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Abstract 
 
In recent years, the situation in time series analysis has changed turning its concern from linear to 
nonlinear modeling. In this article we are trying to show how a special case of such a large family of 
models (as threshold autoregressive ones are) may be applied within processing of continual GPS 
observations. Two components (north and east) of point position in horizontal coordinate system are 
taken to obtain bivariate time series, which consequently are tested for nonlinearity and modeled using 
bivariate threshold autoregressive model. Whole procedure, of course, can be easily generalized to 
more than two-variate series. 

 
 
 
 

 Introduction 
 
May we have time series y of n time-points, 
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Fig.1: Two vectors of GPS observations, with length n=730 days 

 
there are several ways to model it. One large family of models, that are strongly suitable for modeling 
stochastic processes, are those arising from Box-Jenkins methodology such as ARMA etc. We will be 
interested in autoregressive (AR) models, defined 
 

tptptt yyy ε+Φ++Φ+Φ= −− K110 .       (1) 
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This is linear model and as such, it may fit only linear dependencies. But what if we know our time 
series are nonlinear (excluding common trend and seasonality) but piecewise linear, changing it’s 
behaviour  by activation of some factor.  
 
We get threshold autoregressive model (TAR), e.g. 
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where z is a threshold variable, r is a threshold and their relation delimites constituent regimes of the 
model. Letter d denotes time lag (delay). Because there is often a need to process more than a single 
vector of measurements at once (sometimes given with some explanatory time series), we will speak 
about multivariate TAR model 
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where   ( )kttt yy K,1=y , 
  Φ0

(j) is constant term for regime j, and 
  ykt denotes kth univariate time series nested in yt. 
 
As for y I put to use GPS observations at permanent station Pecny which are given as point coordinates 
in horizontal coordinate system (n, e, v – north, east and vertical component). Usually the components 
have been processed separately. However, this means a risk of some information loss, as they are 
obviously somehow correlated. Thats’why I’ve focused on multivariate modeling. 
 
Now, as we have data, type of model and assume that the threshold variable z is known, but the delay d, 
the order p of AR model and threshold r are not (for simplicity I restrict the case to 2 regimes). 
 
 
The goal is threefold: 

1. to find proper order p of AR model. 

2. to make sure, that time series are not linear using a test developed by prof. Tsay. 

3. to choose the best delay and threshold values, and consequently to build up the final shape of 

multivariate model. 
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1. Finding order of autoregression 

 
For now, we handle the data as being linear and follow two ways: 

a) Using a Levinson-Durbin estimation procedure (pmax=15) and specially its outcome – 
covariance matrices 

 

4 6 8 10 12 14

17

18

19

20

 
Fig.2:  Determinants of covariance matrices vs. order p. 

 
Order p is chosen subjectively according to plot steepness. 
 
b) Employing three information criteria AIC, BIC, HQIC which the most appropriate order 

minimizes. 
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Fig.2:  Information criteria vs. order p. 

 
Order p is chosen as an dominating argument of minimal criteria values. 
 
 
 
 

p = 2 
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2. Testing 

 
Null hypothesis H0:   yt is linear. 
Alternative hypothesis H1: yt follows a threshold model  
 
We utilize standard least square regression framework: 
 

ttt εΦXy +=    nht K,1+=  ,      (4) 
 
where              ),max( dph = , 

( )ptttt −−−= yyyX K211  is regressor, 
Φ denotes parameter matrix. 

 

If H0 holds, then least square estimates are useful, otherwise the estimates are biased under H1. 
 
Now let the ordering of the threshold variable z be rearranged increasingly so that z(i) is the smallest 
element of  S={zh + 1 – d , ... zn – d } and t(i) is the time index of z(i). Therefore )()( iti zz =  and 
autoregression is 

 
ditditdit +++ += )()()( εΦXy ,  hni −= K,1 .      (5)  

 
It is important to see that the dynamics of the yt series has not changed (that is the independent variable 
of yt is Xt for all t). What has changed is the ordering by which the data enter the regression setup. This 
means an effective transformation of threshold model into a changepoint problem.  
 
To detect model change consider the idea: 
If yt is linear, then recursive least squares estimates of the arranged regression is consistent so that the 
predictive residuals approach white noise (consequently, predictive residuals are uncorrelated with the 
regressor Xt(i) + d ).  

 
Let 
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be the standardized predictive residual of regression (5) where 
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and mΦ̂  is the estimate of arranged regression (5) using data points associated with the m smallest 
values of zt – d. 
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Next there comes a regression 
 

dltdltdlt +++ += )()()(ˆ wΨXη    hnml −+= K,10     (8) 
 

where m0 denotes the starting point of recursive least squares estimation ( nm 30 ≅ ). The problem of 
interest is to test the hypothesis H0: Ψ = 0 versus H1: Ψ ≠ 0 in  (8). Tsay(1998) designed a test statistic 
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and Tˆ tw  is the least square residual of regression (8). Under the null that yt is linear (and some regularity 
conditions), C(d) is asymptotically a χ2 random variable with k(pk+1) degrees of freedom.  
If C(d) < χ2

df, we do not refuse the null hypothesis. 
 
 
Test results: 
 

χ2
 p d C(d) 

α = 0.05 α = 0.01 
p-value Degr. of 

freedom 

1 29.4 0.0010 
2 15.1 0.128 
3 23.2 0.010 
4 8.4 0.406 
5 11.9 0.290 
6 15.8 0.104 
7 25.3 0.005 
8 21.9 0.034 
9 13.2 0.213 

2 

10 18.9 

18.3 23.2 

0.041 

10 

1 41.4 0.0014 
2 21.1 0.278 
3 30.2 0.035 
4 14.2 0.281 

4 

5 15.6 

28.9 34.8 

0.383 

18 

 
 
Note. The test is most powerful when d is correctly specified. 
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3. Building up the model 

 
First we aim at choosing the best values delay and threshold. 
 

a) One way is to apply conditional least squares estimation.  
 
Assume that p and s (number of regimes) are known, then parameters of model (for now a bit 
simplified)  
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where  ( ) ),0(~1 Ia Naa kttt K= , 
 
are (Φi, Σi, r, d). Putting the possible values of r and d into grid {1, 2, ... d0}×{rmin, rrmin + step, ... rmax} 
model (10) reduces to 2 separated multivariate linear regressions from which the least squares estimates 
of Φi and Σi (i=1,2) are readily available: 
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where   ∑
)(i

t
denotes summing over observations in regime i, 

),(ˆˆ * drii ΦΦ = , 
ni is number of data points in regime i and 
k the dimmension of Xt (k < ni). 

 
It becomes clear that conditional least squares estimates of r and d should minimize the sum of squares 
ofresiduals 
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Fig.3: Density, contour and 3D plot of S(r,d);  

x-axis represents time delay, y-axis grid index of threshold value 
 
Results of conditional estimation: 
 

p r  [mm] d  [day] S [mm2] 
1.89 8 6013.9 

- 0.36 1 6136.5 
- 1.06 1 6137.9 2 

- 0.35 3 6138.4 
 
 

b) Besides this, we may apply Akaike information criterion AIC to the same grid r×d. 
 
In fact, it comes along with and supplement the least squares estimation procedure and, of course, there 
are other parameters defining the multivariate threshold model that could be selected by the criterion 
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Fig.5: AIC maped over grid r×d, r∈〈-2.6, 3.0〉, d = {1,2...10} 

 



 8

10 15 20 25

2120

2125

2130

2135

2140

2145

10 15 20 25

2120

2130

2140

 
Fig.5: AIC vs. threshold grid index for  a) d = 3,  b) d = 8 
 
Results of AIC model selection: 
 

p r  [mm] d  [day] AIC 
1.91 8 2100 

- 0.30 3 2110 
0.25 1 2120 2 

- 0.35 1 2121 
 
 
 
There’s easily seen pretty good agreement among the methods, however still partional and shall be a 
subject to further study.  Basically, I prefer those values confirmed by the majority of demonstrated 
procedures, rather smaller than higher values... but of course, it should depend on practical expectations 
at most.    
 
 
 
 

 Final results 
 
Model variables and characteristics: 
 

p = 2 d = 1 day r = - 0.35 mm s = 2 regimes zt = y1t 

 
Parameter matrices: 
 

Φ1  Φ2 
- 0.010237 - 0.274496  0.152080 0.166899 
0.412028 0.0171475  0.226559 0.033515 
0.005351 0.359622  - 0.108756 0.492913 

- 0.017014 - 0.027737  0.185507 0.041789 
0.053311 0.417337  0.001387 0.236399 

 
Covariance matrices: 
 

Σ1  [mm2]  Σ2  [mm2] 
4.736 - 0.287  4.399 - 0.898 

- 0.287 3.194  - 0.898 4.692 
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Visualization: 
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Fig.6 Combined plots of original time series (removed linear trend) and its model: nPecny 
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Fig.7 Combined plots of original time series (removed linear trend) and its model: ePecny 
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