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Motivation

• Numerical fuzzy measures (capacities) are monotonic set-functions that subsume
many kinds of set functions used in uncertainty modelling, game theory and
multicriteria analysis.

• For instance: coherent imprecise probabilities, 2-monotone functions, n-monotone
functions, belief functions, probability, possibility and necessity measures.

• Qualitative fuzzy measures ranging on a finite totally ordered scale are less
well-known.

• Replacing addition by maximum, possibility measures seem to be the counterpart of
probability measures.

• This talk discusses to what extent the classification in terms of belief function and
upper/lower probabilities carries over to qualitative fuzzy measures and possibility
theory.
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A missing notion?

Quantitative Qualitative

• Preference aggregation

– weighted sum weighted min and max

– Choquet integral Sugeno integral

• Uncertainty modeling

– probability theory possibility theory

– Shafer evidence theory ?

– imprecise probability
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OUTLINE

1. The numerical setting : known results

2. The qualitative setting : q-capacities generated by basic possibility assignments

3. Information comparison for q-capacities

4. q-capacities as families of possibility measures

5. Relations between q-capacities and modal logic
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Monotonic set functions

A capacity (or fuzzy measure) on a finite space S = {s1, . . . , s|S|} is a mapping
γ : 2S → L, and L is a chain with top 1 and bottom 0, such that

• γ(∅) = 0; γ(S) = 1;

• If A ⊆ B then γ(A) ≤ γ(B)

Numerical capacities :

• L = [0, 1].

• The conjugate γc of γ is a -capacity γc(A) = 1− γ(Ac),∀A ⊆ S, where Ac is the
complement of set A.

Qualitative capacities :

• L = {λ0 = 0 < λ1 · · · < λn = 1}, a finite chain equipped with min,max, and an
involutive order-reversing map ν.

• The conjugate γc of q-capacity γ is a q-capacity defined by
γc(A) = ν(γ(Ac)),∀A ⊆ S.
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Possibility and necessity measures

• A special case of q-capacity is a possibility measure : Π(A) = maxs∈A π(s).

– The possibility distribution π : π(s) = Π({s}) is enough to recover the
set-function

– The value π(s) is understood as the possibility that s be the actual state of the
world: ∃s ∈ S : π(s) = 1.

• The characteristic property of possibility measures is maxitivity:
Π(A ∪B) = max(Π(A),Π(B))

• Another special case of q-capacity is the necessity measure such that
N(A ∩B) = min(N(A), N(B)).

– They are such that N(A) = mins6∈AN(S \ {s}) where ι(s) = N(S \ {s}) is a
degree of impossibility of s.

– The conjugate of a possibility measure Π is a necessity measure
N(A) = ν(Π(Ac)) such that ι(s) = ν(π(s)).
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Belief functions formalism

Basic probability assignment (bpa)

• bpa: probability function on 2S . m : 2|S| → [0, 1] s.t. m(∅) = 0 and∑
E⊆Sm(E) = 1

• a set E with positive mass m(E) > 0 is a focal set

Two set-functions: Belief, Plausibility

• Belief: bel(A) =
∑
E⊆Am(E) (a capacity)

• Plausibility: pl(A) =
∑
E:A∩E 6=∅m(E) = 1− bel(Ac) is the conjugate of bel.

These set-functions are in 1-to-1 correspondence with each other, and with the bpa m.
The bpa is called the Moebius transform of Bel
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Contour functions, probability and possibility measures

• Given bpa m, its contour function πm : S → [0, 1] is

πm(s) = pl({s}) =
∑
s∈A

m(A)

• If all focal sets are singletons, bel = pl = probability measure with probability
distribution πm

• Consonance: The support of m is a family of nested sets if and only if
pl(A) = maxs∈A pl({s}) (pl is a possibility measure with possibility distribution
πm). Then the conjugate belief function is a necessity measure.

• Refining possibility by probability: Given a (qualitative or quantitative) possibility
measure with distribution π, there exists a super-increasing mapping φ : L→ [0, 1]
where π(s) 7→ p(s) = φ(π(s)), where p is a big-stepped probability distribution
(∀s ∈ S, p(s) >

∑
u∈S:p(s)>p(u) p(u)) and

Π(A) > Π(B)⇒ P (A) > P (B)
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Upper and lower probabilities

• Belief function as a probability family: a bpa m induces a convex non-empty core
Pm = {P |∀A ⊂ S, Bel(A) ≤ P (A) ≤ Pl(A)}

• More generally the core Pg = {P |∀A ⊂ S, P (A) ≥ g(A)} for a capacity g may be
empty. If not, it is a convex probability set.

• A sufficient condition for non empty-core is super-modularity : g is a convex
capacity: g(A ∪B) + g(A ∩B) ≥ g(A) + g(B).

• Order n-super-modularity does not imply n+ 1-supermodularity.

• belief functions are exactly order∞-super-modular capacities.

• Not all convex sets of probabilities can be described by capacities (need lower
expectations).

• Coherent capacities g characterize some convex sets Pg : they are such that
g(A) = inf{P (A), P ∈ Pg}, for instance, convex capacities, belief functions,
necessity measures.
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Qualitative capacities from basic possibilistic assignments

Basic possibility assignment (Dubois Prade, 1983)

• bπa: possibility distribution µ : 2S → L s.t. µ(∅) = 0 and maxE⊆S µ(E) = 1

• a set E with positive mass µ(E) > 0 is a focal set

Two set-functions generalizing possibility measures : s ∈ A can become E ⊆ A or
A ∩ E 6= ∅ like for belief functions.

• Lower Possibility measure: Π∗(A) = maxE⊆A µ(E)

• Upper Possibility measure: Π∗(A) = maxE:A∩E 6=∅ µ(E) ≥ Π∗(A).

Remarks

1. If focal sets are singletons, then Π∗ = Π∗ = Π is a possibility measure

2. If focal sets are nested then Π∗ is a necessity measure

3. Upper and lower possibility measures are NOT conjugate to each other :
max(Π∗(A),Π∗(Ac)) = 1, but Π∗(A) 6= ν(Π∗(Ac)).
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Capacities as lower possibility functions

• Given bπa µ, the contour function πµ : S → L is

πµ(s) = Π∗({s}) = max
A:s∈A

µ(A)

• Properties

– The upper possibility measure is always a possibility measure with distribution
πµ : Π∗(A) = maxs∈A πµ(s)

– A lower qualitative possibility measure is a general q-capacity, and any
q-capacity is a lower possibility measure:
if µ is increasing w.r.t inclusion, then Π∗(A) = µ(A).

– Contrary to the numerical setting, there is not a 1-to-1 correspondence between
general capacities and bπa’s.
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Basic possibility assignments generating a q-capacity

• Define an equivalence relation ≡ on the setM of bπa’s as follows:

µ1 ≡ µ2 ⇐⇒ Π1
∗ = Π2

∗

where Πi
∗(A) = maxE⊆A µi(E),∀A ⊆ S

• Let Cγ = {µi|Πi
∗ = γ} ∈ M/ ≡

• Proposition :

1. Cγ has a greatest element µ = γ

2. Cγ has a least element γ# known as as qualitative Moebius transform :

γ#(E) = γ(E) if γ(E) > max
B(E

γ(B)

= 0 otherwise

3. Cγ = {µ|γ# ≤ µ ≤ γ}

• The choice of µ ∈ Cγ affects the contour function hence the upper possibility
measure: Π∗i ≥ γ = Πi

∗,∀µi ∈ Cγ .
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Inner (qualitative) Moebius transforms

• We call γ# inner (qualitative) Moebius transform because there is an outer one
based on supersets. Due to Mesiar and Grabisch (1997)

• Can be written as γ#(E) = γ(E)	maxs∈E γ(E \ s), where
a	 b = min{c|max(b, c) ≥ a}

• They are bπa such that if A ⊂ B and γ#(A) > 0 then γ#(B) > γ#(A)
strictly monotonic with inclusion on Fγ .

• The inner (qualitative) Moebius transform of the q-capacity γ contains the minimal
information needed to reconstruct it since, by construction

γ(A) = max
E⊆A

γ#(E)

so there is a bijection between capacities γ and bπ’s of the form γ#.

• Fγ = {E, γ#(E) > 0} is the family of focal sets associated to γ.
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Inner Moebius transforms of possibility measures

Inner (qualitative) Moebius transforms γ# are special bπa’s that are inclusion-monotonic
on their support, and generalised possibility distributions (on 2S)

• γ#(∅) = 0; γ#(A) = 1 for some A 6= ∅.

• From maxs∈A π(s) to maxE⊆A γ#(E).

• The inner qualitative Moebius transform of a possibility measure coincides with its
possibility distribution: Π#(A) = π(s) if A = {s} and 0 otherwise

• FΠ = {{s}, π(s) > 0} (similar to probability measures in numerical setting)
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Inner Moebius transforms of necessity measures

The inner qualitative Moebius transform of a necessity measure has nested focal sets.

• N(A ∩B) = min(N(A), N(B)) ⇐⇒ ∀E,F ∈ FN , E ⊂ F or E ⊂ F

• The cut-set {B|N(B) ≥ λ} is a proper filter (deductively closed under inclusion
and intersection) : it has a single least element Eλ 6= ∅.

• E ∈ FN if and only if λ > 0 ∈ L,N(E) = λ and E = ∩{B|N(B) ≥ λ}

• FN = {Eλ, λ > 0} and N#(E) = min{λ|E = Eλ}

• FN contains the ν(λ)-cuts of the possibility distribution of the conjugate Π = N c

with possibility distribution

π(s) = min
s6∈E

ν(N#(E)) = ν(λs)

where λs = max{N#(E)|s 6∈ E} = N(S \ {s})
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Three points of view on qualitative capacities

• Like Dempster: upper and lower possibility functions induced a possibility
distribution π on a set W and a multimapping Γ : W → 2S (Dubois Prade 1985; De
Baets Tsiporkova 1997) :

– Π∗(A) = Π({w : Γ(w) ⊆ A}) is a q-capacity;
Π∗(A) = Π({w : Γ(w) ∩A 6= ∅}) is a possibility measure

– The interval [Π∗(A),Π∗(A)] contains the real value of Π(A) induced by the real
selection f ∈ Γ.

– The basic information is (W,π),Γ : W → 2S

• Like Shafer : qbel(A) = maxE⊆A µ(E) ; qpl(A) = maxE∩A 6=∅ µ(E)

– the basic information is a bπa µ from which the pair (Bel, P l) is induced.

– The pair (qbel, qpl) is not enough to recover µ

• Like Walley : The basic information is the q-capacity. What is the bridge with
families of possibility measures ?
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Informational comparison of capacities

One may characterise the relative position of two capacities γ1 and γ2 in terms of bπa’s

• γ1 v γ2 : ∀A′ ∈ Fγ2 ∃A ∈ Fγ1 s. t. A ⊆ A′ and γ2#(A′) ≤ γ1#(A).

• Proposition : γ1 v γ2 if and only if γ2 ≤ γ1.

• A similar result holds for belief functions : A bpa m1 is a specialization of a bpa m2

(m1 v m2) if and only if

– Any focal set of m2 contains at least one focal set of m1.

– Any focal set of m1 is included in at least one focal set of m2

– m2(Fj) =
∑
i wij ·m1(Ei), with constraint wij > 0 only if Ei ⊆ Fj .

• m1 v m2 implies bel2 ≤ bel1 and pl1 ≤ pl2 (not the converse).

• m1 is then more informative than m2

Is it still the case for q-capacities constructed from bπa’s (q-belief functions)??
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Informational comparison of capacities

• What does γ2 ≤ γ1 mean? is γ2 more or less informative than γ1? Not clear since
γ2 ≤ γ1 ⇐⇒ γc1 ≤ γc2, where γc(A) = ν(γ(Ac)).

• A possibility measure Π1 is said to be more informative (specific) than another one
Π2 if ∀A ⊂ S,Π1(A) ≤ Π2(A) (equivalently ∀s ∈ S, π1(s) ≤ π2(s)).

– In the case of possibility measures, Π2 ≤ Π1 means that Π2 is more informative
than Π1 (Π?(A) = 1,∀A 6= ∅: total ignorance)

– In the case of necessity measures, N2 ≤ N1 means that N2 is less informative
than N1 (N?(A) = 0,∀A 6= S: total ignorance)

• The only way to make sense of the eventwise comparison is to qualify a q-capacity
measure γ in terms of its optimism or pessimism

– For instance the vacuous Π? is an optimistic representation of ignorance, while
the vacuous N? is a pessimistic view of the same information state.

– in the numerical case, bel is always pessimistic when induced by a mass
function; this is not so for q-capacities since bπa’s generate all of them.
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Optimistic and pessimistic q-capacities

The above discussion leads us to

• define optimistic and pessimistic q-capacities based on conjugate pairs

• restrict information comparison v to sets of focal sets inducing pessimistic
q-capacities

• show that γ2 ≤ γ1 means that γ2 is less informative than γ1 if these q-capacities are
pessimistic.

A q-capacity γ is said to be pessimistic (resp. optimistic) if γ ≤ γc (resp. if γ ≥ γc).

• a q-capacity can be neither. There may exist A,B such that γ(A) < γc(A), and
γ(B) > γc(B).

• a q-capacity can be both : γ = γc is possible. For instance, on a space with 2n+ 1
elements, γn(A) = 1 if |A| > n and 0 otherwise.
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Q-capacities having the same information content

Given a capacity γ, one can derive its pessimistic and optimistic counterparts:

γ∗(A) = min(γ(A), γc(A))

γ∗(A) = max(γ(A), γc(A)).

By construction, γ∗ is pessimistic and γ∗ is optimistic.

• γ∗ and γ∗ are capacities.

• γ is more optimistic than γ∗ and less optimistic than γ∗.

• They have the same information content :

Indeed, the actual information about a set A is given by {γ(A), γ(Ac)} that in general is
not redundant. And it is clear that {γ∗(A), γ∗(Ac)}, {γ∗(A), γ∗(Ac)} and
{γ(A), γ(Ac)} contain the same information.
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Degrees of pessimism and optimism of a q-capacity

γ and δ contain the same amount of information (denoted by γ ≈ δ) if and only if
γ∗ = δ∗ and γ∗ = δ∗.

• An equivalence class contains q-capacities that only differ by their amount of
optimism.

• The equivalence class of γ is clearly upper bounded by γ∗ and lower-bounded by γ∗.

• The degree of optimism of γ can be evaluated as

opt(γ) =
|{A ⊂ Ω : A 6= ∅, γ(A) ≥ γc(A)}|

2|Ω| − 2
.

• The degree of optimism of a possibility measure is 1, The degree of optimism of a
necessity measure is 0. More generally, opt(γ∗) = 1.
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Back to information content comparison

A q-capacity γ is said to be to be more informative than a q-capacity δ if and only if
γ∗ ≥ δ∗.

• γ∗(A) can be interpreted in terms of degree of certainty rather than plausibility:
∀A ⊆ Ω min(γ∗(A), γ∗(Ac)) < 1;

• in fact, if L has n elements then, min(γ∗(A), γ∗(Ac)) ≤ λp or ≤ λp+1, according to
whether n = 2p or 2p+ 1. Moreover if γ∗(A) = 1 then γ∗(Ac) = 0. And we may
have γ∗(A) = γ∗(Ac) = 0.

• A necessity measure expresses certainty and is pessimistic.

• The formal analogy of q-capacities (of the form γ(A) = maxB⊆A γ#(B)) with
belief functions makes better sense if the q-capacity is pessimistic.
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Capacities as directed posets of possibility functions

• Possibilistic core of γ: R(γ) = {π : Π(A) ≥ γ(A),∀A ⊆ S}.

• R(γ) 6= ∅: There is always at least one possibility measure that dominates any
q-capacity: the vacuous possibility measure Π(A) = 1,∀A 6= ∅.

• Clearly, if Π1 and Π2 are possibility measures, then max(Π1,Π2) is a possibility
measure too (less specific than both Π1 and Π2)

• Π1 and Π2 are inR(γ) then so is max(Π1,Π2).

• So,R(γ) is a directed poset of possibility functions

So, we should try to find the minimal elements in setR(γ) (the most specific possibility
measures)
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Capacities as Lower Possibilities : permutations

So, any qualitative q-capacity is a lower possibility measure:

γ(A) = min
π∈R(γ)

Π(A).

But we can restrict to least elements inR(γ).

• Let σ be a permutation of the n = |S| elements in S. Siσ = {sσ(i), . . . , sσ(n)}.
Define the possibility distribution πγσ :

∀i = 1 . . . , n, πγσ(sσ(i)) = γ(Siσ)

• Results: We can find the least elements among the πγσ’s

– ∀A ⊆ S,Πγ
σ(A) ≥ γ(A).

– ∀A ⊆ S, γ(A) = minσ Πγ
σ(A)

– ∀π ∈ R(γ), π(s) ≥ πγσ(s),∀s ∈ S for some permutation σ of S.

There are at most n! elements thus obtained: still too many.
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Capacities as Lower Possibilities : selections

• A selection function sel : Fγ → S assigns to each focal subset A ∈ Fγ one element
s = sel(A) ∈ A.

• We can assign to each selection function a possibility distribution πγsel by letting
max ∅ = 0 and

πγsel(s) = max
E:sel(E)=s

γ#(E),∀s ∈ S.

• If γ = Π, then there is only one possible selection function and πΠ
sel = π.

• Results: We can find the least elements among the πγsel’s

– For any selection function sel with domain Fγ it holds that
∀A ⊆ S,Πγ

sel(A) ≥ γ(A).

– ∀A ⊆ S, γ(A) = minsel∈Σ(Fγ) Πσ
sel(A).

– Now we have
∏
E∈Fγ |E| possibility distributions. Still too many.
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Useful selection functions

The set of minimal elements (maximally specific) ofR(γ) is also included in
{πγsel, sel ∈ Σ(Fγ)}.

More generally the useful selection functions can be defined as follows:

Algorithm MSUP Maximal specific upper possibility generation

1. Rank the focal sets Ej in decreasing order of γ#(Ej). Let j = 1 and F = Fγ .

2. Define sel(Ej) = sj for some sj ∈ Ej and let π(sj) = γ#(Ej). Delete Ej from F .

3. ∀k such that sj ∈ Ek for some other Ek ∈ F (it is such that γ#(Ej) ≥ γ#(Ek)) let
sel(Ek) = sj , then delete Ek from F .

4. Repeat from step 2 until F = ∅

Σ∗(γ) = selection functions generated by algorithm MSUP, called useful selection
functions, andR∗(γ) be the corresponding set of possibility distributions.
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Minimally specific dominating possibilities

A selection function sel ∈ Σ∗(γ) satisfies the following property : If sel(E) = s for
some E ∈ Fγ and πsel(s) = γ#(E), then ∀F ∈ Fγ , such that s ∈ F :

• if γ#(E) ≥ γ#(F ) then sel(F ) = s

• if γ#(E) < γ#(F ) then sel(F ) 6= s.

Results:

• If π 6= ρ ∈ R∗(γ), then neither π > ρ nor π > ρ hold.

• For any permutation σ, there exists a selection function sel corresponding to another
permutation τ such that πσ ≥ πτ = πsel.

• R∗(γ) is the set of maximally specific possibility distributions such that
Π(A) ≥ γ(A) (the extreme points of the qualitative core).
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Note on qualitative contour functions

• πγ(s) = maxs∈E γ#(E) is the qualitative contour function of γ
(compare with πm(s) =

∑
s∈Em(E) for belief functions)

• Moreover, ∀A,Πγ(A) = maxA∩E 6=∅ γ#(E) (this is the upper possibility function
induced by γ# ).

• Note: here γ is the primitive information.

Proposition: πγ(s) = maxπ∈R∗(γ) π(s).
We also have Πγ(A) = maxπ∈R∗(γ) Π(A), while γ(A) = minπ∈R∗(γ) Π(A).

Remark: We cannot use the necessity measure induced by the contour function of γ as a
lower bound for the latter. Indeed

Nγ(A) = ν(Πγ(Ac)) = min
s 6∈A

ν(max
s∈E

γ#(E)) = min
E∩Ac 6=∅

ν(γ#(E))

which cannot be compared with γ(A).
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Capacities as upper necessities

A totally dual construction can be developed using outer qualitative Moebius transforms:

γ#(A) = γ(A) if γ(A) < min{γ(F ), A ⊂ F}

= 1 otherwise.

Denote by γc the conjugate of γ: γc(A) = ν(γ(Ac)),∀A ⊆ S, where Ac is the
complement of set A, and ν the order-reversing map on L.

The inner qualitative Moebius transform γc# of γc is related to the outer qualitative mass
function γ# (Dubois Fargier, 2009):

γ#(E) = ν(γc#(Ec)).

Results :

• γ(A) = max{N(A), π ∈ R∗(γc)} (any q-capacity is an upper necessity measure)

• γ(A) ≥ Nγc(A) = mins6∈A ιγ(s). where ιγ(s) = ν(πγc(s)) (anti-contour function)
28



Sugeno Integral as lower possibilistic integral

Let f : S → L be a function that may serve as a utility function if S is a set of attributes.
Sugeno integral is often defined as follows:

Sγ(f) = max
λ∈L

min(λ, γ(f ≥ λ)) = max
A⊆S

min(γ(A),min
s∈A

f(s))

Moreover : SΠ(f) = maxs∈S min(π(s), f(s)); SN (f) = mins∈S max(ν(π(s)), f(s)).

Proposition: Sγ(f) = infπ∈R∗(γ) SΠ(f)

Proof: Sγ(f) ≤ infπ∈R∗(γ) SΠ(f) is obvious.

Conversely, Define the possibility measure Πf ≥ γ such that
Πf (f ≥ λ) = γ(f ≥ λ),∀λ ∈ L and πf the corresponding possibility distribution. Then
as ∃π ∈ R∗(γ), πf ≥ π, by definition,

Sγ(f) = SΠf (f) ≥ SΠ(f) ≥ inf
π∈R∗(γ)

SΠ(f).

Remark Using conjugacy properties, Sγ(f) = supπ∈R∗(γc) SN (f) as well.
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n-minitivity

The complexity of a qualitative q-capacity can be assessed by the number of possibility
or necessity measures needed to define it, that is the number of possibility distributions in
R∗(γ) or inR∗(γc).

• The choice is not immaterial : they do not contain the same number of elements.

• We can find a condition under which γ(A) = maxni=1Ni(A) where none of the Ni
are redundant.

Proposition: γ(A) = maxni=1Ni(A) if and only if
∀Ai, i = 1, . . . n+ 1,minn+1

i=1 γ(Ai) ≤ maxi 6=j γ(Ai ∩Aj)

• for n = 1 (necessity measures) the property comes down to
min(γ(A), γ(B)) = γ(A ∩B).

• Likewise γ(A) = minni=1 Πi(A) if and only if
∀Ai, i = 1, . . . n+ 1,maxn+1

i=1 γ(Ai) ≥ mini 6=j γ(Ai ∪Aj)
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Modal logic, possibility and necessity measures

Consider a propositional language L with variables {a, b, c...} with standard connectives
∧,∨,¬,→ generating the set S : p ∈ L ⇐⇒ p = a|¬p|p ∧ q and p ∨ q ≡ ¬(¬p ∧ ¬q).

• Define 2p as standing for N(A) ≥ λ > 0, where A = [p] the set of models of p. 2p

corresponds to a Boolean necessity measure based on a possibility distribution that
is the characteristic function of E = {s|π(s) > ν(λ)}

• Consider a higher level propositional language φ ∈ L2 ⇐⇒ φ = 2p|¬φ|φ ∧ ψ.

• It is the language of Boolean possibilistic logic: |= 3p stands for Π(A) ≥ ν(λ).

• The following KD axioms are valid

– (K) : 2(p→ q)→ (2p→ 2q).

– (N) : 2>.

– (D) : 2p→ 3p

and imply axiom (C) : 2(p ∧ q) ≡ (2p ∧2q) (Boolean minitivity axiom).
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Semantics of Boolean possibilistic logic

A “model” of a formula in φ ∈ L2 is a nonempty subset E ⊆ S of propositional models.

E is an epistemic state ( a meta-model).

The satisfaction of MEL-formulae is defined recursively:

• E |= 2p , if and only if E ⊆ [p]

• E |= ¬φ, if and only if E 6|= φ,

• E |= φ ∧ ψ, if and only if E |= φ and E |= ψ,
where φ, ψ are any L2-formulae.

• So, E |= 3p if and only if E ∩ [p] 6= ∅

For any set Γ ∪ {φ} of L2-formulae, φ is a semantic consequence of Γ, written Γ |= φ,
provided for every epistemic state E,E |= Γ implies E |= φ.

Boolean possibilistic logic (the L2-fragment of KD) is sound and complete w.r.t. this
semantics
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Qualitative capacities and modal logic

Using the same language, denote |= 2p as standing for γ([p]) ≥ λ > 0.

• The following axioms are then verified :

(RE) : 2p ≡ 2q whenever ` p ≡ q.

(RM) : 2p→ 2q, whenever ` p→ q.

(N) : 2>.

(P ) : 3>

• This modal logic seems to be the natural logical account of qualitative capacities

• This logic is a non-regular modal logic. It is a special case of the monotonic modal
logic EMN (Chellas), a fragment where modalities only apply to propositions, not to
modal formulas. Its usual semantics is neighbourhood semantics.

• this logic does not satisfy axioms K, C nor D.
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Capacity semantics of monotonic modal logics ; n-minitive case

Let n be the smallest integer for which γ(A) = maxni=1Ni(A).

• Denoting by 2ip the statement Ni([p]) ≥ λ > 0, it is clear that γ([p]) ≥ λ > 0, i.e.
2p stands for ∨ni=12ip, where 2i are KD modalities.

• Applying the characterisation of n-minitivity, the restriction of the modal logic
EMN to the semantics in terms of n-minitive capacities is

n-C :` (∧n+1
i=1 2pi)→ ∨n+1

i 6=j=12(pi ∧ pj)

which implies that if pi, i = 1 . . . , n+ 1 are mutually inconsistent, then
` ¬ ∧n+1

i=1 2pi (cannot have γ([pi]) ≥ λ > 0 for all i = 1 . . . , n+ 1.

• For n = 1 this is axiom C : 2(p ∧ q) ≡ (2p ∧2q)
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Neighborhood semantics of q-capacity-based modal logic

The semantics of EMNP + n-C logic can be expressed

• In terms of n-tuple of epistemic states (subsets of S):
(E1, . . . , En) |= 2p if ∃i ∈ [1, n], Ei |= 2i).

• in terms of neigborhoods (non-empty subsets N of 2S) :

– N |= 2p if and only if [p] ∈ N

– N |= 3p if and only if [¬p] 6∈ N

• For a KD modality N = {A,N(A) ≥ λ} = {A|A ⊇ E} for some non-empty
E ⊆ S (a proper filter)

• for an EMNP modality N = {A, γ(A) ≥ λ > 0} ( 6= 2S , closed under inclusion and
not empty)

• for an EMNP+n-C modality, N = {A, γ(A) ≥ λ > 0} is the union of n proper
filters of the form {A,Ni(A) ≥ λ} = {A|A ⊇ Ei}.

35



Conclusion

There is a strong similarity between q-capacities and imprecise probabilities, where
possibility measures replace probability measures.

• A q-capacity is both a lower possibility or an upper necessity

• A q-capacity can be viewed as a kind of belief function or a kind of plausibility
function

• The equivalent (max-convex) possibility set is never empty.

• We can lay bare the minimal set of possibility measures that can reconstruct the
q-capacity.

– Note that if γ is strictly monotone : γ(E) = γ#(E) > 0,∀E 6= ∅ ⊆ S, then
R∗(γ) contains n! possibility distributions.

– One can choose between upper or lower representation: It is not worth
approximating N from above by a family of possibility distributions.
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Perspectives

• Compare k-minitive (maxitive) q-capacities with capacities having focal sets with
less than k elements in terms of representational complexity (k-maxitive in the sense
of Grabish-Mesiar.

• Study the class of q-capacities induced by a small number of possibility distributions
as to their potential in practical multicriteria decision problems.

• Develop the analogy with belief functions (Prade, Rico, ECSQARU 2011) :
specificity, combination rules : a qualitative theory of evidence and merging
unreliable testimonies?

• Develop the bridge with modal logics : generalizing possibilistic logic to
q-capacities, and using it in multi source epistemic reasoning systems.

• Do it again when L is a De Morgan lattice !
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