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Causality and stochastic causality

Cause and effect

Cause: | throw dice.
Effect: Dice falls down. It is not important which face.

Cause and stochastic effect

Cause: | throw dice.

Stochastic effect: Dice falls down. The face is a matter of
stochasticity.

Theory of probability.




Causality and stochastic causality

Stochastic cause and stochastic effect

Stochastic cause: | throw dice only with probability 0.2.
Stochastic effect: Dice falls down with probability 0.2.
Theory of probability

Stochastic cause and stochastic effect

Stochastic cause: | throw dice only with probability 0.2

Stochastic effect: Dice falls down with probability 0.2. The face is a
matter of stochasticity.

Theory of probability and conditional probability.

etc...



C. W. J. Granger: Investiganting causal relations by
econometric models and cross-spectral methods.

Econometrica, 37, (1969)

Suppose we have two stationary time series

X={X(}ez Y ={Y()}tez
and we intend to study whether X causes Y or not. Granger causality
analysis is based on two principles:

@ The cause happens prior to the effect.

@ The cause makes unique changes in the effect. In other words,
the causal series contains unique information about the effect
series that is not available otherwise.



Granger causality

Let
@ /(1) is the set of all information in the universe up to time t

@ Ix(t) is the set of all information in the universe excluding X up to
time t
Suppose all the information have been recorded on equally spaced
time stamps t € Z. Now given the two principles, the conditional
distribution of future values of Y given Ix(t) and /(t) should differ.
X causes Y if

P(Y(t+1) € All(t)) # P(Y(t+1) € Allx())

for some measurable set AC Randallt € Z.



P.O. Amblard, O.J.J. Michal: The relation between Granger Causality
and directed information theory: A Review. Entropy 15, (2013)

Granger causality measures a stochastics dependence between the
past of a process and the present of another. In this respect the word
causality in the sense of Granger has the usual meaning that a cause
occurs prior to its effect.

Granger causality is based on the ussual concept of conditional
probability theory.




Let X, Y be random variables,
X be a cause and Y be its effect.
There exist two probability spaces
Px = (2, Fx.Px) Py =(Qy, Fy, Py)

How to model this situation?

@ Within Cartesian products Px x Py and Py x Px:
we need two joint distributions Fx y = Fx.Fy and Fy x # Fx.Fy.

@ Within OML we need only one s-map p.

Let A, B be two random events, A be a cause and B be its effect. How
is it possible to describe this causality via probability measure

p(effect, cause) = p(B, A) =7



An orthomodular lattice (OML)

Definition
Let (L,0.,1.,V, A, L) be a lattice with the greatest element 1, and the
smallest element 0,. Let L: L — L be a unary operation on L with the
following properties:

@ for all a € L there is a unique a' € L such that (at)+ = aand

avat =1

@ ifa,be Land a< bthen bt < at;

Q@ ifabeLanda< bthen b= aVv (a' A b) (orthomodular law).
Then (L,0.,1,,V, A, L) is said to be an orthomodular lattice.




Amap m: L — [0,1] is called a o-additive state on L, if for arbitrary, at
most countable, system of mutually orthogonal elements a; € L,
i € I C N, the following holds

Vlelal Z m al

iel

and m(1,) =1.

Probability versus state two random events
@ Probability space: P(E)=P(F)=1 = P(ENF)=1
@ OML: m(a) = m(b) =1 does notimply m(anb) =1
@ In the special case — Jauch-Piron states:
m(a)=m(b)=1 = m(arb)=1

| A\
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As it was proved by R.Greechie, there exist orthomodular lattices with
no state.



Let L be an OML and let B be a Boolean algebra. Amap h: L — B
fulfilling the following properties:

@ h(0,) =0g, h(1.) = 1g;
e h(at) = h(a)t vac L;
e if a L bthen h(aVv b) = h(a) v h(b).
will be called a morphism from L to B.
Ifa,belL
h(av b) > h(a) v h(b)
h(a A b) < h(a) A h(b)
fa< b
h(aV b) = h(a) v h(b)
h(a A b) = h(a) A h(b)

If a < b then h(a) < h(b).



Let 1 be an additive measure on B and h be a morphism h: L — B.
Then

a) up - L — [0,1] such that up(a@) = u(h(a)) Vae€ Lis astate on L;

b) py : L x L — [0, 1] such that px(a, b) = u(h(a) A h(b)) Va,belL
induces a joint distribution on L;

c) dy: Lx L—[0,1] suchthat dy(a, b) = u(h(a)Ah(b)) Va,belLis
a measure of symmetric difference on L;

d) Let By = {E € B;u(E) >0} and Lo = {e € L; h(e) € By}. Then
fp: L x Ly — [0, 1] such that

_u(h(a) A h(b))
@by === they)

is a conditional state on L.



X = {X1, X0, X3, X4, Xs} and B = (X, 2% p):

pn(ai, b1) = p({x1})
du(ai, b1) = p({xs, X2 })




Example: L = {ai,ap, C, by, bo, ai, a5, ct, by, by }

Let X = {xy, X, X3, X4, Xs } and B = 2X. Let ;1 be a measure on B.
Then h: L — B can be defined as follows

h(ai) = {x1,x2} h(a) = {x3, Xa}
h(br) = {x1, X3} h(b2) = {x2, Xa}
h(c) = {xs}  h(c")={x1, X, Xs, Xa}

s-map, symmetric difference, conditional state
a) pn(a, br) = p(h(as) A h(br)) = u({x})
b)ds(ar, br) = u({xs, X2})

c)n(an, by) = DS = P, ({xa}[{x1, xe})




Two dimensional state - s-map

Let L be an OML. Amap p: L x L — [0, 1] will be called an s-map on
L if the following conditions are fulfilled:

(s1) p(1L,1L) =1;
(s2) forall a,b e Lifa L bthen p(a,b) = 0;
(s3) foralla,b,ce Lifal bthen

p(aV b,c) = p(a,c) +p(b,c) p(c,aVb)=p(c,a)+p(cb).

In general p(a, b) = p(b, a) is not true.
If a <> b, then p(a,b) = p(an b,anb).




If 4p : L — [0,1] such that 1p(a) = p(a, @) Va € L, then
(pl) wp is a state.
(P2) p(a,b) < pp(a)forallabe L.
(P3) p(a,b) = pup(an b)fora« b.
Jauch-Piron’s property: Let a,b € L.
p(a, a) = p(b, b) = 1iff p(a, b) = p(b,a) =1
p(a,c) = p(b,c) Ve e L.

Let d(a, b) = p(a*, b) + p(a,b*). If Va,b,c € L

p(a, b) = p(a,b), d(a,b) < d(a,c)+d(b,c)

then OML L with p looks like as classical probability space
(virtual probability space).



Let L be a 0-OML. A o-homomorphism x from Borel sets to L (B(R)),
such that x(R) = 1, is called an observable on L. J

Let L be a o-OML. Observables x, y are called compatible (x <> y) if
x(A) < y(B) for all A, B € B(R). J

Loomis-Sikorsky Theorem

Let L be a o-OML and x, y be compatible observables on L. Then
there exists a o-homomorphism H and real functions f, g such that
x(A) = H(f~'(A)) and y(A) = H(g~"(A)) for each A € B(R) (briefly
x=foHandy=goH,).




Let x be an observable and m be a o-additive state on L. Then the
expectation of the observable x in the state m (E;;(x)) is defined by

En(x) = /H t m(x(at)),

if the integral exists.

Let (2, F, P) be a probability space.
@ Hence F is a o-OML. Furthermore, if £ is a random variable on
(Q,F, P), then ¢! is an observable.

@ If we have an observable x on a o-OML L, we are in the same
situation as in the classical probability space. We use only
another language for the standard situation.

@ Problems occur if we have two causal observales.



Joint distribution

Let L be a 0-OML and x, y € O. Then a map pyx,, : B(R)? — [0, 1],
such that py,, (£, s) = p(x((—o0, t)), ¥((—oc, s))) is called a joint
p-distribution of the observables x, y.

Let L be a o-OML, x, y be observables and p be s-map. We say that:
x is causal to y with respect to p if there exist A, B € B(R) such that

p(x(A), y(B)) # p(y(B), x(A))




X cause Y its effect

Strong causality

Let L be a o-OML, x, y be observables and p be s-map. We say that:
x is causal to y with respect to p if 3E, F € B(R) such that

p(X(E),y(F)) # p(y(F), Y(F))-p(x(E), x(E))
and VA, B € B(R)

p(y(B), x(A)) = p(y(B), Y(B))-p(x(A), x(A))




X cause Y its effect

Let p be s-map. Conditional state:

p(a, b)

fr(a, b) = p(b, b)

p(b,b) # 0

Conditional expectation

Let L be a o-OML, p be an s-map, x an observable and B be a
Boolean sub-o-algebra of L. A version of conditional expectation of
the observable x with respect to B is an observable z (notation

z = Ep(x|B)) such that R(z) c B and moreover

Et,(z|a) = Eq,(xla)

for arbitrary a € {u € B; pp(u) # 0}.

Since R(x) is Boolean sub-o-algebra of L we will write simply
Ep(y1x) = Ep(y|R(x))-



X cause Y its effect

In fact, the conditional expectation z = E,(x|B) is a projection of the
observable z into the Boolean o-algebra B. This means, if we have
z = Ep(y|x) then we have z + x. This property implies that the
conditional expectation E,(y|x) behaves as we are used to from the
conditional expectation of random variables in the Kolmogorovian
probability theory.

(e ) Ep(Ep(x1y)) = Ep(x),
(e2 X|x) = x,

Ep(
Ep(Ep(x|¥)ly) = Ep(xly),
Ep(x; Ep(y[X)) = Ep(X, y)-




X cause Y its effect

If x <> ythen x = fo Hand y = g o H. Applying L-S Theorem we get
X+y=(f+9g)oH.

If x, y are non-compatible then we cannot apply this procedure and
X + y does not exist in this sense.

LetLbeaoc-OMLandpe P. Amap &, : O x O — Ois called a
summability operator if the following conditions are fulfilled

(d1) R(@p(x,y)) C R(Y);

(d2) @p(X,y) = Ep(xly) +y.




X cause Y its effect

Let us have a state 11 : L — [0, 1] defined by the following

1, if t =1y,
u(t) =40, ift=0L,
0.5, otherwise.

Let x be an observable whose spectrum is 51, and y be an
observable whose spectrum is B,. Then x ¢ y. We may have an
s-map p : L2 — [0, 1], achieving the following values for
non-compatible elements s, t € L:

0.3, if(s.t) € {(a b),(a*,b")},

_Jo.2, if(s,t)e{(a-, b),(a bh)},
PED =101, if(s.t) € {(b ). (b",a")),
0.4, if(s,t) € {(b+,a),(b,a)}.



X cause Y its effect

Let L be a 0-OML, B be a Boolean sub-c-algebra of L, and p € P. A

map EBE : O x O — O s called a summability operator with respect to
a condition B if the following conditions are fulfilled

(al) R(®E(x,y)) C B;
(@2) @p(x,y) = Ep(X|B) + Ep(y|B).




Proposition. Let L be a o-OML, B be a Boolean sub-o-algebra of L,
and p € P. Assume x, y € O. Then the following statements are
satisfied

(e1) if x <> y then @p(X,y) < Bp(¥, X);

(€2) ®5(x,y) = B (¥, X);

(€3) Ep (©5(x,¥)) = Ep(®p(x,¥)) = Ep(x) + Ep(¥);

(ed) if o(x) = {x1, X2, ..., Xa} and o (y¥) = {¥1, ¥o, ..., ¥« } then

Ex( ZZ Xi + y)p(x({xi}), y({¥;})-
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