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Causality and stochastic causality

Cause and effect
Cause: I throw dice.
Effect: Dice falls down. It is not important which face.

Cause and stochastic effect
Cause: I throw dice.
Stochastic effect: Dice falls down. The face is a matter of
stochasticity.
Theory of probability.



Causality and stochastic causality

Stochastic cause and stochastic effect
Stochastic cause: I throw dice only with probability 0.2.
Stochastic effect: Dice falls down with probability 0.2.
Theory of probability

Stochastic cause and stochastic effect
Stochastic cause: I throw dice only with probability 0.2
Stochastic effect: Dice falls down with probability 0.2. The face is a
matter of stochasticity.
Theory of probability and conditional probability.

etc . . .



C. W. J. Granger: Investiganting causal relations by
econometric models and cross-spectral methods.
Econometrica, 37, (1969)

Suppose we have two stationary time series

X = {X (t)}t∈Z Y = {Y (t)}t∈Z

and we intend to study whether X causes Y or not. Granger causality
analysis is based on two principles:

The cause happens prior to the effect.
The cause makes unique changes in the effect. In other words,
the causal series contains unique information about the effect
series that is not available otherwise.



Granger causality

Let
I(t) is the set of all information in the universe up to time t
IX (t) is the set of all information in the universe excluding X up to
time t

Suppose all the information have been recorded on equally spaced
time stamps t ∈ Z . Now given the two principles, the conditional
distribution of future values of Y given IX (t) and I(t) should differ.
X causes Y if

P(Y (t + 1) ∈ A|I(t)) 6= P(Y (t + 1) ∈ A|IX (t))

for some measurable set A ⊆ R and all t ∈ Z .



P.O. Amblard, O.J.J. Michal: The relation between Granger Causality
and directed information theory: A Review. Entropy 15, (2013)

Granger causality measures a stochastics dependence between the
past of a process and the present of another. In this respect the word
causality in the sense of Granger has the usual meaning that a cause
occurs prior to its effect.

Granger causality is based on the ussual concept of conditional
probability theory.



Let X ,Y be random variables,

X be a cause and Y be its effect.

There exist two probability spaces

PX = (ΩX ,FX ,PX ) PY = (ΩY ,FY ,PY )

How to model this situation?
Within Cartesian products PX × PY and PY × PX :
we need two joint distributions FX ,Y = FX .FY and FY ,X 6= FX .FY .
Within OML we need only one s-map p.

Let A,B be two random events, A be a cause and B be its effect. How
is it possible to describe this causality via probability measure

p(effect , cause) = p(B,A) =?



An orthomodular lattice (OML)

Definition

Let (L,0L,1L,∨,∧,⊥) be a lattice with the greatest element 1L and the
smallest element 0L. Let ⊥: L→ L be a unary operation on L with the
following properties:

1 for all a ∈ L there is a unique a⊥ ∈ L such that (a⊥)⊥ = a and
a ∨ a⊥ = 1L;

2 if a,b ∈ L and a ≤ b then b⊥ ≤ a⊥;
3 if a,b ∈ L and a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L,0L,1L,∨,∧,⊥) is said to be an orthomodular lattice.



A map m : L→ [0,1] is called a σ-additive state on L, if for arbitrary, at
most countable, system of mutually orthogonal elements ai ∈ L,
i ∈ I ⊂ N, the following holds

m(∨i∈Iai ) =
∑
i∈I

m(ai )

and m(1L) = 1.

Probability versus state two random events

Probability space: P(E) = P(F ) = 1 ⇒ P(E ∩ F ) = 1
OML: m(a) = m(b) = 1 does not imply m(a ∧ b) = 1
In the special case — Jauch-Piron states:
m(a) = m(b) = 1 ⇒ m(a ∧ b) = 1

As it was proved by R.Greechie, there exist orthomodular lattices with
no state.



Let L be an OML and let B be a Boolean algebra. A map h : L→ B
fulfilling the following properties:

h(0L) = 0B, h(1L) = 1B;
h(a⊥) = h(a)⊥ ∀a ∈ L;
if a ⊥ b then h(a ∨ b) = h(a) ∨ h(b).

will be called a morphism from L to B.

If a,b ∈ L
h(a ∨ b) ≥ h(a) ∨ h(b)

h(a ∧ b) ≤ h(a) ∧ h(b)

If a↔ b

h(a ∨ b) = h(a) ∨ h(b)

h(a ∧ b) = h(a) ∧ h(b)

If a ≤ b then h(a) ≤ h(b).



Let µ be an additive measure on B and h be a morphism h : L→ B.
Then

a) µh : L→ [0,1] such that µh(a) = µ(h(a)) ∀a ∈ L is a state on L;

b) ph : L× L→ [0,1] such that ph(a,b) = µ(h(a) ∧ h(b)) ∀a,b ∈ L
induces a joint distribution on L;

c) dh : L× L→ [0,1] such that dh(a,b) = µ(h(a)4h(b)) ∀a,b ∈ L is
a measure of symmetric difference on L;

d) Let B0 = {E ∈ B;µ(E) > 0} and L0 = {e ∈ L; h(e) ∈ B0}. Then
fh : L× L0 → [0,1] such that

fh(a,b) =
µ(h(a) ∧ h(b))

µ(h(b))

is a conditional state on L.



X = {x1, x2, x3, x4, x5} and B = (X ,2X , µ):
ph(a1,b1) = µ({x1})
dh(a1,b1) = µ({x3, x2})
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Example: L = {a1,a2, c,b1,b2,a⊥1 ,a
⊥
2 , c

⊥,b⊥1 ,b
⊥
2 }

Let X = {x1, x2, x3, x4, x5} and B = 2X . Let µ be a measure on B.
Then h : L→ B can be defined as follows

h(a1) = {x1, x2} h(a2) = {x3, x4}
h(b1) = {x1, x3} h(b2) = {x2, x4}
h(c) = {x5} h(c⊥) = {x1, x2, x3, x4}

s-map, symmetric difference, conditional state

a) ph(a1,b1) = µ(h(a1) ∧ h(b1)) = µ({x1})

b)dh(a1,b1) = µ({x3, x2})

c)fh(a1,b1) = µ({x1})
µ({x1,x3}) = Pµ({x1}|{x1, x3})



Two dimensional state - s-map

Definition

Let L be an OML. A map p : L× L→ [0,1] will be called an s-map on
L if the following conditions are fulfilled:
(s1) p(1L,1L) = 1;
(s2) for all a,b ∈ L if a ⊥ b then p(a,b) = 0;
(s3) for all a,b, c ∈ L if a ⊥ b then

p(a ∨ b, c) = p(a, c) + p(b, c) p(c,a ∨ b) = p(c,a) + p(c,b).

In general p(a,b) = p(b,a) is not true.
If a↔ b, then p(a,b) = p(a ∧ b,a ∧ b).



If µp : L→ [0,1] such that µp(a) = p(a,a) ∀a ∈ L, then
(p1) µp is a state.
(p2) p(a,b) ≤ µp(a) for all a,b ∈ L.
(p3) p(a,b) = µp(a ∧ b) for a↔ b.

Jauch-Piron’s property: Let a,b ∈ L.

p(a,a) = p(b,b) = 1 iff p(a,b) = p(b,a) = 1

p(a, c) = p(b, c) ∀c ∈ L.

Let d(a,b) = p(a⊥,b) + p(a,b⊥). If ∀a,b, c ∈ L

p(a,b) = p(a,b), d(a,b) ≤ d(a, c) + d(b, c)

then OML L with p looks like as classical probability space
(virtual probability space).



Let L be a σ-OML. A σ-homomorphism x from Borel sets to L (B(R)),
such that x(R) = 1L is called an observable on L.

Let L be a σ-OML. Observables x , y are called compatible (x ↔ y ) if
x(A)↔ y(B) for all A,B ∈ B(R).

Loomis-Sikorsky Theorem

Let L be a σ-OML and x , y be compatible observables on L. Then
there exists a σ-homomorphism H and real functions f ,g such that
x(A) = H(f−1(A)) and y(A) = H(g−1(A)) for each A ∈ B(R) (briefly
x = f ◦ H and y = g ◦ H).



Let x be an observable and m be a σ-additive state on L. Then the
expectation of the observable x in the state m (Em(x)) is defined by

Em(x) =

∫
R

t m(x(dt)),

if the integral exists.

Let (Ω,F ,P) be a probability space.
Hence F is a σ-OML. Furthermore, if ξ is a random variable on
(Ω,F ,P), then ξ−1 is an observable.
If we have an observable x on a σ-OML L, we are in the same
situation as in the classical probability space. We use only
another language for the standard situation.
Problems occur if we have two causal observales.



Joint distribution

Let L be a σ-OML and x , y ∈ O. Then a map px,y : B(R)2 → [0,1],
such that px,y (t , s) = p(x((−∞, t)), y((−∞, s))) is called a joint
p-distribution of the observables x , y .

Causality

Let L be a σ-OML, x , y be observables and p be s-map. We say that:
x is causal to y with respect to p if there exist A,B ∈ B(R) such that

p(x(A), y(B)) 6= p(y(B), x(A))



X cause Y its effect

Strong causality

Let L be a σ-OML, x , y be observables and p be s-map. We say that:
x is causal to y with respect to p if ∃E ,F ∈ B(R) such that

p(x(E), y(F )) 6= p(y(F ),Y (F )).p(x(E), x(E))

and ∀A,B ∈ B(R)

p(y(B), x(A)) = p(y(B),Y (B)).p(x(A), x(A))



X cause Y its effect

Let p be s-map. Conditional state:

fp(a,b) =
p(a,b)

p(b,b)
p(b,b) 6= 0

Conditional expectation

Let L be a σ-OML, p be an s-map, x an observable and B be a
Boolean sub-σ-algebra of L. A version of conditional expectation of
the observable x with respect to B is an observable z (notation
z = Ep(x |B)) such that R(z) ⊂ B and moreover

Efp (z|a) = Efp (x |a)

for arbitrary a ∈ {u ∈ B;µp(u) 6= 0}.

Since R(x) is Boolean sub-σ-algebra of L we will write simply
Ep(y |x) = Ep(y |R(x)).



X cause Y its effect

In fact, the conditional expectation z = Ep(x |B) is a projection of the
observable z into the Boolean σ-algebra B. This means, if we have
z = Ep(y |x) then we have z ↔ x . This property implies that the
conditional expectation Ep(y |x) behaves as we are used to from the
conditional expectation of random variables in the Kolmogorovian
probability theory.

Properties

(e1) Ep(Ep(x |y)) = Ep(x),
(e2) Ep(x |x) = x ,
(e3) Ep(Ep(x |y)|y) = Ep(x |y),
(e4) Ep(x ,Ep(y |x)) = Ep(x , y).



X cause Y its effect

If x ↔ y then x = f ◦ H and y = g ◦ H. Applying L-S Theorem we get

x + y = (f + g) ◦ H.

If x , y are non-compatible then we cannot apply this procedure and
x + y does not exist in this sense.

Let L be a σ-OML and p ∈ P. A map ⊕p : O ×O → O is called a
summability operator if the following conditions are fulfilled
(d1) R(⊕p(x , y)) ⊂ R(y);
(d2) ⊕p(x , y) = Ep(x |y) + y .



X cause Y its effect

Let us have a state µ : L→ [0,1] defined by the following

µ(t) =


1, if t = 1L,
0, if t = 0L,
0.5, otherwise.

Let x be an observable whose spectrum is B1, and y be an
observable whose spectrum is B2. Then x 6↔ y . We may have an
s-map p : L2 → [0,1], achieving the following values for
non-compatible elements s, t ∈ L:

p(s, t) =


0.3, if (s, t) ∈ {(a,b), (a⊥,b⊥)},
0.2, if (s, t) ∈ {(a⊥,b), (a,b⊥)},
0.1, if (s, t) ∈ {(b,a), (b⊥,a⊥)},
0.4, if (s, t) ∈ {(b⊥,a), (b,a⊥)}.



X cause Y its effect

Definition
Let L be a σ-OML, B be a Boolean sub-σ-algebra of L, and p ∈ P. A
map ⊕Bp : O ×O → O is called a summability operator with respect to
a condition B if the following conditions are fulfilled
(a1) R

(
⊕Bp (x , y)

)
⊂ B;

(a2) ⊕Bp (x , y) = Ep(x |B) + Ep(y |B).



Proposition. Let L be a σ-OML, B be a Boolean sub-σ-algebra of L,
and p ∈ P. Assume x , y ∈ O. Then the following statements are
satisfied
(e1) if x ↔ y then ⊕p(x , y)↔ ⊕p(y , x);
(e2) ⊕Bp (x , y) = ⊕Bp (y , x);

(e3) Ep
(
⊕Bp (x , y)

)
= Ep(⊕p(x , y)) = Ep(x) + Ep(y);

(e4) if σ(x) = {x1, x2, ..., xn} and σ(y) = {y1, y2, ..., yk} then

Ep(x) + Ep(y) =
∑

i

∑
j

(xi + yj )p(x({xi}), y({yj}).



Thank you for your kind attention
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