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Basic Notions

2-Copula

Binary operation C : [0, 1]2 → [0, 1]
0 as an annihilator

1 as a neutral element

for all u1 ≤ u2 and v1 ≤ v2 from [0, 1]

C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0
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Basic Notions

Quasi-Copula

Binary operation Q : [0, 1]2 → [0, 1]
nondecreasing in both operands

1 as a neutral element

for all u1, u2, v1, v2 in [0, 1]

|Q(u1, v1)− Q(u2, v2)| ≤ |u1 − u2|+ |v1 − v2|
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Sklar Theorem

Theorem (Sklar)

A mapping FXY : [−∞,∞]2 → [0, 1] is a joint distribution function of
a random vector (X, Y) with marginal distributions FX and FY

respectively iff there exists a copula CXY such that

FXY(x, y) = CXY
(
FX(x), FY(y)

)
holds for all x, y ∈ [−∞,∞].

Corollary

Copulas are [0, 1]2-restrictions of probability distribution functions of
random vectors with components distributed uniformly on [0, 1].
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Copula and its Induced Measure

C-volume of a rectangle

Given a copula C and a rectangle R = [u1, u2]× [v1, v2] define
C-volume of R by

VC(R) = C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2).

For any two rectangles R1, R2 with a common edge if R1 ∪ R2 is a
rectangle again, then

VC(R1 ∪ R2) = VC(R1) + VC(R2).

C-measure
Given a copula C the induced C-measure is the completion of the
σ-additive extension of VC.
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Basic Facts

every copula is a quasi-copula

given two (quasi-)copulas A, B and α ∈ [0, 1] the operation
αA + (1 − α)B is a (quasi-)copula again

quasi-copulas are nondecreasing in each variable

quasi-copulas are continuous

quasi-copulas admit first partial derivatives λ-almost everywhere

Prototypical examples

M(u, v) = min{u, v}
Π(u, v) = uv

W(u, v) = max{u + v − 1, 0}
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Outline

1 Vertical mixtures
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Residual and Deresidual transform

Definition

For a binary operation O : [0, 1]2 → [0, 1] we define its residual
transform

R[O](u, v) = sup{z ∈ [0, 1]|O(u, z) ≤ v}.

and its deresiduation

R̄[O](u, v) = inf{z ∈ [0, 1]|O(u, z) ≥ v}.

Lemma
Every quasi-copula Q satisfies

R̄
[
R[Q]

]
=

(
R̄ ◦ R

)
[Q] = Q.
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Novel construction of quasi-copulas

F. Durante, E. P. Klement, R. Mesiar, C. Sempi, Conjunctors and
their residual implicators: characterizations and construction
methods, Mediterranean Journal of Mathematics 4(3):343-356,
2007.

Theorem
If A, B are quasi-copulas then so is

R̄
[
(1 − α)R[A] + αR[B]

]
regardless of α ∈ [0, 1].

Question
If A and B are copulas, is the constructed operation also a copula ?
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Vertical mixture

Definition
α ∈ [0, 1]
A, B : [0, 1]2 → [0, 1]

Operation
A ∗α B = R̄

[
(1 − α)R[A] + αR[B]

]
is the vertical α-mixture of A and B.

Properties
For quasi-copulas A and B

A ∗0 B = A and A ∗1 B = B

(A ∗α B)α∈[0,1]

A ∗α B often violates commutativity even if A and B do not
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Geometry of vertical mixtures
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Geometry of vertical mixtures
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Geometry of vertical mixtures
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Geometry of vertical mixtures
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Geometry of vertical mixtures
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Geometry of vertical mixtures
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Example 1
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Example 1

C ∗0.5 M
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Example 1

C ∗0.5 M
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Example 2

Put Cα = Π ∗α M. Then

Cα(u, v) = min
{

u,
uv

1 − α + αu

}

Cα is a copula regardles of α ∈ [0, 1]
up to the case α ∈ {0, 1} the copula Cα is noncommutative

the family (Cα)α∈[0,1] is increasing in α
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Example 2

Π ∗0.0 M
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Example 2

Π ∗0.2 M
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Example 2

Π ∗0.4 M
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Example 2

Π ∗0.6 M
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Example 2

Π ∗0.8 M
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Example 2

Π ∗1.0 M
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Example 3

Put Cα = M ∗α W. Then

Cα(u, v) = Glue(〈W, 0, α〉, 〈M, α, 1〉)

Cα is a copula regardles of α ∈ [0, 1]
up to the case α ∈ {0, 1} the copula Cα is noncommutative

the family (Cα)α∈[0,1] is decreasing in α

every memenber of the family is singular
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Differential tools

Convention
For A : [0, 1] → [0, 1] we denote by ∂1A(u, v) [∂2A(u, v)] the value of
the partial derivative of A along the first [the second] variable at the
argument (u, v).

Lemma
A quasi-copula A is a copula iff the mapping v 7→ ∂1A(u, v) is
nondecreasing for λ-almost every u ∈ [0, 1].

Note
Let a copula C be the distribution function of a random vector (U, V).
Then

FV|U=u(v) = P [V ≤ v|U = u] = ∂1C(u, v).
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Characterisation of vertically mixable copulas

Theorem
A copula A is vertically α-mixable with a copula B iff the mappings

v 7→ ∂1A(u, v) +
α∂1AB(u, v)∂2A(u, v)
1 − α + α∂2AB(u, v)

where
AB(u, v) = sup{ z ∈ [0, 1] |A(u, v) = B(u, z)}

are nondecreasing for almost all u ∈ [0, 1].

Example

AM = A(u, v)

AΠ = A(u,v)
u

AW = 1 − u + A(u, v)
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Vertical mixatures with M

Corollary

Let α ∈ ]0, 1[. A copula A is vertically α-mixable with M iff the
mappings

v 7→ ∂1A(u, v)
1 + α

1−α∂2A(u, v)

are nondecreasing for almost all u ∈ [0, 1].

0
0

1

1
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Vertical mixtures with M (cont’d)

Corollary

Let α ∈ ]0, 1[. A copula A is vertically α-mixable with M iff the
mappings

v 7→ ∂1A(u, v)
1 + α

1−α∂2A(u, v)

are nondecreasing for almost all u ∈ [0, 1].

Corollary
Every copula with convex vertical sections is vertically mixable with
M. In particullar every stochastically increasing copula is vertically
mixable with M.

Mesiar, Sarkoci Vertical Mixtures of Copulas



Is there a probabilistic interpretation?

Theorem (folklore)
Let X, Y be random variables (defined on a common probability
space) and α ∈ [0, 1]. If X and Y are totally increasingly dependent,
then

QαX+(1−α)Y = αQX + (1 − α)QY .

Another folkloric issue
Let X, Y, Z be three random variables distributed uniformly over the
unit interval. If there exists α ∈ ]0, 1[ for which the joint distribution
function of (X, αY + (1 − α)Z) is a copula, then Y =P Z.

Question
Which operations on random vectors do correspond to vertical
mixtures of copulas?
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