B, one can define a
new finite partition A ∨ B = {Ai ∩Bj : Ai ∈ A, Bj ∈ B}. Define the
metric entropy of f over the partition A

hµ(f,A) = lim
n→∞

1

n
H

(
n−1∨
i=0

f−iA

)
.

Then, the metric entropy (also called measure theoretical entropy) of
f is the non-negative number

hµ (f) = sup
A
hµ(f,A).
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Basic notions

According to [Knopfmacher], we need a measure space (X,β(X), µ),
where β(X) is the Borel σ-algebra, µ is a nonzero finite measure, and
F(X) consists of µ-measurable functions. Then, for any real-valued
function g : I → R such that

g(0) = g(1) = 0,
g(α) = g(1− α) for any α ∈ I,
g is strictly increasing on [0, 1/2],

the expression

eµ(A) =
1

µ(X)

∫
g(A(x))dµ(x) (1)

defines a degree of fuzziness e(A) of a fuzzy set A ∈ F(X). Moreover,
if A =

∑k
i=1 aiχXi , with ai ∈ (0, 1] and Xi ∈ β(X), i = 1, ..., k, then

eµ(A) =
∑k

i=1 g(ai)µ(Xi).
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Basic notions

Lemma

([Knopfmacher, 1975]) The degree of fuzziness e : F(X)→ R has the
following properties (A ∈ F(X)):
A1. e(A) = 0 if and only either A a.e.

= χC for some C ⊆ X or A a.e.
= ∅X ,

A2. e(A) is maximal if and only if A a.e.
= 1

2χX ,
A3. e(A) ≤ e(B) whenever A is less fuzzy than B, that is

A(x) ≤ B(x) ≤ 1/2 or A(x) ≥ B(x) ≥ 1/2 for almost all x ∈ X,
A4. e(A) = e(Ac),
A5. e is continuous with respect to the supremum metric on F(X).
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Basic notions

Example

Let µ be a probabilistic measure whose support is a singleton set {a0}
and let {ai}i∈N be a sequence converging to a0 such that ai 6= a0 for
each i ∈ N. Then, clearly for some fixed c ∈ (0, 1) and any g as above,

eµ(c · χa0) > 0,

but
eµ(c · χai) = 0, for each i ∈ N.

However, {c · χai}i∈N converges to c · χa0 in the metric topology induced
by any of dE , dS and d∞, which implies the discontinuity of eµ.
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Basic notions

Theorem

Let X = I = [0, 1], λ be the Lebesgue measure λ on the Borel σ-algebra
β(I) of I and g be continuous. The degree of fuzziness eλ : F1

c(I)→ R is
continuous with respect to d∞.
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Constructions and resuls

Let eµ be a degree of fuzziness, with µ a probability measure on the Borel
sets of X. Then, for A ∈ F1(X) we can define the degree of fuzziness
along the orbit of A as

df(A, eµ) = lim sup
n→∞

1

n

n−1∑
i=0

eµ ◦ Φi(A).

If eµ is continuous and m ∈ E(F1(X), Φ), we have

lim
n→∞

1

n

n−1∑
i=0

eµ ◦ Φi(A) =

∫
F1(X)

eµdm = m(eµ)

for almost all A ∈ F1(X).
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Constructions and resuls

We define the degree of fuzziness of Φ as

df(Φ, eµ) = sup{df(A, eµ) : A ∈ F1(X)}.

It is easy to see that the degree of fuzziness is preserved by a conjugacy.

If eµ is continuous, we can define the ergodic degree of fuzziness of the
map Φ as

edf(Φ, eµ) = sup{m(eµ) : m ∈ E(F1(X), Φ)},

which again is a measure of the fuzziness of a continuous map.
Lemma

edf(Φ, eµ) ≤ df(Φ, eµ)
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Constructions and resuls

X
f→ X

↓ ϕ ↓ ϕ

Y
g→ Y

Theorem

Let eµ : F1(X)→ [0, 1] be a degree of fuzziness on F1(X). Let
f : X → X and g : Y → Y be continuous maps on compact metric
spaces. If they are conjugated, with conjugacy ϕ, then

edf(Φf , eµ) = edf(Φg, eν),

where ν = µ ◦ ϕ−1.
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Constructions and resuls

For a fixed degree of fuzziness eµ : F(X)→ [0, 1] and for α ∈ [0, 1], let

Fα(eµ) =
{
A ∈ F1(X) : df(A, eµ) = α

}
.

Lemma

Fα(eµ) is Φ-invariant.

If eµ is continuous and α ∈ [0, 1], let

EFα(eµ) =
{
A ∈ F1(X) : edf(A, eµ) = α

}
.

Lemma

EFα(eµ) is Φ-invariant.

Lemma

EFα(eµ) ⊂ Fα(eµ) for any α ∈ [0, 1].

Jose Cánovas, Jiří Kupka* (IRAFM) 21 / 26



Constructions and resuls

We define the dynamic fuzzy entropy of Φ, denoted by fuzzent(Φ) in
the following way

fuzzent(Φ) = ent(Φ|⋃
α∈(0,1]Fα(eµ)

) (2)

If eµ is continuous, we can make use of ergodic measures and the
variational principle for topological entropy to define a new notion which
we call ergodic fuzzy entropy by

efuzzent(Φ) = sup
{
hm(Φ) : m ∈ E(F1(X), Φ) and m(eµ) > 0

}
. (3)
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Constructions and resuls

Theorem

The following statements hold:
1 If two continuous maps f : X → X and g : Y → Y are conjugate,

then fuzzent(Φf ) = fuzzent(Φg).

2 For any n ∈ N we have that fuzzent(Φn) = n · fuzzent(Φ).
3 If Φ is a homeomorphism, then fuzzent(Φ) = fuzzent(Φ−1).

Theorem

The following statements hold:
1 If two continuous maps f : X → X and g : Y → Y are conjugate,

then efuzzent(Φf ) = efuzzent(Φg).

2 For any n ∈ N we have that efuzzent(Φn) = n · efuzzent(Φ).
3 If Φ is a homeomorphism, then efuzzent(Φ) = efuzzent(Φ−1).
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Constructions and resuls

Theorem

Let f : X → X be continuous and let Φ : F1(X)→ F1(X) be its Zadeh’s
extension. Let eµ be a continuous degree of fuzziness. Then

efuzzent(Φ) ≥ fuzzent(Φ). (4)

Example

Let X = I = [0, 1] and let f : I → I be continuous. Let
Φ : F1

c(I)→ F1
c(I) be the Zadeh’s extension of f on the fuzzy numbers of

I. Let λ be the Lebesgue measure on I and let eλ be the degree of
fuzziness generated by λ. We get fuzzent(Φ) = h(f).
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Conclusions

Several instruments for dealing with degree of fuzziness in fuzzy
dynamical systems were elaborated.
Some basic properties were studied.
Although some questions are left open ...
We demonstrated that in some special (but still reasonable) cases it
is sufficient to deal with fuzzy sets with zero degree of fuzziness.
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Conclusions

Thanksgiving

Thank You for Your Attention
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