Center for Machine Perception presents

1/32

Center for Machine Perception presents

Computation in orthomodular lattices and algebras related to fuzzy logics

Mirko Navara (Praha)

When two formulas are equivalent? E.g.

Question 1:

$$a \lor (a' \land b) \stackrel{?}{=} a \lor b$$

2/32

When two formulas are equivalent? E.g.

Question 1:

$$a \lor (a' \land b) \stackrel{?}{=} a \lor b$$

- this can be decided by brute force in truth tables

a	$\mid b \mid$	$a \vee (a' \wedge b)$	$a \lor b$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

When two formulas are equivalent? E.g.

Question 1:

$$a \lor (a' \land b) \stackrel{?}{=} a \lor b$$

- this can be decided by brute force in truth tables

a	b	$a \vee (a' \wedge b)$	$a \vee b$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

better arrangement:

$$\begin{array}{c|cccc}
a & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

3/32

- or transformation to (unique) normal forms

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but

m p

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but
- by resolution principle

m p

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but
- by resolution principle
- simplification of formulas using distributivity

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but
- by resolution principle
- simplification of formulas using distributivity
 - Karnaugh maps

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but
- by resolution principle
- simplification of formulas using distributivity
 - Karnaugh maps
 - Svoboda maps

- or transformation to (unique) normal forms
- testing tautologies, not only by brute force, but
- by resolution principle
- simplification of formulas using distributivity
 - Karnaugh maps
 - Svoboda maps
 - Quine-McCluskey method, etc.

Quine-McCluskey method in Boolean algebras

Repeated use of the law $(\varphi \wedge a) \vee (\varphi \wedge a') = \varphi$

4/32

Repeated use of the law $(\varphi \wedge a) \vee (\varphi \wedge a') = \varphi$

Example:

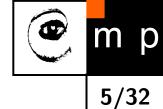
$$(a \wedge c) \vee (a \wedge b' \wedge c') \vee \underbrace{(a \wedge b \wedge c' \wedge d)}_{(a \wedge b \wedge c' \wedge d')}$$

$$= (a \wedge c) \vee \underbrace{(a \wedge b' \wedge c')}_{(a \wedge b' \wedge c')}$$

$$= \underbrace{(a \wedge c)}_{(a \wedge c')}$$

$$= a$$

Quine-McCluskey method in many-valued logic



[Petrík 04] Quine-McCluskey method for Gödel logic with all truth constants and crisp equality operation (=Kronecker delta)

Testing equations in many-valued logics - examples

6/32

 $a \lor (a' \land b) \neq a \lor b$ in Gödel logic with involutive negation

$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	1	1

$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

Testing equations in many-valued logics - examples

6/32

 $a \lor (a' \land b) \neq a \lor b$ in Gödel logic with involutive negation

 $a \oplus (a' \odot b) = a \vee b$ in Łukasiewicz logic (MV-algebra)

$^{\circ}$		′ ′ ′	
$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

Lasic		<i>_</i>	95"
$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

m [

6/32

Testing equations in many-valued logics - examples

 $a \lor (a' \land b) \neq a \lor b$ in Gödel logic with involutive negation

 $a \oplus (a' \odot b) = a \vee b$ in Łukasiewicz logic (MV-algebra)

$$a \ b \ 0 \ \frac{1}{2} \ 1 \ 0 \ 0 \ \frac{1}{2} \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$$

 $a \oplus (a' \odot b) \neq a \oplus b$ in Łukasiewicz logic (MV-algebra)

$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{\overline{1}}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

$a \setminus b$	0	$\frac{1}{2}$	1
0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1
$\frac{1}{2}$	$\frac{1}{2}$	1	1
1	1	1	1

Semantical testing of tautologies

In Boolean algebras:

only a "small" search space: 2^n cases

n =the number of different variables

Semantical testing of tautologies

7/32

In Boolean algebras:

only a "small" search space: 2^n cases

n =the number of different variables

In Gödel logic: $(n+2)^n$ cases

Semantical testing of tautologies

In **Boolean algebras**:

only a "small" search space: 2^n cases

n =the number of different variables

In Gödel logic: $(n+2)^n$ cases

In Gödel logic with involutive negation: $(2n+2)^n$ cases

8/32

It suffices to consider evaluations in

8/32

It suffices to consider evaluations in

lacktriangle the standard MV-algebra [0,1] [Chang 58]

8/32

It suffices to consider evaluations in

- lacktriangle the standard MV-algebra [0,1] [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \dots, 1\}$, $\forall m \in \mathbb{N}$ [Chang 58]

8/32

It suffices to consider evaluations in

- lacktriangle the standard MV-algebra [0,1] [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \dots, 1\}$, $\forall m \in \mathbb{N}$ [Chang 58] still infinite; we need a **bound** for m

[Mundici 87]:
$$m \le b_0(M) = 2^{(2M)^2} = 2^{4M^2}$$

[Mundici 87]:
$$m \le b_0(M) = 2^{(2M)^2} = 2^{4M^2}$$

$oxed{M}$	number of truth values -1
1	16
2	65 536
3	68 719 476 736
4	18 446 744 073 709 551 616
5	1267 650 600 228 229 401 496 703 205 376

[Mundici 87]:
$$m \le b_0(M) = 2^{(2M)^2} = 2^{4M^2}$$

$oxed{M}$	number of truth values -1
1	16
2	65 536
3	68 719 476 736
4	18 446 744 073 709 551 616
5	1267 650 600 228 229 401 496 703 205 376

Complexity
$$\sum_{m=1}^{b_0(M)} (m+1)^n$$

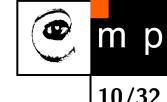
[Mundici 87]:
$$m \le b_0(M) = 2^{(2M)^2} = 2^{4M^2}$$

$oxed{M}$	${\tt number\ of\ truth\ values} - 1$
1	16
2	65 536
3	68 719 476 736
4	18 446 744 073 709 551 616
5	1267 650 600 228 229 401 496 703 205 376

Complexity
$$\sum_{m=1}^{b_0(M)} (m+1)^n$$

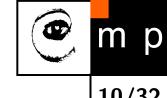
$M \setminus n$	1	2	3
1	152		
2	2147581952	93831434829824	
3	$2.361 \cdot 10^{21}$	$1.081 \cdot 10^{32}$	$5.575 \cdot 10^{42}$

"The importance of being a good teacher."



"The importance of being a good teacher."

[Aguzzoli, Ciabattoni, B. Gerla]: $m = b_1(M) = 2^{M-1}$



"The importance of being a good teacher."

[Aguzzoli, Ciabattoni, B. Gerla]: $m = b_1(M) = 2^{M-1}$

M	number of truth values -1
1	1
2	2
3	4
4	8
5	16
6	32
7	64

"The importance of being a good teacher."

[Aguzzoli, Ciabattoni, B. Gerla]: $m = b_1(M) = 2^{M-1}$

M	number of truth values -1
1	1
2	2
3	4
4	8
5	16
6	32
7	64

Complexity: $(b_1(M) + 1)^n$

$M \setminus n$	1	2	3	4	5
1	2				
2	3	9			
3	5	25	125		
4	9	81	729	6561	
5	17	289	4913	83 521	1419857
6	33	1089	35 937	1185 921	39 135 393
7	65	4225	274 625	17 850 625	1160 290 625

11/32

3rd bound

12/3

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n) = \left(\frac{M}{n}\right)^n$

3rd bound

m p

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n) = \left(\frac{M}{n}\right)^n$

$M \setminus n$	1	2	3	4	5
1	1				
2	2	1			
3	3	2	1		
4	4	4	2	1	
5	5	6	4	2	1
6	6	9	8	5	2
7	7	12	12	9	5

3rd bound

m p

12/32

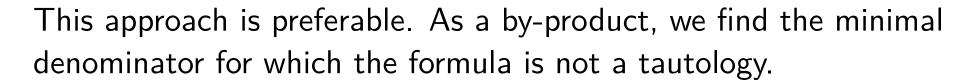
[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n) = \left(\frac{M}{n}\right)^n$

$M \setminus n$	1	2	3	4	5
1	1				
2	2	1			
3	3	2	1		
4	4	4	2	1	
5	5	6	4	2	1
6	6	9	8	5	2
7	7	12	12	9	5

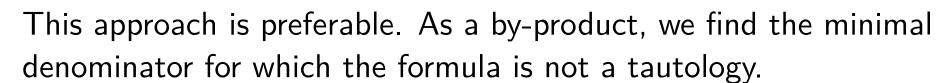
Complexity $\sum_{m=1}^{b(M,n)} (m+1)^n$

$M \setminus n$	1	2	3	4	5
1	2				
2	5	4			
3	9	13	8		
4	14	54	35	16	
5	20	139	224	97	32
6	27	384	2024	2274	275
7	35	818	8280	25 332	12 200

$M \setminus n$	1	2	3	4	5
1	2				
2	5	4			
3	9	13	8		
4	14	54	35	16	
5	20	139	224	97	32
6	27	384	2024	2274	275
7	35	818	8280	25 332	12 200



$M \setminus n$	1	2	3	4	5
1	2				
2	5	4			
3	9	13	8		
4	14	54	35	16	
5	20	139	224	97	32
6	27	384	2024	2274	275
7	35	818	8280	25 332	12 200



Implemented by [Brůžková 05].

$M \setminus n$	1	2	3	4	5
1	2				
2	5	4			
3	9	13	8		
4	14	54	35	16	
5	20	139	224	97	32
6	27	384	2024	2274	275
7	35	818	8280	25 332	12 200

This approach is preferable. As a by-product, we find the minimal denominator for which the formula is not a tautology.

Implemented by [Brůžková 05].

For 2 variables, this bound is tough [MN].

13/32

- Testing of satisfiability in Łukasiewicz logic? Still a problem.

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in basic logic? [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]

13/32

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in basic logic?
 [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]

Alternative approaches to testing of tautologies:

13/32

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in basic logic? [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

13/32

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in basic logic?
 [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in basic logic? [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]

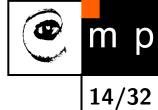
Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.

- Hypersequent calculus by [Ciabattoni, Fermüller, and Metcalfe 05] allows to test tautologies in Gödel and product logics as well.

- Looking for counterexamples, a random search need not be a bad alternative [Brůžková 05].



- Looking for counterexamples, a random search need not be a bad alternative [Brůžková 05].

May give a **negative answer**.

- Looking for counterexamples, a random search need not be a bad alternative [Brůžková 05].

May give a **negative answer**.

- Syntactical prover [Lehmke 05] http://ls1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

- Looking for counterexamples, a random search need not be a bad alternative [Brůžková 05].

May give a **negative answer**.

- Syntactical prover [Lehmke 05] http://ls1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

May give a positive answer.

Mostly based on free algebras.

Training site for free algebras: Boolean algebras

$$a \lor (a' \land b) = a \lor b$$

$\setminus b$
$a \setminus$
0

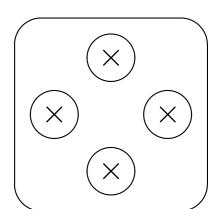
$$\begin{array}{c|c}
0 & 1 \\
\hline
1 & 1 \\
\end{array}$$

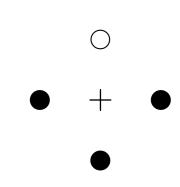
m

Training site for free algebras: Boolean algebras

$$a \lor (a' \land b) = a \lor b$$

$a \setminus b$	0	1
0	0	1
1	1	1

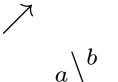




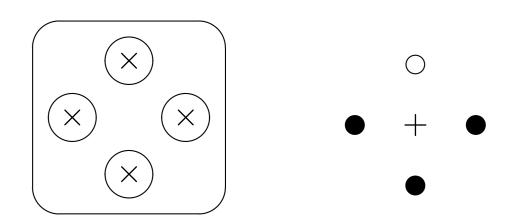
Training site for free algebras: Boolean algebras

 2^4

$$a \lor (a' \land b) = a \lor b$$



$$egin{array}{c|cccc} a \ b & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$



Everything is seen in a "good" Venn diagram = free Boolean algebra with n free generators = 2^n

All $2^4=16$ binary Boolean operations represented by subsets of a 4-element set:

$$a = a \stackrel{\circ}{\circ} b, \qquad b = a \stackrel{\circ}{\circ} b$$

$$a' = a \stackrel{\circ}{\circ} b, \qquad b' = a \stackrel{\circ}{\circ} b$$

$$a \wedge b = a \stackrel{\circ}{\circ} b, \qquad a \vee b = a \stackrel{\circ}{\circ} b$$

$$(a \wedge b) \vee (a' \wedge b') = a \stackrel{\circ}{\circ} b, \qquad (a \wedge b') \vee (a' \wedge b) = a \stackrel{\circ}{\circ} b$$

m p

Training site for free algebras: Boolean algebras

18/32

Binary Boolean operations can be combined:

$$a \vee (a' \wedge b) = (a \overset{\diamond}{\bullet} \overset{\diamond}{\circ} b) \overset{\diamond}{\bullet} \overset{\diamond}{\bullet} ((a \overset{\diamond}{\circ} \bullet b) \overset{\diamond}{\circ} \overset{\diamond}{\bullet} (a \overset{\diamond}{\circ} \bullet b)) =$$

$$= (a \overset{\diamond}{\bullet} \overset{\diamond}{\circ} b) \vee ((a \overset{\diamond}{\circ} \bullet b) \wedge (a \overset{\diamond}{\circ} \bullet b)) =$$

$$= (a \overset{\diamond}{\bullet} \overset{\diamond}{\circ} b) \vee (a \overset{\diamond}{\circ} \bullet b) =$$

$$= a \overset{\diamond}{\bullet} \bullet b = a \vee b$$

Training site for free algebras: Boolean algebras

Example with 3 variables – distributivity: $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

 2^3 represented by subsets of an 8-element set:

$$a = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b, \qquad b = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b, \qquad c = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b$$

$$a \wedge b = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b, \quad a \wedge c = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b, \quad b \wedge c = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b$$

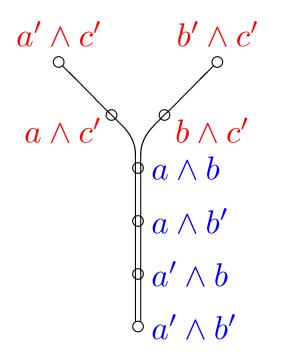
$$a \vee b = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\circ}{\circ})_c b, \quad a \vee c = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\bullet}{\circ})_c b, \quad b \vee c = a (\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} , \stackrel{\bullet}{\circ})_c b$$

20/32

Testing equations in orthomodular lattices

Free OML with 2 free generators $= F(a, b) \cong 2^4 \times MO2$

Greechie diagram:



$$c' = (a \land b) \lor (a \land b') \lor (a' \land b) \lor (a' \land b')$$

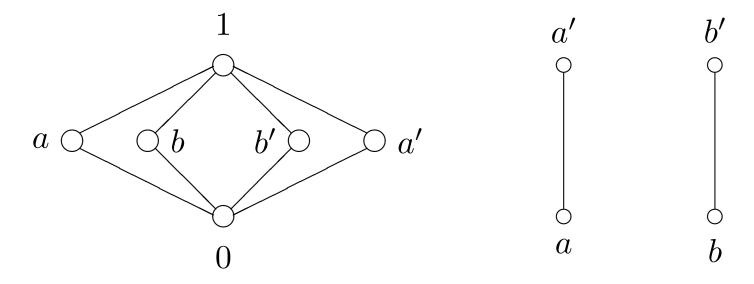
1st factor = 2^4 (Boolean algebra)

2nd factor = MO2

m p

21/32

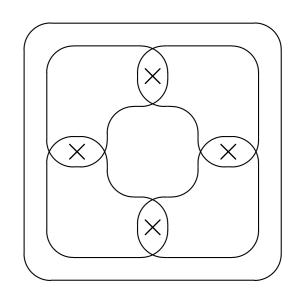
Computation in MO2

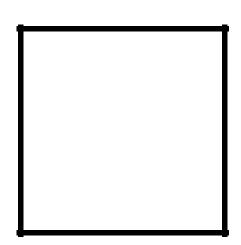


$$a \wedge b = a \wedge b' = a' \wedge b = a' \wedge b' = 0$$
$$a \vee b = a \vee b' = a' \vee b = a' \vee b' = 1$$

Computation in MO2

MO2 is also represented by **some** subsets of a 4-element set:





$$0 = a \cdot \cdot \cdot b,$$

$$a = a \bigsqcup b$$

$$b = a \ \underline{\quad} b$$

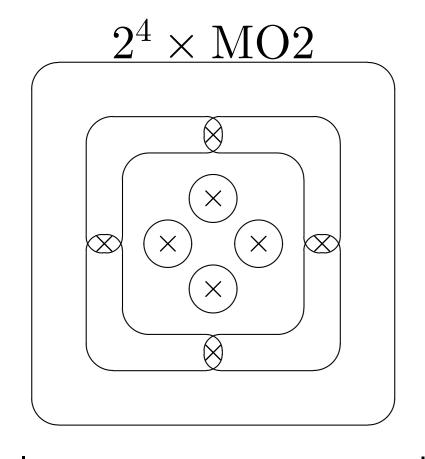
$$1 = a \boxed{\cdot} b,$$

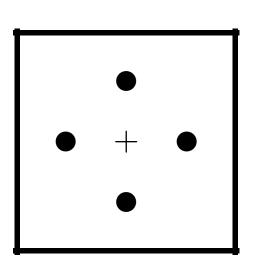
$$a = a \ \underline{ } \cdot \ b,$$
$$a' = a \ \overline{ } \cdot \ b,$$

$$a \wedge b = a \cdot b,$$

$$a \lor b = a \boxed{\cdot} b$$

F(a,b) is represented by **some** subsets of an 8-element set:





$$0 = a \circ b,$$

$$a = a \stackrel{\circ}{\bullet} b,$$

$$b = a \stackrel{\circ}{\circ} b$$

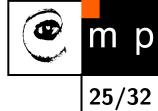
$$1 = a b,$$

$$a' = a \circ b,$$

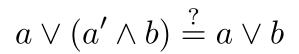
$$b' = a \ \overline{\bullet_{\circ}^{\bullet}} \ b$$

$$a \wedge b = a \circ b \cdot b,$$

$$a \vee b = a \stackrel{\circ}{\bullet} b$$



$$a \vee (a' \wedge b) \stackrel{?}{=} a \vee b$$



$$a \vee (a' \wedge b) = (a | \bullet \circ b) \vee ((a | \bullet \circ b) \wedge (a | \bullet \circ b))$$

$$= (a | \bullet \circ b) \vee (a | \circ \circ b) \wedge (a | \bullet \circ b)$$

$$= a | \bullet \circ b \rangle \wedge (a | \bullet \circ b) \wedge (a | \bullet \circ b)$$

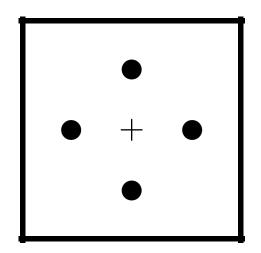
$$= a | \bullet \circ b \rangle \wedge (a | \bullet \circ b) \wedge (a | \bullet \circ b)$$

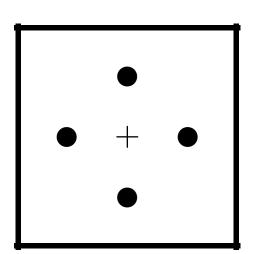
$$= a | \bullet \circ b \rangle \wedge (a | \bullet \circ b) \wedge (a | \bullet \circ b) \wedge (a | \bullet \circ \bullet b)$$

resting equations in orthonoutian lattices

We may admit further variables which commute with all others.

c commutes with $a,b \Rightarrow F(a,b,c) \cong F(a,b) \times F(a,b)$ is represented by **some** subsets of a 16-element set:





$$a = a(\underbrace{\bullet_{\bullet}^{\circ}}_{\bullet}, \underbrace{\bullet_{\bullet}^{\circ}}_{\bullet})_{c} b$$

$$b = a(\circ \bullet | , \circ \bullet |)_c b$$

$$c = a(\circ, , \bullet,)_c b.$$

Foulis-Holland Theorem

c commutes with $a,b \Rightarrow a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$.

Foulis-Holland Theorem

c commutes with $a, b \Rightarrow a \land (b \lor c) = (a \land b) \lor (a \land c)$.

Proof:

$$a \wedge (b \vee c) = (a(\underbrace{\bullet}_{\bullet} \circ , \underbrace{\bullet}_{\bullet} \circ)_{c} b) \wedge ((a(\underbrace{\circ}_{\bullet} \bullet)_{c} b) \vee (a(\underbrace{\circ}_{\bullet} \circ)_{c} b) \vee (a(\underbrace{\circ}_{\bullet} \circ)_{c} b))$$

$$= (a(\underbrace{\bullet}_{\bullet} \circ , \underbrace{\bullet}_{\bullet} \circ)_{c} b) \wedge (a(\underbrace{\circ}_{\bullet} \bullet)_{c} b)$$

$$= a(\underbrace{\circ}_{\bullet} \circ , \underbrace{\bullet}_{\bullet} \circ)_{c} b,$$

$$(a \wedge b) \vee (a \wedge c) = ((a (\underbrace{\bullet}_{\bullet \bullet}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b) \wedge (a (\underbrace{\circ}_{\bullet \bullet}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b))$$

$$\vee ((a (\underbrace{\bullet}_{\bullet \bullet}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b) \wedge (a (\underbrace{\circ}_{\circ \circ}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b))$$

$$= (a (\underbrace{\circ}_{\bullet \bullet}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b) \vee (a (\underbrace{\circ}_{\circ \circ}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b)$$

$$= a (\underbrace{\circ}_{\bullet \bullet}^{\circ} , \underbrace{\bullet}_{\bullet \bullet}^{\circ})_{c} b = a \wedge (b \vee c).$$

Automatic prover: http://www.mat.savba.sk/~hycko/oml

Example: Associativity equations with 2 variables:

$$(a*a)*b = a*(a*b)$$

 $(a*a')*b = a*(a'*b)$
 $(a*b)*b = a*(b*b)$
 $(a*b')*b = a*(b'*b)$
 $(a*b)*a = a*(b*a)$
 $(a*b)*a' = a*(b*a')$

All can be tested for one binary OML operation * by a single command, e.g.

```
B3(54,B3(54,a,a),b)=B3(54,a,B3(54,a,b)) AND
B3(54,B3(54,a,a'),b)=B3(54,a,B3(54,a',b)) AND
B3(54,B3(54,a,b),b)=B3(54,a,B3(54,b,b)) AND
(B3(54,B3(54,a,b'),b)=B3(54,a,B3(54,b',b))) AND
(B3(54,B3(54,a,b),a)=B3(54,a,B3(54,b,a))) AND
(B3(54,B3(54,a,b),a')=B3(54,a,B3(54,b,a')))
```

B3(92,B3(92,a,a),b)=B3(92,a,B3(92,a,b)) AND B3(92,B3(92,a,a'),b)=B3(92,a,B3(92,a',b)) AND B3(92,B3(92,a,b),b)=B3(92,a,B3(92,b,b)) AND (B3(92,B3(92,a,b'),b)=B3(92,a,B3(92,b',b))) AND (B3(92,B3(92,a,b),a)=B3(92,a,B3(92,b,a'))) AND (B3(92,B3(92,a,b),a')=B3(92,a,B3(92,b,a')))

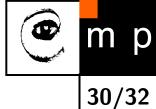
29/32

B3(92,B3(92,a,a),b)=B3(92,a,B3(92,a,b)) AND B3(92,B3(92,a,a'),b)=B3(92,a,B3(92,a',b)) AND B3(92,B3(92,a,b),b)=B3(92,a,B3(92,b,b)) AND (B3(92,B3(92,a,b'),b)=B3(92,a,B3(92,b',b))) AND (B3(92,B3(92,a,b),a)=B3(92,a,B3(92,b,a))) AND (B3(92,B3(92,a,b),a')=B3(92,a,B3(92,b,a')))

Another prover by [Megill and Pavičić].

29/32

Focusing technique [Greechie 1977]

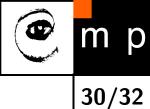


Weaker assumption:

Every variable may not commute with at most one other variable.

the free **lattice** (not the free OML!) generated by these variables is distributive.

Focusing technique [Greechie 1977]



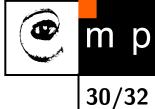
Weaker assumption:

Every variable may not commute with at most one other variable.

the free **lattice** (not the free OML!) generated by these variables is distributive.

It does not allow to combine a variable and its orthocomplement.

Focusing technique [Greechie 1977]



Weaker assumption:

Every variable may not commute with at most one other variable.

the free lattice (not the free OML!) generated by these variables is distributive.

It does not allow to combine a variable and its orthocomplement.

For
$$n=3$$
,

Greechie focusing technique is applicable to 18 expressions, our approach to $96^2=9216$ expressions.

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

Our approach does not cover this case; can it be extended?

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

Our approach does not cover this case; can it be extended?

Partial answers: The free OML F(a,b,c,d) with these generators is a product of

• a (big) Boolean algebra,

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

Our approach does not cover this case; can it be extended?

Partial answers: The free OML F(a,b,c,d) with these generators is a product of

- a (big) Boolean algebra,
- \bullet a product $(MO2)^k$,

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

Our approach does not cover this case; can it be extended?

Partial answers: The free OML F(a,b,c,d) with these generators is a product of

- a (big) Boolean algebra,
- \bullet a product $(MO2)^k$,
- a more complex factor.

The focusing technique admits 4 variables a,b,c,d, where only a,b and c,d form non-commuting pairs.

Our approach does not cover this case; can it be extended?

Partial answers: The free OML F(a,b,c,d) with these generators is a product of

- a (big) Boolean algebra,
- \bullet a product $(MO2)^k$,
- a more complex factor.

We do not know if it is finite.

m p

Case study: Foulis-Holland Theorem

32/32

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

00's: Computer programs.

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

00's: Computer programs.

10's: ???

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

00's: Computer programs.

10's: ???

(It is up to you.)

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

00's: Computer programs.

10's: ???

(It is up to you.)

TFYA

Case study: Foulis-Holland Theorem

60's: Separate papers devoted to the result.

70's: Focusing technique solves it together with many other results.

80's: Free OMLs allow to clarify it.

90's: Graphical tool.

00's: Computer programs.

10's: ???

(It is up to you.)

TFYA

(if any)