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RANDOM VARIABLE (classics)
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o (Q,A,P), (R,Bgr,Pr), f: Q— R ...measurable map
@ A ... o-algebra of events, B ...Borel measurable sets
eVBeBrdJAcA: f(B)=A
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RANDOM VARIABLE (classics)
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o (Q,A,P), (R,Bgr,Pr), f: Q— R ...measurable map
@ A ... o-algebra of events, B ...Borel measurable sets
eVBeBrdJAcA: f(B)=A
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RANDOM VARIABLE (classics)
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@ Borel measurable set B € Bg, event f<(B)=A€A
o B fr(B)=A

e

BR—>A
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RANDOM VARIABLE (classics)
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@ B = its indicator function xpg
o f(B) = xr(B) = XA
o VweQ: xpg(f(w)) = xalw)
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RANDOM VARIABLE (classics)
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o VweQ: xpg(f(w)) = xalw)
o f is measurable iff for every B € B the composition ygo f is
the indicator function of some A € A
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RANDOM VARIABLE (classics)
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f: Q— R ...measurable map

f<: Bgr — A ...Boolean homomorphism — f<(R) = Q,
f<({}) = {}, and preserves A, V, complement

f< ...classical observable
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RANDOM VARIABLE (classics)
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e P¢(B) = P(A)
@ f ...sends P to Py, the distribution of f
@ in fact f yields a transformation T¢: P(A) — P(Bg)
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RANDOM TRANSFORMATION (classics)
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B f Fo(B)= A

e0c0cccccecacecee ? € Q 0200000000000 0000000000

e 7(B) = P(A)
e f ...sends P to ?, the distribution of f
o f: Q=7
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TRANSFORMATION (still classics)
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o (LA, P), (£,B,Q), f: Q—= ... measurable map

e A, B ... o-algebras of events
o f: B— A ...Boolean homomorphism; it is called
OBSERVABLE
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TRANSFORMATION (still classics)
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e Tr: P(A) -»=P(B) ...transformation (statistical map)
o Tf fQ =f

e OBSERVATION: There is a duality between (classical)
transformations and observables.
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FUZZIFICATION (conservative)

L.A. Zadeh proposed the following fuzzification of probability:
e to extend A (classical events) to M(A) (fuzzy events);

e instead of P € P(A) to use [(-)dP (fuzzy probability
measure).

Denote Int(A) = { [(-)dP; P € P(A)}. Observe that

A— M(A)— A, resp. P— [(-)dP ~ P, yields a one-to-one
correspondence between classical random fields and fuzzy random
fields, resp. classical probabilities and fuzzy probabilities. This
leads to the following fuzzifications of our transformation scheme
(previous slide).
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FUZZY RANDOM VARIABLE (already non-classics)
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P(B) = Int(B) <—— Int(A) = P(A)

PROBLEM. Define a suitable fuzzy transformation

T : Int(A) — Int(B) and its dual fuzzy observable

T<: M(A) — M(B) such that it extends the classical duality
between T¢: P(A) — P(B) and f< : B — A.
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SOLUTION

IDEA: To get information about M(B), via T, using the available
information about M(A):

amap f: Q — = is fuzzy measurable if for each u € M(B) the
composition u o f belongs to M(A) and the induced dual map
T9: M(B) - M(A) (T9(u) = uof) “preserves the structure of
fuzzy random events”.

Roman Fri¢, Martin Pap&o Domains of fuzzy probability II.



SOLUTION

In general: Consider T : Int(A) — Int(B).

In the classical case T maps each degenerated integral (with
respect to a degenerated point measure) into a degenerated
integral. To model some quantum phenomena we have to assume
that in general T maps a degenerated integral on M(A) into a
genuine non-degenerated integral [(-)d@, where Q is a genuine
probability measure on B.

SOLUTION: A map T : Int(A) — Int(B) is fuzzy measurable
(fuzzy transformation) if the “fuzzy composition” u < T defined by

(uoT)(w)=[udQ, weQ, [(-)dQ=T([(-)dd)

belongs to M(A). This defines the dual fuzzy observable
T9: M(B) — M(A) and T< “preserves the structure of fuzzy
random events”.
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OBSERVATIONS

@ Each classical observable f~ : B — A can be uniquely
extended to a fuzzy observable T9: M(B) — M(A);

o Classical observables = special case of fuzzy observables;

@ T can send a degenerated integral to a non-degenerated
integral = T< can send a crisp event u = yg to a genuine
fuzzy event v = T9(u).
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GENUINE FUZZY OBSERVABLE
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TP(B):lnt(B) . Int(A)%P(A)T ..........
f(-l)dQ’ Q€ P(B) J () dés,
I
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GENERALIZED RANDOM WALK

@ In case of finite probability spaces each fuzzy transformations
can be consider as generalized random walk.

@ Indeed, let (Q2, A, P) be finite probability space, let (=,B) be
finite measurable space, and let T be a map of Q into P(B).

@ Then there exist unique fuzzy transformation T (consider as a
map of P(A) into P(B)) such that
To(w) = T(dw) € P(B), w € Q, and T(d,) can be
considered as the probability of transitions from w € Q to
points of =.

@ More information about generalized random walks can be
found in
FRIC, R., PAPCO, M.: Statistical maps and generalized
random walks. Math. Slovaca. (To appear.)
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Definition

For a positive natural number k, let {(Q2;, A, p) fjll be a
sequence of discrete probability spaces and let {T/}f‘zl be a
sequence of extended random maps of (€2, A, p;) to
(41,A/11, pio1) such that the diagram composed of all
constituent commutative triangle diagrams

T
(Qu, A, pr) > (g1, A1, pig1)
#
sz sz+1

({a}, D, da)

I=1,2,..., k, is commutative. Then the resulting composed
diagram is said to be a generalized (finite) random walk.
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Example

Consider the following special case of a generalized random walk:

Q=Q1, 1=1,2,..., k, and there is a stochastic matrix

A = (ajj)mxm such that T)= Ta, | =1,2,..., k. Then A can be
considered as the matrix of transitional probabilities of a Markov

chain (with the initial distribution p;) and the composed diagram
describes “k transitions”.
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