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Motivation

e Numerical fuzzy measures (capacities) are monotonic set-functions that subsume
many kinds of set functions used in uncertainty modelling, game theory and
multicriteria analysis.

e For instance: coherent imprecise probabilities, 2-monotone functions, n-monotone
functions, belief functions, probability, possibility and necessity measures.

e (Qualitative fuzzy measures ranging on a finite totally ordered scale are less
well-known.

e Replacing addition by maximum, possibility measures seem to be the counterpart of
probability measures.

e This talk discusses to what extent the classification in terms of belief function and
upper/lower probabilities carries over to qualitative fuzzy measures and possibility
theory.



A missing notion?

Quantitative

e Preference aggregation
— weighted sum

— Choquet integral

o Uncertainty modeling
— probability theory
— Shafer evidence theory

— 1mprecise probability

Qualitative

weighted min and max

Sugeno integral

possibility theory
?



OUTLINE

1. The numerical setting : known results

2. The qualitative setting : g-capacities generated by basic possibility assignments
3. Information comparison for g-capacities

4. g-capacities as families of possibility measures

5. Relations between g-capacities and modal logic



Monotonic set functions

A capacity (or fuzzy measure) on a finite space S = {s1, ..., s|g|} is a mapping
v :2% — L, and L is a chain with top 1 and bottom 0, such that

o ¥(0) =0;7(5) =1;

o If AC Bthenvy(A) <~v(B)
Numerical capacities :

e [L=10,1].

e The conjugate ¢ of ~y is a -capacity 7¢(A) = 1 — v(A°),VA C S, where A€ is the
complement of set A.

Qualitative capacities :

o L={)\=0< )\ -+ <A\, =1}, afinite chain equipped with min, max, and an
involutive order-reversing map v.

e The conjugate v© of g-capacity -y 1s a g-capacity defined by
°(A) = v(y(A%)),¥A C S.



Possibility and necessity measures

e A special case of g-capacity is a possibility measure : II(A) = maxsca 7(s).

— The possibility distribution 7 : 7(s) = II({s}) is enough to recover the
set-function

— The value 7(s) is understood as the possibility that s be the actual state of the

world: ds € S : 7w(s) = 1.

e The characteristic property of possibility measures is maxitivity:
(AU B) =max(II(A),II(B))

e Another special case of g-capacity 1s the necessity measure such that
N(AN B) =min(N(A), N(B)).

— They are such that N(A) = mingg4 N (S \ {s}) where ¢(s) = N(S \ {s})isa
degree of impossibility of s.

— The conjugate of a possibility measure 11 is a necessity measure
N(A) = v(II(A°)) such that ¢(s) = v(m(s)).



Belief functions formalism

Basic probability assignment (bpa)
e bpa: probability function on 2. m : 2!51 — [0, 1] s.t. m(0) = 0 and
ZEQS m(E) =1
e aset I with positive mass m(FE) > 0 is a focal set
Two set-functions: Belief, Plausibility
e Belief: bel(A) = ) pc 4 m(F) (a capacity)
e Plausibility: pl(A) = > p. anpeg M(E) = 1 — bel(A°) is the conjugate of bel.

These set-functions are in 1-to-1 correspondence with each other, and with the bpa m.
The bpa is called the Moebius transform of Bel



Contour functions, probability and possibility measures

e Given bpa m, its contour function 7, : S — [0, 1] is

mm(s) = pl({s}) =) m(A)

scA

e Ifall focal sets are singletons, bel = pl = probability measure with probability

distribution m,,

e Consonance: The support of m 1s a family of nested sets if and only if
pl(A) = maxgca pl({s}) (pl is a possibility measure with possibility distribution
T.m). Then the conjugate belief function 1s a necessity measure.

e Refining possibility by probability: Given a (qualitative or quantitative) possibility
measure with distribution 7, there exists a super-increasing mapping ¢ : L — [0, 1]
where 7(s) — p(s) = ¢(m(s)), where p is a big-stepped probability distribution
(Vs € 5,p(8) > D _ues:p(s)y>p(w) P(0)) and

II(A) > II(B) = P(A) > P(B)



Upper and lower probabilities

e Belief function as a probability family: a bpa m induces a convex non-empty core

P, = {P|VA C S, Bel(A) < P(A) < PI(A)}

e More generally the core P, = {P|VA C S, P(A) > g(A)} for a capacity g may be
empty. If not, it is a convex probability set.

e A sufficient condition for non empty-core is super-modularity : g 1s a convex
capacity: g(AUB) +g(ANB) > g(A) + g(B).

e Order n-super-modularity does not imply n + 1-supermodularity.
e belief functions are exactly order co-super-modular capacities.

e Not all convex sets of probabilities can be described by capacities (need lower
expectations).

e Coherent capacities g characterize some convex sets P, : they are such that
g(A) =inf{P(A), P € P,}, for instance, convex capacities, belief functions,

necessity measures.



Qualitative capacities from basic possibilistic assignments

Basic possibility assignment (Dubois Prade, 1983)
e bra: possibility distribution y : 2° — L s.t. u(()) = 0 and maxgcs u(F) =1
e aset I/ with positive mass u(FE) > 0 is a focal set

Two set-functions generalizing possibility measures . s € A can become E C A or
A N E # () like for belief functions.

e Lower Possibility measure: 11.(A) = maxgc 4 p(F)

o Upper Possibility measure: 11" (A) = maxg. asnp2p p(£) > 1. (A).
Remarks

1. If focal sets are singletons, then II, = II* = II is a possibility measure

2. If focal sets are nested then 11, 1s a necessity measure

3. Upper and lower possibility measures are NOT conjugate to each other :
max (11, (A), IT*(A°)) = 1, but I1,,(A) # v(IT*(A°)).



Capacities as lower possibility functions

e Given bra p, the contour function 7, : S — L is

mu(s) = I ({s}) = max u(A)

e Properties
— The upper possibility measure is always a possibility measure with distribution
7, II*(A) = maxgsea 7,(S)
— A lower qualitative possibility measure is a general g-capacity, and any
q-capacity is a lower possibility measure:
if 14 is increasing w.r.t inclusion, then 1L, (A) = u(A).

— Contrary to the numerical setting, there 1s not a 1-to-1 correspondence between
general capacities and brra’s.
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Basic possibility assignments generating a (-capacity

e Define an equivalence relation = on the set M of brra’s as follows:
py = po = I, =1L
where I1% (A) = maxgca yu;(E),YAC S
o LetC, = {w|llL =~} e M/ =
e Proposition :

1. C, has a greatest element ;1 = -y

2. () has a least element . known as as qualitative Moebius transform :

1#(E) =~(E) ify(E) > maxy(B)

=0 otherwise
3. Oy =A{plvge < p <~}
e The choice of i1 € C, affects the contour function hence the upper possibility

measure: ITF >~ =1II%,Vu; € C,. .



Inner (qualitative) Moebius transforms

e We call vy inner (qualitative) Moebius transform because there 1s an outer one
based on supersets. Due to Mesiar and Grabisch (1997)

e Can be written as v (F) = v(F) © maxsep v(E \ s), where
a © b = min{c| max(b,c) > a}

e They are brra such thatif A C B and yx(A) > 0 then y4(B) > v4(A)
strictly monotonic with inclusion on F7.

e The inner (qualitative) Moebius transform of the g-capacity v contains the minimal
information needed to reconstruct it since, by construction

(A) = maxy, (E)

so there is a bijection between capacities v and bx’s of the form .

o 77" ={E,vx(F) > 0} is the family of focal sets associated to .
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Inner Moebius transforms of possibility measures

Inner (qualitative) Moebius transforms . are special brra’s that are inclusion-monotonic
on their support, and generalised possibility distributions (on 2°)

o 74(0) =0; vx(A) =1 for some A # ().
e From maxsc4 m(s) to maxgca V4 (E).

e The inner qualitative Moebius transform of a possibility measure coincides with its
possibility distribution: IT4(A) = 7(s) if A = {s} and O otherwise

o F! = {{s},7(s) > 0} (similar to probability measures in numerical setting)
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Inner Moebius transforms of necessity measures

The inner qualitative Moebius transform of a necessity measure has nested focal sets.

N(ANB) =min(N(A),N(B)) < VE,Fe FN. ECForECF

The cut-set { B|N(B) > A} is a proper filter (deductively closed under inclusion
and intersection) : it has a single least element £ # (.

Ec FNifandonlyif A\ >0¢€ L,N(E) = Xand £ = N{B|N(B) > \}
FN ={E\,A >0} and N4(E) = min{\|E = E,}

FN contains the v())-cuts of the possibility distribution of the conjugate IT = N°¢
with possibility distribution

n(s) = minv(Ny () = v(A.)

where Ay = max{Ny(E)|s € E} = N(S\ {s})

14



Three points of view on qualitative capacities

e Like Dempster: upper and lower possibility functions induced a possibility
distribution 7 on a set W and a multimapping I" : W — 2° (Dubois Prade 1985; De
Baets Tsiporkova 1997) :

— I, (A) =TI({w : I'(w) C A}) is a g-capacity;
[I1*(A) = I({w : I'(w) N A # (}) is a possibility measure

— The interval [II,(A), IT*(A)] contains the real value of II( A) induced by the real
selection f € I

— The basic information is (W, ), T : W — 2°

o Like Shafer : gbel(A) = maxgca p(F) ; gpl(A) = maxgnazp u(E)
— the basic information is a brra p from which the pair (Bel, Pl) is induced.
— The pair (gbel, gpl) is not enough to recover

e Like Walley : The basic information is the g-capacity. What is the bridge with

families of possibility measures ?
15



Informational comparison of capacities

One may characterise the relative position of two capacities «y; and - in terms of brra’s
o Ly : VA eFrrdAe Fis.t. AC A" and yo4(A") < v14(A).
e Proposition : v; T v if and only if o < ;.

e A similar result holds for belief functions : A bpa m 1s a specialization of a bpa ms
(m1 £ mo) 1f and only if
— Any focal set of mo contains at least one focal set of m .
— Any focal set of m 1s included in at least one focal set of 1o
- mo(F;) = ). wi; - mi(E;), with constraint w;; > 0 only if E; C Fj.
e my L mo implies bels < bely and ply < pls (not the converse).

e M 1s then more informative than ms

Is it still the case for q-capacities constructed from bra’s (g-belief functions)??

16



Informational comparison of capacities

e What does 5 < ;1 mean? 1s o more or less informative than ;7 Not clear since
V2 S71 = 71 <75, where v9(A) = v(y(A9)).
e A possibility measure 11 is said to be more informative (specific) than another one
Il if VA C S, 111 (A) < II5(A) (equivalently Vs € S, m1(s) < ma(s)).
— In the case of possibility measures, II, < II; means that I15 1s more informative

than IT; (IT;(A) = 1,V A # (): total ignorance)

— In the case of necessity measures, No < /N; means that Vs is less informative
than N7 (IV2(A) = 0,VA # S: total ignorance)

e The only way to make sense of the eventwise comparison is to qualify a g-capacity
measure -y in terms of its optimism or pessimism

— For 1nstance the vacuous 11, 1s an optimistic representation of ignorance, while
the vacuous /N7 1s a pessimistic view of the same information state.

— in the numerical case, bel is always pessimistic when induced by a mass

function; this 1s not so for g-capacities since bmra’s generate all of them.
17



Optimistic and pessimistic (-capacities

The above discussion leads us to
e define optimistic and pessimistic g-capacities based on conjugate pairs

e restrict information comparison C to sets of focal sets inducing pessimistic

g-capacities

e show that v < 1 means that ~5 1s less informative than ~; if these g-capacities are

pessimistic.
A g-capacity -y 1s said to be pessimistic (resp. optimistic) if v < € (resp. if v > ~°).

e a g-capacity can be neither. There may exist A, B such that v(A) < v°(A), and
v(B) > ~4(B).

e a g-capacity can be both : v = ¢ 1s possible. For instance, on a space with 2n + 1

elements, v, (A) = 1if |A| > n and 0 otherwise.
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Q-capacities having the same information content

Given a capacity 7y, one can derive its pessimistic and optimistic counterparts:
7+(A) = min(y(A),7°(A4))
7" (A) = max(y(A),y*(A4)).
By construction, 7, 1s pessimistic and ~™* 1s optimistic.
e v, and ~™* are capacities.
e - 1s more optimistic than v, and less optimistic than ~*.

e They have the same information content :

Indeed, the actual information about a set A is given by {v(A), v(A)} that in general is
not redundant. And it is clear that {~,(A), v« (A°)}, {7v*(A),v*(A°)} and
{v(A),v(A°)} contain the same information.
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Degrees of pessimism and optimism of a gq-capacity

~ and ¢ contain the same amount of information (denoted by v ~ 9) if and only if

v* = 0% and v, = 0.

An equivalence class contains g-capacities that only differ by their amount of
optimism.

The equivalence class of v 1s clearly upper bounded by v* and lower-bounded by .

The degree of optimism of « can be evaluated as

CHACQ:AZUA(4) = (A
212 — 2 '

opt(7)

The degree of optimism of a possibility measure is 1, The degree of optimism of a
necessity measure is 0. More generally, opt(7*) = 1.
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Back to information content comparison

A g-capacity 7 is said to be to be more informative than a g-capacity 0 if and only if
Ve = Os.

e 7.(A) can be interpreted in terms of degree of certainty rather than plausibility:
VA C Qmin(v4(A), 7. (A)) < 1,

e in fact, if L has n elements then, min(v,(A), 7.(A°)) < A, or < A\,41, according to
whether n = 2p or 2p + 1. Moreover if v.(A) = 1 then 7. (A°) = 0. And we may
have v, (A) = 7. (A¢) = 0.

e A necessity measure expresses certainty and 1s pessimistic.

e The formal analogy of g-capacities (of the form y(A) = maxpca v4(B)) with
belief functions makes better sense if the g-capacity i1s pessimistic.
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Capacities as directed posets of possibility functions

e Possibilistic core of v: R(vy) = {w : II(A) > ~v(A),VA C S}.

e R(v) # 0: There is always at least one possibility measure that dominates any
g-capacity: the vacuous possibility measure I1(A) = 1,VA # (.

e Clearly, if II; and II; are possibility measures, then max(Il;, IT5) is a possibility
measure too (less specific than both II; and II5)

e II; and IIs are in R(7y) then so is max(IIy, I15).

e So, R(7) is a directed poset of possibility functions

So, we should try to find the minimal elements in set R () (the most specific possibility

measures)

22



Capacities as Lower Possibilities : permutations

So, any qualitative g-capacity is a lower possibility measure:

A) = min II(A).
v(A) i (A4)

But we can restrict to least elements in R ().

e Let o be a permutation of the n = |S| elements in S. S, = {s,(;), . -

Define the possibility distribution 7 :
Vi=1....n,7)(se@)) =7(S;)

e Results: We can find the least elements among the 7)’s
- VAC S/ IIY(A) > ~(A).
- VAC S, v(A) = min, I[TY(A)

- Vr € R(vy),n(s) > w)(s),Vs € S for some permutation o of S.

There are at most n! elements thus obtained: still too many.

7Sa(n)}-



Capacities as Lower Possibilities : selections

e A selection function sel : 77 — S assigns to each focal subset A € F7 one element
s = sel(A) € A.

e We can assign to each selection function a possibility distribution 7., by letting

sel
max () = 0 and

ml o (s) = E:szrll(agc)zs vu(F),Vs € S.

e If v = II, then there is only one possible selection function and 7}, = 7.

e Results: We can find the least elements among the 7] ,’s

— For any selection function sel with domain F7 it holds that
VA C 10, (A) > A(A).

- VA C S? W(A) — minselEZ(}W) ngl(A)'

— Now we have [ ][5, |E| possibility distributions. Still too many.
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Useful selection functions

The set of minimal elements (maximally specific) of R(~y) is also included in
{77, sel € S(F)}.

More generally the useful selection functions can be defined as follows:
Algorithm MSUP Maximal specific upper possibility generation
1. Rank the focal sets F; in decreasing order of v (FE;). Let j = 1 and F = F".
2. Define sel(E;) = s, for some s; € E; and let (s;) = yx(E;). Delete E; from F.

3. Vk such that s; € Ej, for some other E, € F (it is such that v (E;) > yx(Ex)) let
sel(Ey) = s;, then delete £y, from F.

4. Repeat from step 2 until F = ()

Y« (7y) = selection functions generated by algorithm MSUP, called useful selection
functions, and R, (y) be the corresponding set of possibility distributions.

25



Minimally specific dominating possibilities

Results:
o If 7 # p € R.(7), then neither # > p nor > p hold.

e For any permutation o, there exists a selection function sel corresponding to another
permutation 7 such that 7w, > 7, = 7.

e R.(7) is the set of maximally specific possibility distributions such that
II(A) > ~v(A) (the extreme points of the qualitative core).
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Note on qualitative contour functions

o 7,(s) = maxsep v (E) is the qualitative contour function of
(compare with 7,,(s) = ) .. p m(E) for belief functions)

e Moreover, VA, IL,(A) = maxsng-p 74 (L) (this is the upper possibility function
induced by vy ).

e Note: here v 1s the primitive information.

Proposition: 7., (s) = max,cr, () 7(s).
We also have IL,(A) = max cg, () 1I(A), while v(A) = min,cz, y) IL(A4).

Remark: We cannot use the necessity measure induced by the contour function of v as a
lower bound for the latter. Indeed

Ny (4) = v{IL,(4%)) = minv(max v, (E)) = Er%igl#@V(W#(E))

which cannot be compared with y(A).
27



Capacities as upper necessities

A totally dual construction can be developed using outer qualitative Moebius transforms:

v (A) = ~(A)if y(A) < min{y(F),A C F}

— 1 otherwise.

Denote by ~¢ the conjugate of v: v¢(A) = v(y(A°)),VA C S, where A€ is the
complement of set A, and v the order-reversing map on L.

The inner qualitative Moebius transform v}, of + is related to the outer qualitative mass
function v (Dubois Fargier, 2009):

VH(E) = v(v4(E°)).
Results :
e v(A) =max{N(A), 7 € R.(7v°)} (any g-capacity is an upper necessity measure)

o v(A) > N, (A) =mingga t,(s). where ¢ (s) = v(m,,(s)) (anti-contour function)
28



Sugeno Integral as lower possibilistic integral

Let f : S — L be a function that may serve as a utility function if S is a set of attributes.
Sugeno integral 1s often defined as follows:

S(f) = maxmin(A,y(f > X)) = maxmin(y(4), min f(s))

Moreover : Sti(f) = maxges min(7(s), f(s)); Sn(f) = mingeg max(v(w(s)), f(s)).

Proposition: S, (f) = inf cz, (y) Su(f)
Proof: S, (f) < inf cr, () Su(f) is obvious.
Conversely, Define the possibility measure 11 > -+ such that

II¢(f > X)) =~(f > A),VA € L and 74 the corresponding possibility distribution. Then
as 3m € R.(v), ¢ > m, by definition,

Sy(f) =S, (f) = Sulf) = Weglf(,y) Su(/f).

Remark Using conjugacy properties, Sy (f) = sup,¢cgr, () SN (f) as well.
29



n-minitivity

The complexity of a qualitative g-capacity can be assessed by the number of possibility
or necessity measures needed to define it, that is the number of possibility distributions in

R () orin R, (~°).
e The choice is not immaterial : they do not contain the same number of elements.

e We can find a condition under which v(A) = max}’_; N;(A) where none of the N;
are redundant.
Proposition: v(A) = max}* ; N;(A) if and only if
VA, i=1,...n+ 1,min?' v(4;) < max;.;v(4; N A;)

1=

e for n = 1 (necessity measures) the property comes down to
min(y(A),v(B)) = v(AN B).

e Likewise v(A) = min}-_, II;(A) if and only if
VA i=1,...n+ 1,max} 5 y(A4;) > min;; v(A; U 4;)

1=
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Modal logic, possibility and necessity measures

Consider a propositional language £ with variables {a, b, c...} with standard connectives

A, V, -, — generating theset S: p € L <= p=ua|l-plpAgandpV qg=—(—pA —q).

Define Op as standing for N(A) > A > 0, where A = [p] the set of models of p. Op
corresponds to a Boolean necessity measure based on a possibility distribution that
is the characteristic function of £ = {s|m(s) > v(A)}

Consider a higher level propositional language ¢ € Lo <= ¢ = UOp|—¢|o A 1.
It is the language of Boolean possibilistic logic: = <p stands for II(A) > v(A).
The following KD axioms are valid

- (K):8(p — q) — (Bp — Og).

- (N): OT.

- (D): Op—<p

and imply axiom (C) : O(p A ¢) = (Op A Og) (Boolean minitivity axiom).
31



Semantics of Boolean possibilistic logic

A “model” of a formula in ¢ € L5 is a nonempty subset /2 C .S of propositional models.
E 1s an epistemic state ( a meta-model).
The satisfaction of M E L-formulae 1s defined recursively:

e I/ |=0p,ifand only if £ C [p]

e F = —¢,if and only if E }= ¢,

o FEo¢pAy,ifandonlyif EF = ¢ and E = ),
where ¢, 1 are any Lp-formulae.

e So, E = Opifandonly if £ N [p] # 0

For any set I' U {¢} of Lg-formulae, ¢ is a semantic consequence of ', written I = ¢,
provided for every epistemic state F', E = I" implies £ = ¢.

Boolean possibilistic logic (the Lo-fragment of KD) is sound and complete w.r.t. this

semantics
32



Qualitative capacities and modal logic

Using the same language, denote |= Op as standing for y([p]) > A > 0.
e The following axioms are then verified :
(RE) : Op = Oq whenever - p = q.
(RM) : Op — Ogq, whenever - p — q.
(N): 0OT.
(P): ©OT
e This modal logic seems to be the natural logical account of qualitative capacities

e This logic i1s a non-regular modal logic. It 1s a special case of the monotonic modal
logic EMN (Chellas), a fragment where modalities only apply to propositions, not to
modal formulas. Its usual semantics 1s neighbourhood semantics.

e this logic does not satisfy axioms K, C nor D.
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Capacity semantics of monotonic modal logics ; n-minitive case

Let n be the smallest integer for which v(A) = max?_; N;(A).

e Denoting by O;p the statement N;([p]) > A > 0, itis clear that y([p]) > A > 0, i.e.
Op stands for V', 0O;p, where O; are KD modalities.

e Applying the characterisation of n-minitivity, the restriction of the modal logic
EMN to the semantics in terms of n-minitive capacities 1s

n-C :+ (AP Ops) — VI O(ps Apj)

which implies that if p;,2 = 1...,n 4+ 1 are mutually inconsistent, then
= = A*! Op; (cannot have y([p;]) > A > Oforalli =1...,n+ 1.

e Forn = 1thisis axiom C' : O(p A q) = (Op A Ogq)
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Neighborhood semantics of g-capacity-based modal logic

The semantics of EM N P + n-C logic can be expressed

e In terms of n-tuple of epistemic states (subsets of .5):
(El, e 7En) |: Op if d € [1,?7,],Ez ’: Df,;).

e in terms of neigborhoods (non-empty subsets A/ of 2°) :
— N | Opif and only if [p] € N
- N | Opifand only if [-p] € N

e For a KD modality N' = {A, N(A) > A\} = {A|A D E} for some non-empty
E C S (a proper filter)

e for an EMNP modality ' = {4, v(A) > X > 0} (# 2°, closed under inclusion and
not empty)

e for an EMNP-+n-C modality, N' = {A,~(A) > X\ > 0} is the union of n proper
filters of the form { A, N;(A) > A} = {A|A D FE;}.
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Conclusion

There 1s a strong similarity between gq-capacities and imprecise probabilities, where
possibility measures replace probability measures.

e A g-capacity is both a lower possibility or an upper necessity

e A g-capacity can be viewed as a kind of belief function or a kind of plausibility
function

e The equivalent (max-convex) possibility set is never empty.

e We can lay bare the minimal set of possibility measures that can reconstruct the
g-capacity.

— Note that if ~ is strictly monotone : y(FE) = vx(E) > 0,VE # () C S, then
R. () contains n! possibility distributions.

— One can choose between upper or lower representation: It is not worth
approximating /N from above by a family of possibility distributions.
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Perspectives

e Compare k-minitive (maxitive) g-capacities with capacities having focal sets with
less than £ elements in terms of representational complexity (k-maxitive in the sense
of Grabish-Mesiar.

e Study the class of g-capacities induced by a small number of possibility distributions
as to their potential in practical multicriteria decision problems.

e Develop the analogy with belief functions (Prade, Rico, ECSQARU 2011) :
specificity, combination rules : a qualitative theory of evidence and merging
unreliable testimonies?

e Develop the bridge with modal logics : generalizing possibilistic logic to

g-capacities, and using it in multi source epistemic reasoning systems.

e Do it again when L 1s a De Morgan lattice !
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