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Topics:

• Point on the Earth’s surface
- dynamics and concerns

• Time series analysis
- a way to learn

• Testing for common trend

• Results
- information or confusion?



Point on the Earth
- geometrical and physical quantities related to point

- variation being temporarily or permanently monitored
by means of geodesy

- satellite navigational systems support the research activ-
ities in geodesy and geophysics

- NAVSTAR GPS

- permanent stations for precise determination of position

- monitoring Earth’s crust kinematics, hydrosphere, at-
mosphere and ionosphere variation, rotation of Earth,
disturbing forces in the gravity field...

- results serve in civil sector for practical purposes

Time series
- time ordered data taken from observations of some phe-
nomenon

- purpose:

to understand the underlying mechanism and

to forecast

- daily GPS observations in 2 years period = 730 time
points

- local topocentric horizontal coordinate system (n,e,v) →
north and east component time series (significant trend-
ing due to Eurasian tectonic plate drift)



Testing

Question:
Do all five concerned points (realized by permanent stations)
move to the north (east) at the same speed?

Then, it is of our interest to examine if k = 5 given trend-stationary
time series have the same deterministic trend slope.
Such a hypothesis can be written as linear restrictions on the slope pa-
rameters across the series and we can apply the multivariate linear trend
tests.

Consider the multivariate trend model

z1,t = µ1 + β1t + u1,t

z2,t = µ2 + β2t + u2,t
...

zk,t = µk + βkt + uk,t

(1)

that can be compactly written as zt = µ + βt + ut, where µ and β are
classical constant and linear trend parameters, u denotes residuals and k

is the number of time series, in our case k = 5.

We are interested in testing hypotheses of the form

H0 : Rβ = r , H1 : Rβ 6= r, , (2)

where R is q × k matrix and r is a q × 1 vector of known constants.

The linear hypotheses of (2) are quite general, they include linear hy-
potheses on slopes

* within given trend equations (q = k − 1) as well as

* joint trend hypotheses across equations (q = k).

Let µ̂ and β̂ denote the stacked single equation OLS estimates and ût =
zt − µ̂ − β̂t be the residuals. Define a heteroskedasticity autocorrelation
(HAC) variance covariance matrix estimator

Ω̂HAC = Γ̂0 +
n−1∑
j=1

(1− j

L
)(Γ̂j + Γ̂

>
j ) , (3)



which in this particular case use the Bartlett kernel, where Γ̂j = 1
n

∑n
t=j+1 ûtû

>
t−j

and L is the truncation lag or bandwidth.

Usually a consistent Ω̂HAC is needed, yet Franses and Vogelsang (2002)
offers an alternative, where L = n. Although it does not result in consistent
estimator, valid testing is still possible because of asymptotic proportion-
ality and moreover it has certain advantage coming from the choice of
bandwidth.

Now, let’s define two test statistics coming from this theory:

1.

F1 = (Rβ̂ − r)>
[
R(

n∑
t=1

t̃ 2)−1Ω̂L=nR
>
]−1

(Rβ̂ − r)/q . (4)

where

Ω̂L=n = 2
n2

∑n
t=1 ŜtŜ

>
t ,

Ŝt =
∑t

j=1 ûj ,

t̄ = 1
n

∑n
t=1 t and t̃ = t− t̄

2.

F2 = n(Rβ̂ − r)>
[
R(

1

n

n∑
t=1

t̃ 2)−1Ω̃L=n(
1

n

n∑
t=1

t̃ 2)−1R>
]−1

(Rβ̂ − r)/q ,

(5)

where Ω̃L=n = 2
n2

∑n
t=1 S̃tS̃

>
t and S̃t =

∑t
j=1 (j − t̄)ũj .

The null hypothesis in (2) is rejected if test statistics F1, F2) exceed
critical value given for q restrictions. The asymptotic distribution theory
for these statistics is nonstandard and was developed for the case where the
errors are covariance stationary. Simulation evidence reported by Franses
and Vogelsang (2002) suggests that the F -tests suffers much less from
over-rejection problem caused by strong positive serial correlation than
the compared standard alternative, whereas the power of F -s is slightly
lower.

The standard alternative to F1 and F2 is a Wald test based on consistent
Ω̂HAC estimator, which uses the same Bartlett kernel. For Ω̂HAC to be



consistent, the bandwidth L must increase as the sample increases but at
the slower rate. The rate 3

√
n minimizes the approximate mean square error

for Ω̂ and considering this in (3), the Wald test is defined as

3.

W = (Rβ̂ − r)>
[
R(

n∑
t=1

t̃ 2)−1Ω̂HACR>
]−1

(Rβ̂ − r) . (6)

Asymptotic distribution of the Wald test is χ2 with q degrees of freedom.

For our data, q × k matrix R and q × 1 vector are defined

R =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , r =




β̂1

β̂1

β̂1

β̂1


 ,

in the case we want the null hypothesis (2) to say that the first (reference)
time series has the same slope as the rest of time series. Otherwise a joint
test is considered, when q = k, R is k-dimensional identity matrix and r

contains trend parameter of an average time series, n̄t = 1
k

∑k
j=1 (nt)j for

instance.

F1, F2 and Wald test for all 5 time series and selected triads:

station of
reference

trend

F1 F2 W

nt et nt et nt p-value et p-value

BOR1 17.2 96.6 16.7 57.7 0.82 0.935 2.85 0.583
GOPE 34.5 68.6 29.0 95.7 1.43 0.839 4.73 0.216
POTS 22.6 215.1 19.0 209.3 0.94 0.919 10.34 0.035
HFLK 32.3 159.6 31.3 188.6 1.55 0.818 9.31 0.054
PENC 143.2 338.8 198.0 170.0 9.78 0.044 8.39 0.078

Joint 21.5 218.7 24.5 127.2 1.50 0.913 7.85 0.164

Critical value for q=4 and α=5%: 46.8 (F1), 43.8 (F2) and for joint test(q=5): 70.1 (F1), 78.3 (F2)

BOR1 0.6 1.4 1.0 3.2 0.03 0.988 0.08 0.962
POTS 2.4 4.8 3.8 6.5 0.10 0.953 0.16 0.923
HFLK 7.9 14.9 7.9 9.0 0.19 0.907 0.22 0.895

Joint 6.0 33.1 4.6 33.2 0.17 0.982 1.23 0.746

Critical value for q=2 and α=5%: 40.7 (F1), 43.8 (F2) and for joint test(q=3): 68.7 (F1), 73.4 (F2)



Trend parameter estimates [mm/year]:

point: BOR1 GOPE POTS HFLK PENC

β̂nt
14.2 14.7 14.4 13.4 12.2

β̂et
22.3 23.1 21.1 21.5 23.9

Conclusion

• For the set of 5 series

All joint tests confirmed common deterministic trend in north

direction for all series. However, by individual testing, PENC was

found to be an exception.

As for east direction, no significant deterministic relation was

found.

• Only one triad (BOR1, POTS, HFLK) seems to have statistically

significant common linear trend in both direction.

• Honestly, we don’t know the cause of this minor effects in tested

parameters. We may speculate about

- local instability of given points in particular direction or

- some residual systematic components in time series that weren’t

taken into account in model specification and which might cause

spurious estimates.

• Anyway, although the data visibly show significant linear trend

behaviour caused by tectonic plate drift, the tests rejected common

deterministic trend for two of the observed points. It is subject to

study, why this happened.


