
Modelling dependence in point fluctuation with 
Archimedean copulas

Tomáš Bacigál

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering

Slovak University of Technology

Bratislava 2005

PhD supervisor: Professor  Magda Komorníková



Content

1. Data review

2.Introduction to copula theory

3.Archimedean copulas

4.Estimation of copula parameter

a) Nonparametric

b) Semi-parametric

i. Pseudo log-likelihood maximizing

ii. Least-squares fit to empirical copula

5.Conclusion



Data review

Two univarite time series tied with time variable

→ bivariate vector of  observations

● Satellite based global positioning system (GPS) 
● Daily observations performed on EUREF permanent station MOPI
● Sample length: 728 days
● Co-ordinate system of  the raw data: geocentric oriented with Earth rotation 
● Co-ordinate system of the modelled data: horizontal topocentric (North, East, 
Vertical)



Data review

Univariate analysis of probability distribution:

● Observe empirical distribution of data with histogram
● Estimate the best fitting continuous probability density function

- histogram - normal distribution - logistic distribution
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Data review

Multivariate analysis of joined probability distribution:

● Histogram of multivariate data 
● Joined probability distribution function

Is multivariatenormaldistribution the most appropriate?



Introduction to copula theory

Definition

● Copulas are functions, that link univariate marginals to their joint 
distribution function

where H is joint, F and G marginal ditribution functions and C a copula

● Thus, copula captures solely the relationships among individual
variables,  not their distinctiveness

Fréchet-Hoeffding 
bounds

perfect negative dopendence perfect positive dopendence
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Archimedean copulas

● Archimedean class of copulas allows us to reduce the study of a
multivariate copula to a single univariate function φ ,  i.e., 

where φ is convex, decreasing function (0, 1] → [0,¶) called generatorof copula, 
and φ−1 its inverse

● As a generator uniquely determines an Archimedean copula, different 
choices of generator yield many families of copulas

one-parameter  families:
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Estimation of copula parameter

a) Nonparametric estimation  (Genest and Rivest 1993)

is based on  estimating empirical distribution function of unobserved random 
variable , that is ,  and its parametric 
version conditional to generator of a copula family, that is  

and their comparing either by graphical or numerical way.

b) Semi-parametric estimation  (Genest, Ghoudi and Rivest 1995)

uses functional expression of copulas to look for its parameter(s). “Semi“ means, 
that the empirical marginal distribution function is employed rather than estimated 
continuous d.f. of particular form.

a)– Maximization of log-likelihood function 

● where c denotes copula density (partial derivative of C(u,v) with respect to 
u and v)

b)– Least-squares fit to empirical copula 
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Estimation of copula parameter

a) Nonparametric estimation - procedure

1.  Find Kendall’s tau using the usual nonparametric estimate

2.  Construct a nonparametric estimate of K

where  
(pseudo-observations)

3.  Construct a parametric estimate Kφ using 

where generator φ ( through its parameter θ ) can be obtained by solving
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Estimation of copula parameter

a)    Nonparametric estimation – graphical method



Estimation of copula parameter

a) Nonparametric estimation – graphical method

Q-Q plots are used to determine whether two data sets come from populations with a common distribution. If the points of the plot,
which are formed from the quantiles of the data, are roughly on a line with a slope of 1, then the distributions are the same.



Estimation of copula parameter

b) Semi-parametric estimation– procedure

Simply looking for copula parameter      that maximizes the pseudo log-likelihood 
function

in which  Fn , Gn stands for re-scaled empirical marginal distribution functions, i.e.,

(and similarly Gn(y) for variable Y ). The copula density cθ for Archimedean class
can be acquired from

To examine goodness of estimation, there is a modification of the well known 
information criterion available:
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Estimation of copula parameter

Estimated parameters and measures of their appropriateness:

3.5984.1273.700d(Cθ , Cn)

2.10300.55951.3031θ
Nonlinear Fit procedure (semi-parametric)

3.8064.1273.700d(Cθ , Cn)

-90.7-109.0-106.2AIC

2.31530.56381.3044θ
Log-Likelihood procedure (semi-parametric)

0.4920.5420.445d(Kφ , Kn)

2.20830.61201.3060θ
Nonparametric procedure

FrankClaytonGumbelFamily:

0.4920.5420.445

2.20830.61201.3060α
Nonlinear Fit procedure (semi-parametric)

Frank -GumbelClayton - FrankClayton - Gumbel
Linear convex 
combination:
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Conclusion

● To be aware of distribution of dependence in data – tails, overall shape...
● To consider computational intensity.
● Improvement of fit with linear convex combination of copulas
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Further applications

permanent observations
-- GPS coordinates

and time
-- temperature
-- atmosph. pressure

calculation
-- total zenit delay
-- precipitable water 

vapour



Thank you 


