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An aggregation function A: [0,1]” — [0,1], n > 2

monotonicity A(x) < A(y) whenever x,y € [0,1]",x <y
boundary conditions A(0) =0, A(1) =1

? Under which constrains is an associative n-ary aggregation
function A : [0,1]” — [0, 1] an extension of a binary
associative aggregation function B : [0, 1] — [0, 1]?
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Properties on n-ary functions

A binary function G : [0,1]?> — [0, 1]
associative

G(x,G(y,2)) = G(G(x,y),z) forall x,y,z € [0,1] (1)
has a neutral element e € [0, 1]
G(x,e) = G(e,x) = x forall x € [0, 1] (2)

symmetric

G(x,y) = G(y, x) forall x,y € [0,1] (3)
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PRELIMINARIES Properties of binary functions

Distinguished classes of agg. functions

Properties on n-ary functions

An aggregation function G : [0, 1]> — [0, 1] is called
@ a triangular norm (t-norm) if it is associative, symmetric
and it has neutral element e = 1

@ a triangular conorm (t-conorm) if it is associative,
symmetric and it has neutral element e =0

@ auninorm if it is associative, symmetric and it has neutral
elementec]0, 1]

@ a copulaif it has neutral element e = 1 and it is
2-increasing, i.e.,

G(xX',y') = G(x,y') = G(X',y) + G(x,y) > 0 (4)

forall x,y,x",y € [0,1], x < X, y <y
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Definition (Post)

Let n > 2. A function F: [0, 1]” — [0, 1] is said to be
associative whenever for all xq,...,Xn,...,Xon_1 € [0, 1] it holds

F(F(X1,---, Xn), Xng1,---5 Xon—1) =
- F(X1a F(X27"'a Xn+1)7 Xn+27---> X2n71):
:-‘~:F(X1,...,Xn,1,F(Xn,...,Xgn,‘])). (5)

Definition

Let n > 2. A function F : [0, 1]” — [0, 1] is said to have neutral
element e € [0, 1] whenever F(xy,..., xp) = X; if x; = e for
each j # i.
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Definition

Let n > 2. A function F : [0,1]" — [0, 1] is called symmetric
whenever for each x € [0, 1]" and each permutation
o:{1,...,n} — {1,...,n} it holds

F(X1,. o6 ,Xn) = F(Xa(1),. 50 ,Xa(n)).

We say that a function F is an n-ary extension of a binary
function G if it holds

F(X1,..., xn) = G(G(...G(G(x1,X2),X3) - .. ), Xn—1), Xn)

for all n-tuples in [0, 1]".
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Properties on n-ary functions

(i) Define a mapping F: R® — R by F(Xy, X2, X3) = Xy — Xo + Xa.
Then F is a ternary associative function. Observe that there is no
binary associative function whose ternary extension coincides
with F. Moreover, F has no neutral element and it is not
symmetric.

(i) Let C: [0,1]% — [0, 1] be given by
C(xq, X2, X3) = X1 min{xo, X3 }. Then € = 1 is neutral element
of C, but C is not associative. Note that C is a ternary copula
which is not symmetric.
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ON THE STRUCTURE OF ASSOCIATIVE n-DIMENSIONAL AGC

Theorem (Stupnanova & Kolesarova, AGOP 2011)

Considern > 2. Let e € [0, 1]. Then the following claims are
equivalent:
(i) A mapping F: [0, 1]" — [0, 1] is an associative function
with neutral element e.
(ii) There is a binary associative function G: [0, 1] — [0, 1]
with neutral element e whose n-ary extension is F.

Theorem shows that under the neutral element existence, the
associativity of n-ary functions is classically related to the
associativity of binary functions.
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Definition

Let n > 2. An aggregation function A: [0, 1]” — [0, 1] which is
associative (in the sense of Post), symmetric, and possesses a
neutral element e € [0, 1] is called:

@ ann-ary t-normif e = 1;
@ an n-ary t-conormif e = 0;
@ an n-ary uninormif e €]0, 1].

Corollary

Letn> 2. A function A : [0,1]" — [0, 1] is an n-ary t-norm
(t-conorm, uninorm) if and only if there is a binary t-norm
(t-conorm, uninorm) B : [0, 1]%> — [0, 1] such that A is an n-ary
extension of B.
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n-dimensional copula (n-copula)

For n > 2, a function C: [0,1]” — [0, 1]
(C1) C(xy, ..., xn) = x; whenever Vj # i, x; = 1;
(C2) C(xy, ..., xn) =0whenever 0 € {x1, ..., Xn};

(C3) the n-increasing property, i.e.,
Vx,y € [0,1]", x; < y;, i=1, ..., n,itholds

X;, ified,
> (—1)‘J‘C(U1J,...,u,{)zo, whereu,-J_{ o
Jc{1,...,n} yi, ifi¢d.
(6)

Each n-ary copula is an n-ary aggregation function with a
neutral element e = 1.
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There are two distinguished functions which are n-copulas for
each n > 2: the so-called minimum n-copula M and the product
n-copula I, given by

M(x1,...,Xn) = min{xq,..., Xn},

n
N(xt,...,Xn) = Hx,-.
i=1

The minimum n-copula M describes the comonotone
dependence of random variables Xj, ..., X, and the product
n-copula I describes their independence.
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For each n-copula C it holds
W<C<Mm,

where W is the so-called Fréchet-Hoeffding lower bound, given
by

W(xq,...,Xn) = max< 0, Zx, (n—1)
It is a well-known fact that this function is a copula only for

n = 2, and in that case describes the countermonotone
dependence of random variables X; and Xo.
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Indeed, W(x1, X2, X3)
considering x = (3, 4

1 1 1
W(1,1,1)—W<2,1,1> —W<1,2,1)—W<1,1,2>+

1 1 1 1 11 111 1
+W<z’2’1>+W(271’2>+W(1’2=2>‘W(z@z)Z‘z?foﬂ

proving that ternary W is not a copula.

=max (0, x; + X2 + X3 — 2), and
,%) andy = (1,1,1) , we see that

All the three basic 2-copulas (copulas, for short) M, N and W
are associative.
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An Archimedean copula

Let C: [0,1]? — [0, 1] be an associative copula satisfying
C(x,x) < x forall x €]0,1[. Then C is called an Archimedean
copula.

Theorem (Moynihan, 1978)

A function C: [0,1]? — [0, 1] is an Archimedean copula if and
only if there is a continuous strictly decreasing convex function
f:[0,1] = [0, 0], f(1) = O, such that

C(x1, %) = fN (F(x1) + f(x2)) (7)

where f(-1) is the pseudo-inverse of f.

V.

Recall that the pseudo-inverse (1) [0, oc] — [0, 1] is given by
() = £ (min(£(0), u))..
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Copulas W and I are Archimedean, with generators fy, and fy,
respectively, given by fiy(x) =1 — x and f(x) = —log x. If we
define the function f4y: [0, 1] — [0, 00] by f1y(x) = 1 — 1, itis
also a generator and the corresponding Archimedean copula
Cg1): [0,1]? — [0, 1] is given by

X1 Xo

Cpy(x1, X2) = A ————

whenever (x1, x2) # (0,0).
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For a general associative copula C we have the next
representation theorem

A function C: [0, 1]?> — [0, 1] is an associative copula if and only
if there is a system (]ax, bx[)xcxc Of pairwise disjoint open
subintervals of [0, 1] and a system (Cy)xex 0f Archimedean
copulas such that

ai+ (b — a) Cr (552,322, if (x1, %) €]ax, bif?

C(x1,X2) = for some k € K,
M(x1, X2), else.

(8)

Copula C given by is called an ordinal sum copula, with
notation ({ax, bk, Cx)| k € K).
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Clxe x0) = 2X1 X2, if (x1,x2) €]0, 3[2,
"2 M(x1, x2), else.
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Based on previous theorems and recent results on ordinal sum
structure of n-copulas proved by Mesiar and Sempi [2010], we
have the next result.

Corollary

Letn > 2. A function C: [0,1]" — [0, 1] is an associative
n-copula if and only if there is a system (]ax, bx[ )i Of
pairwise disjoint open subintervals of 0,1 [, and a system
(Ck)kex of associative n-copulas satisfying the diagonal
inequality C(x, ..., x) < x forall x €]0,1[ and k € K such that

in{x1.b}— in{Xn,by}—
ak+ (b — ax) Oy (Mplel=as . minfobloac)
C(x1,..., Xn) = if min{xy,...,x,} €lak,bx[ forsomek c K,

M(xq,..., Xn), else.

9)
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To complete the representation of associative n-copulas, the
characterization of such copulas satisfying the diagonal
inequality is necessary.

Theorem (Stupnanova, Kolesarova, Kybernetika 47 (2011))

Letn > 2. A function C: [0,1]" — [0, 1] is an associative
n-copula satisfying the diagonal inequality C(x, ..., x) < x for
all x €]0,1[ if and only if there is a generator f whose
pseudo-inverse f(~1) is an (n — 2)-times differentiable function
with derivatives alternating the sign, such that (—1)" d:jnf(,?) is
a convex function, and

C(x1,...,X%7) = 1) (zn: f(x,-)) . (10)
i=1

McNeil, Neglehova [2009]
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As already mentioned, the product n-copula I is associative for
any n > 2. Evidently, MN(x, ..., x) = x” < x whenever x €] 0,1 [.
As the generator f of the copula I is given by f7(x) = —log x,
it holds fr(]_”(x) = f37(x) = e%, hence for any k,

dkf T (x B

Derivatives alternate the sign and for any n > 2,

2
d Xn—2 -

(=1)

is a convex function.

A. Stupnanova, A. Kolesarova Aggregation Functions and the Associativity in the Sense of



Application to n-ary t-norms, t-conorms, uninorms

Application to n-copulas

APPLICATIONS
Examples

Example
A similar result can be shown for the generator f introduced
in this section, given by f1)(x) = 1 — 1. It holds

i,V (x) = £31(x) = (1 + x),~! which implies that
—2¢(=1)
& e )
an—2

is convex. The corresponding n-copula C4) is given by

— (n—=2)I(1 4+ x)~™'
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The weakest associative n-copula is the Clayton copula C(f%)

generated by the generator f(_%): [0,1] — [0, o<],
f(_L) — 1 — xm1. The corresponding pseudo-inverse
n—1

£~ . 10,00] — [0, 1] is given by

(~7=7)"
i (1—x)"1 ifx<A,
100 = |
n—1 0, if x > 1.
d”*2f((:l)(x)
Then (—1)" —g7=— = (n—1)! max{1 — x, 0} is convex but

not differentiable.

v
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Example
The function C: [0, 1]" — [0, 1] given by

n
271 1] min {x;, } if min{xy,...,xa} <3
C(X1,...,Xn): I'l;l‘l {”2}’ {1? ) n} 2)

M(xq,..., Xn), else,

(11)
is an n-ary extension of the ordinal sum copula ((0, ,11)). As
n-ary function I is an associative n-copula for each n > 2, our
function C given by (11) is also an associative n-copula for
each n > 2.
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CONCLUDING REMARKS

Problem (Problem 2.1(Mesiar),Open Problems at FSTA 2010)

Is there a representation of n-ary associative copulas (in the
sense of Post) similar to the concerning binary copulas?

Associative n-copulas are just n-ary extensions of appropriate
associative copulas.
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Note that not each n-ary aggregation function A associative in
the sense of Post should possess a neutral element. For
example, for each a € [0, 1], the function

A:[0,1]® — [0, 1] given by

A(x,y,z) =med(x,a,y, a, z)

is associative (and symmetric), but it has a neutral element only
if a € {0,1}. Hence the complete characterization of n-ary
associative aggregation functions which can be seen as n-ary
extensions of binary associative aggregation functions is still an
open problem.
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