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The disclaimer

This in an expository talk about results of other people.
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Take a loopless, undirected graph G = (V, E).
N : V — 2V is the neighbourhood map:

N(a) = {b: there is an edge (a, b) € E}.

Make a natural extension N : 2V — 2V

N(A) = [ N(a).

acA

N is antitone.

» No loops: N(A)NA =10, N(0) =V, N(V) =0.
» Define:

N@2Y) = {N(A): AC V}
are the closed sets.
Fact: N® = N, so N is an antitone involution on the poset of
closed sets.
L(G) = (N(2Y),n, Vv, N) is an ortholattice,
AV B=N?(AUB).
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» For an OML, we can take atoms.



From ortholattices to topological spaces

» Take an ortholattice L.

» Remove the top and bottom, denote the resulting poset by
L.

» Replace every n-chain in [ by an n-simplex and glue the
simplices together so that subchains correspond to faces.

~

» We obtain a topological space A(L), called the order
complex of L.

» The orthocomplementation on L can be transferred to a

~

free action of Z, on A(L).



