Modelling point's position time series in the light of cointegration

Tomáš Bacigál
Magda Komorníková

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering
Slovak University of Technology
Bratislava

Data

GPS observation time series

Location: Permanent station Borowiec (Poland)
Part of: EUREF Permanent Network
Purpose: Regular monitoring of recent kinematics of the Earth's crust (among others)
Period: 2001-2002
Time points: 730 daily average values
Coordinate system: Horizontal (n e v)

Note:
The obvious linear trend is the consequence of a long-term drift of the Eurasian tectonic plate.

Processing

3 ways to treat our data:
\ddot{y} Process it separately as two independent univariate time series.
ÿ Accept the interrelationship and use the multivariate modeling methods.
\ddot{y} Test for cointegration and transform the data with respect to common trend.

The goal of our experiment:
Compare the three approaches according to forecast accuracy and show the benefit of the cointegration theory.

Cointegration

Two non-stationary I(1) time series are cointegrated, if one of their linear combinations is $\mathrm{I}(0)$ and hence stationary. $\mathrm{I}(\mathrm{k})$ denotes "integrated of k -th order".

Procedure:

Testing for the presence of stochastic trend (against pure deterministic components)
Btests for unit roots (Dickey-Fuller)
Bstationarity tests (Kwiatkowski)
, Testing for cointegration
ß Engle-Granger two steps method
BJohansen's method
. Common stochastic trend estimate (Gonzalo-Granger)

Equilibrium (or long-run) relation between n, e.

Common stochastic trend.

Note:
β denotes cointegration parameters vector and w_{2} eigenvector pertaining to common trend direction.

Geometric viewpoint

Looking for linear combination

$$
\begin{aligned}
& y=\gamma_{1} n+\delta_{1} e \\
& x=\gamma_{2} n+\delta_{2} e
\end{aligned}
$$

such that y represents a common trend direction and x a stationary trend-free variable, orthogonal to y, the problem is easily rewritable into familiar transformation

$$
\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
n \\
e
\end{array}\right]
$$

The angle α can be determined from analysis of deterministic (or stochastic) trend.

Common trend direction variable containing linear trend and seasonality.

Trend-free variable contains only seasonal component.

Final steps:

- Apply Box-Jenkins methodology.
- Transform the whole model back to north-east system.
- Forecast 5 out-of-sample values.
- Compute mean square (MSE) and mean percentage (MPE) error from model prediction and known real values.
- Compare errors from all of the methods.

Results

variable	trend $[\mathrm{mm} / \mathrm{year}]$	seasonality	
		period [days]	
n	13.2	2.2	
e	21.5	1.6	365
y	25.2	2.5	
x	0	1.1	

Deterministic model parameters

method	variable	order p	$\begin{gathered} \mathrm{mse} \\ {\left[\mathrm{~mm}^{2}\right]} \end{gathered}$	mpe [\%]
1.) independent univariate time series	n	1	7.40	5.08
	e	4	3.70	2.88
2.) multivariate time series	n	2	8.13	5.44
	e	2	5.06	5.13
3.) respecting common trend	n	$\begin{aligned} & 2(y) \\ & 4(x) \end{aligned}$	5.90	4.04
	e		4.10	2.49

Forecast measures of model effectivity

Thank you

