
Chapter 5

Application

To illustrate the above techniques, several experiments has been performed.
For most of them we used daily observations of plane co-ordinates of a point
gathered 2 years by means of NAVSTAR Global Positioning System (GPS) on
several permanent stations that takes part in European Reference Network.
Establishment of such a network serves for various geodetic and geophysical
purposes, e.g., for regular monitoring of recent kinematics of the Earth’s
crust (local, regional and global). For further details about principles and
applications of GPS see [28].

Organization of the chapter follows ordering of theoretic chapters above.
The first section deals with testing for linearity, modelling and forecasting
with nonlinear models. Next, we model the same time series by linear models
considering also the common trend feature and compare the best models
(nonlinear, ordinary linear and linear with cointegration) with respect to
their out-of-sample performance. Testing for common deterministic trends
and common deterministic seasonality takes part yet in the second section.
Finally we provide some experimental study of copulas.

As another asset of this thesis we demonstrate the model specification for
simulated nonlinear bivariate time series on algorithm coded in computer
algebra system Mathematica (currently in version 5.2). The system was cho-
sen for its vast potential for research use, moreover the code can be exported
to commonly used lower-level programming language C, or implemented as
web based application freely available through the Internet. The demonstra-
tion procedure together with all necessary functions (including our ”flagship”
– the function fConditionalRegimeSwitching) are placed in Appendix, a
brief description is given at the end of this chapter.
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Figure 5.1: Observations at station BOR1 fitted by linear and seasonal pat-
tern, scaled in [mm/day].

5.1 Threshold and smooth transition nonlin-

earity

Time series subjected to nonlinearity analysis was chosen to contain also
significant trend and seasonal pattern in order to compare out-of-sample
performance with those of the common-feature-modification of linear models
described in the next section. Such time series occur very often in geodetic
practice. We used 2 years daily observations on permanent station BOR1
(Poland), in particular the north coordinate as y1t and east coordinate of
horizontal topocentric system as y2t variable.

Model specification

The experiment examined two regression setups: regressing variables on de-
terministic (trend and seasonal) and stochastic (lagged self variables) either
separately in 2 consequent or jointly in single OLS regression. The orders of
AR (or VAR) models were found by minimising AIC, BIC and HQIC1 infor-
mation criteria to be p = 4 (p = 2 or 4) for both series. Although there exist
suspicion for several outlying sequences in data (also in forecasted part), due
to lack of metadata this was left explicitly untreated and hoped for being
described by regime-switching mechanism. Spectral analysis confirmed the
seasonal pattern present in both annual and semi-annual frequency, i.e. pe-
riod S = 365, 365/2. Other potentially significant cycles were neglected. The
residua of decomposition was tested for linearity (against regime-switching
nonlinearity) by Tsay’s test and LM-type test. Both of them, taken over
p × d grid up to value 7 (days), rejected the linearity in most cases (assum-
ing the usual α = 0.05), yet the correct value of delay d cannot be selected
with uniqueness. However, p-value displayed minimal values mostly for the

1Hannan-Quin information criterion HQIC is defined similarly to BIC in (1.56) as

HQIC(p) = n ln |Σ̂p| + 2 ln(ln(n))k2p.
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delays up to 4 days which is also more acceptable than larger values, from
the practical experience point of view.

Due to sizeable computational intensity and certain instability of nonlinear
least square fit routine we put our attention on ordinary least square fit con-
ditional on fixed values of unknown parameters. Thus a three dimensional
grid was made from approximate discrete values of delay (d = 1, 2, 3, 4),
threshold (r1 = −2.3,−2.0, . . . 2.2 or r2 = −2.2,−1.9, . . . 2.0) and smooth-
ness parameter (γ = 1, 2, 10, 100). Then the triplet that minimized trace of
variance-covariance matrix of residuals was considered to be the estimate of
parameters d, r, γ. The approximate values of threshold was chosen to pre-
serve at least 15% of observations for each regime, whereas the smoothness
parameter was to reflect only illustrational purposes. For γ = 100, LSTAR
model can be regarded as TAR, therefore no extra estimation was performed
for pure threshold setup counting only two parameters. We also applied few
aggregation functions (MIN , MAX , M) to find out whether better results
can be achieved comparing to basic setup (zt = ξt−d, which corresponds to
aggregation function Last in the appended program). The improvement was
testified in case of arithmetic mean. The two-regimes model were estimated
for a bivariate (yt = (y1t, y2t)) and then for two univariate time series, with
the variable ξt being one of the modelled variable but freed of trend and
seasonal component. To confront the in-sample fit with out-of-sample per-
formance the same model, the mean squared prediction error was computed
taking 30 one-step-ahead forrecasts into account. That means that as the
length of series is n = 730, every model was fitted to first 700 observations
and the last 30 (approximately

√
n) served as etalon to forecasts. Results of

the experiment can be seen in Table 5.1.

What is obvious at the first glance, is that transition between regimes is
rather crisp than fuzzy. At other glance, the improvement brought by aggre-
gation operator is too rare to make any optimistic conclusions.

Since this thesis does not set itself a task of rigorous examination of given
data, neither additional transition type, nor three or more regimes, nor other
aggregation operators were implemented. The focus is put on showing theo-
retical possibilities of STAR type models and we provide algorithm that can
be helpful for practitioners in carrying out their practical experiments. The
demonstration on simulated data given in Appendix can be thought of as
user’s manual additional to the self descriptions of constituent functions. All
of them, especially the mentioned fConditionalRegimeSwitching, which is
also the largest one, are built up in as most general way as possible in given
time, yet with the least impact on computational efficiency.
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Table 5.1: Conditional estimation of STAR and TAR model parameters.
Models preferred from in-sample fit (Tr(Σ) minimized) with corresponding
out-of-sample fit measure (MSPE).

Autoregression of trend- and season-free series

modelled var. transition var. estimated parameters Tr(Σ) MSPE

ut ui,t−d d [day] r [mm] γ [mm2] [mm2]

(u1, u2) u1 2 -0.8 100 9.44 8.55

u2 1 -0.7 100 9.48 8.13

(u1) u1 4 -2.3 10 5.14 5.59

(u2) u2 4 -2.2 100 4.41 3.10

M(ui,t−1, ...ui,t−d)

(u1, u2) u1 1 -0.8 100 9.47 8.98

u2 4 -1.6 100 9.45 8.09

(u1) u1 4 1.9 10 5.13 5.37

(u2) u2 4 -1.6 100 4.40 3.21

Autoregression with both deterministics

modelled var. transition var. estimated parameters Tr(Σ) MSPE

yt ui,t−d d [day] r [mm] γ [mm2] [mm2]

(y1, y2) u1 2 -0.8 100 9.35 7.90

u2 1 -0.7 100 9.37 7.85

(y1) u1 2 -0.2 10 5.01 4.87

(y2) u2 1 -2.2 100 4.31 3.54

M(ui,t−1, ...ui,t−d)

(y1, y2) u1 1 1.6 100 9.39 8.26

u2 4 -1.6 100 9.34 7.93

(y1) u1 4 1.9 10 5.08 4.94

(y2) u2 4 -1.9 100 4.30 3.82

M denotes arithmetic mean and ui are residual series from static regression

yi = µi + δit + βi1 cos( 2π
365

) + βi2 sin( 2π
365

) + βi3 cos( 4π
365

) + βi4 sin( 4π
365

) + ui
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5.2 Common trend and seasonality in linear

models

In this section, we first focus on testing for the presence of stochastic and
deterministic trend in time series modelled already above which are conse-
quently transformed into 2 new variables – one containing full information
about trend whilst the another being trend-free. The same decomposition is
done with (deterministic) seasonality and the new systems of variables are
exposed to modelling, forecasting and backward transformation into original
system wherein the out-of-sample performance is quantified. Next we deal
with testing for common deterministic trend applied to observations from 5
permanent stations.

Transformation into common trend and common seasonality sys-

tem

Again we took the time series from BOR1 (n = 730, daily solutions) under
subjection. The first thing when interested in common trend behaviour is to
check whether each of the time series are nonstationary (trend-stationarity
or unit root). Augmented Dickey-Fuller test for unit root labelled the series
as trend-stationary therefore containing only deterministic trend. The next
step is usually2 to verify the series to have the trend in common. This was
done by testing both in single equation by Engle-Granger test and in the
system of equations as proposed by Johansen. Results of all above tests can
be found in Table 5.2.

In the system of two variables (y1t, y2t), one cointegration relation was
found represented by cointegrating vector v1 = (−0.855, 0.511)′ and sup-
plemented by exactly one common stochastic trend to be obtained from vec-
tor w2 = (0.500, 0.866)′ (both vectors are normed to unity length). Thus
transformation matrix T T = (w2,v1) get us from system, say, Y (y1t, y2t)
to ”common trend” system Y T (yT

1t, y
T
2t). The geometric interpretation (3.43)

illustrated in Figure 3.1 (wherein the axes u1, u2 represent system Y T ) corre-
sponds very closely to the above transformation for rotation angle α

.
= 59◦.

Observations transformed into Y T (see Figure 5.2) were then modelled in
an ordinary way, that is by AR(4) model with linear trend (yT

1t only) and
trigonometric polynomial of annual and semi-annual period. After computing
1-step-ahead forecasts these were transformed back into Y , i.e. yt = T−1

T yT
t

for t = 701, . . . 730, and compared to real data with MSPE as the final out-
come.

2If more general - stochastic - trend is found.
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Table 5.2: Testing for unit roots and cointegration (at α = 0.05)

Augmented Dickey-Fuller test for unit roots

variable deterministic t(ρ̂) critical inference

component value

y1 none -1.70 -1.95 ρ = 0 ⇒ ST

constant -1.69 -2.86 ρ = 0 ⇒ ST

constant & trend -7.59 -3.41 ρ < 0, accept DT

y2 none -0.95 -1.95 ρ = 0, ⇒ ST

constant -0.96 -2.86 ρ = 0, ⇒ ST

constant & trend -7.19 -3.41 ρ < 0, accept DT

Engle-Granger test for cointegration

regression deterministic t(ρ̂) critical inference

of on component value

y2 y1 constant -8.69 -3.34 cointegration

constant & trend -9.56 -3.78 cointegration

y1 y2 constant -9.71 -3.34 cointegration

constant & trend -9.90 -3.78 cointegration

Johansen’s test for cointegration (k = 2, case 3)

r test statistic critical inference

0 Trace 77.18 17.95 H0 rejected

1 0.44 8.18 H2 rejected, r = 1

0 λ-max 76.73 14.90 H0 rejected

1 0.44 8.18 H2 rejected, r = 1
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Figure 5.2: Observations at BOR1 in common trend coordinate system.
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Figure 5.3: Trend-free common seasonality decomposition of BOR1 data.

Further on we were interested in testing for common deterministic season-
ality at annual and semi-annual frequency. The test statistics (3.62) indeed
fell into 95% confidence interval of χ2(r[2(4 − 1) + r]) distribution for r = 1
season-free relations. As we are interested in what improvement can bring
such decomposition, we constructed transformation matrix T S from eigen-
vectors w1, w2 brought by in the test such that T S = (w2,w1)

′, and used the
matrix for transformation into system Y S(yS

1t, y
S
2t) of which one axis contains

full information about seasonal fluctuations while the another is free of the
seasonal effects. As a matter of experiment the transformation was imposed
on both to original series and to those decomposed according co common
trend priority, however in either case, the linear trend had been removed
in advance to be added back later (after backward projection) to forecasts.
The series in Y S were modelled by AR(4) model with seasonal trigonometric
terms (yS

1t only).

As a benchmark we used univariate as well as vector autoregression ap-
proach, with or without deterministic terms in the same OLS procedure, ap-
plied to original time series. To retain comparability, the deterministic part
is restricted to linear and trigonometric polynomial with period S = 365 and
S = 365/2 while the autoregression has the constant order p = 4 with one
exception granted for VAR model once in order to preserve the number of
parameters. Results can be found in Table 5.3.

From the results it is immediately apparent that both transformation ideas
bring significant improvement in out-of-sample performance of a linear model.
The amount to which every approach contribute to better description of
particular variable depends on how much information about the certain
nonstationarity-driving process is involved in other variables.

Alternatively to daily solutions at single GPS permanent station, we checked
the performance of season-transformation also on subdaily observations (3
hours solutions) gathered for 43 days at permanent stations GANP (Ganovce-
Poprad) and LOMS (The Lomnicky peak) situated in the same region but
different altitude (elevation difference approx. 2km). We focused on north-
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Table 5.3: Out-of-sample performance of linear models considering
common-feature-based transformations.

Autoregression of deterministic-terms-free series

common feature AR/VAR MSPE [mm2]

transformation y1t y2t yt

— AR(4) 5.27 3.17 8.44

— VAR(4) 5.31 3.09 8.40

— VAR(2) 5.54 3.04 8.58

trend 4.51 3.12 7.63

trend, season AR(4) 4.27 3.39 7.66

season 4.29 3.38 7.67

Autoregression with relevant deterministics

common feature AR/VAR MSPE [mm2]

transformation y1t y2t yt

— AR(4) 5.17 3.20 8.37

— VAR(4) 5.20 3.11 8.32

— VAR(2) 5.41 3.06 8.47

trend 4.47 3.16 7.63

trend, season AR(4) 4.26 3.39 7.65

season 4.28 3.38 7.66

ward seasonal co-movement in trend-adjusted time series, this time a dummy
variables (as in (1.45) with S = 8) were used instead of sines and cosines. As
a result, the presence of common deterministic seasonality was found with
the test, albeit for significance level α = 0.01. One-step-ahead forecasting
through transformed series again brought better MSPE (5.58 + 4.36 = 9.94)
compared to univariate AR (5.85+4.64 = 10.49) or multivariate VAR model
(5.74 + 4.77 = 10.51). Summands in the brackets represent MSPE of y1t and
y2t in respective order.

Testing for common deterministic trend slopes

For this test we used 5 time series (subsequently north y1t, east y2t co-ordinate
observations and common trend direction yT

1t) from permanent stations de-
noted in international framework as BOR1 (Poland), GOPE (Bohemia),
POTS (Germany), HFLK (Austria), PENC (Hungary) stacked in vector zt

in the same order as listed above. Table 5.4 contains OLS estimates of para-
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meter δ in units mm/year.

Table 5.4: Trend parameter estimates [mm/year]

point: BOR1 GOPE POTS HFLK PENC

δ̂y1t
14.2 14.7 14.4 13.4 12.2

δ̂y2t
22.3 23.1 21.1 21.5 23.9

δ̂yT

1t

26.4 27.4 25.5 25.3 26.9

By defining the q × k matrix R and q × 1 vector r

R =











0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1











, r =











δ̂1

δ̂1

δ̂1

δ̂1











,

the null hypothesis (3.51) says that the first (reference) time series has the
same slope as the rest of time series. Moving the zero column in R and filling
r with corresponding parameter, slopes of other series are tested.
We also consider a joint test, when q = k, R is k-dimensional identity matrix

and r contains trend parameter of an average time series, n̄t = 1
k

∑k

j=1 (nt)j

for instance. Test results are collected in Table 5.5 and 5.6, critical values
for F -tests are given in a separate line bellow. Every Wald test statistic
is provided with p-value, which (given null hypothesis is valid) represents a
probability that we get the particular value or even the more contradictory to
tested hypothesis, in other words it expresses a probability the trend slopes
are statistically the same.
First to conclude, all the tests confirmed common deterministic trend in

north direction coordinate for all the series except for PENC. Although the
joint test for q = 5 did not reject the null hypothesis due to quite a large set
of variables, from the five tests within equations it is obvious that this last
slope does not correspond to the others. As for other two variables, y2t and
yT

1t, no significant deterministic relation was found. Therefore next we took
foursomes into account (Table 5.6) removing seemingly most troublesome
series, and observed how it changed the test statistics. Removing PENC
accentuated the common trend in y1t, and pointed slightly at promises in
yT

1t. It is useful now to repeat that slope of yT
1t represents a velocity in the

direction a particular point moves, and does not contain information about
direction.
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Table 5.5: F1, F2 and Wald test for all 5 time series and selected triads.

reference

trend

station

F1 F2 W

y1t y2t yT
1t y1t y2t yT

1t y1t p-value y2t p-value yT
1t p-value

BOR1 17.2 96.6 501.4 16.7 57.7 281.0 0.82 0.935 2.85 0.583 13.88 0.008

GOPE 34.5 68.6 75.4 29.0 95.7 64.6 1.43 0.839 4.73 0.216 3.19 0.526

POTS 22.6 215.1 314.1 19.0 209.3 171.4 0.94 0.919 10.34 0.035 8.46 0.075

HFLK 32.3 159.6 415.7 31.3 188.6 215.8 1.55 0.818 9.31 0.054 10.66 0.031

PENC 143.2 338.8 526.3 198.0 170.0 290.4 9.78 0.044 8.39 0.078 14.34 0.006

Joint 21.5 218.7 423.0 24.5 127.2 218.9 1.50 0.913 7.85 0.164 13.51 0.019

Critical value for q=4 and α=5%: 46.8 (F1), 43.8 (F2) and for joint test(q=5): 70.1 (F1), 78.3 (F2)

BOR1 0.6 1.4 1.5 1.0 3.2 3.8 0.03 0.988 0.08 0.962 0.09 0.954

POTS 2.4 4.8 3.0 3.8 6.5 2.9 0.10 0.953 0.16 0.923 0.07 0.964

HFLK 7.9 14.9 11.2 7.9 9.0 7.0 0.19 0.907 0.22 0.895 0.17 0.917

Joint 6.0 33.1 16.5 4.6 33.2 12.8 0.17 0.982 1.23 0.746 0.48 0.924

BOR1 16.4 27.8 4.8 27.9 22.6 5.0 0.69 0.709 0.56 0.756 0.12 0.940

GOPE 9.5 82.6 4.4 24.9 78.3 3.1 0.61 0.735 1.93 0.381 0.08 0.963

PENC 124.2 18.7 4.6 137.7 14.7 4.4 3.40 0.183 0.36 0.834 0.11 0.948

Joint 30.8 117.9 46.4 33.8 129.3 26.4 1.25 0.740 4.79 0.188 0.98 0.807

Critical value for q=2 and α=5%: 40.7 (F1), 43.8 (F2) and for joint test(q=3): 68.7 (F1), 73.4 (F2)

At last, we tested triads, of which two appear quite interesting and are
summarized in Table 5.5. First (BOR1, POTS, HFLK) was found to have
statistically the same linear trend significant for every direction, though the
p-value of Wald test leaves some space for questions. In short and simple,
these three points move in the same direction and at the same speed. Second
(BOR1, GOPE, PENC) shows no significant harmony in direction, yet it
indicates a common velocity.

Honestly, we don’t know the cause of this minor effects in tested parameters,
there may be some speculations uttered about local instability of given points
in particular direction or some residual systematic components in time series

Table 5.6: Joint test for common trend slope of 4-time-series set.

Station

removed

from set

F1 F2 W

y1t y2t yT
1t y1t y2t yT

1t y1t p-value y2t p-value yT
1t p-value

POTS 25.1 295.0 149.4 36.7 131.4 94.6 1.81 0.771 6.49 0.166 4.67 0.323

HFLK 24.5 120.6 252.7 23.4 119.6 157.3 1.15 0.886 5.91 0.206 7.77 0.100

PENC 11.5 119.3 504.4 12.0 48.4 266.9 0.59 0.964 2.39 0.665 13.18 0.010

Critical value for joint test (q=4 and α=5%): 69.3 (F1), 76.7 (F2)
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that weren’t taken into account in model specification and which might cause
spurious estimates. Nevertheless, although the data visibly show significant
linear trend behaviour caused by tectonic plate drift, the tests rejected com-
mon deterministic trend for two of the observed points. It is subject to study,
why this happened.

5.3 Comparison

As comparison by simple ordering the MSPE values can be slightly mis-
leading, we adopt here the modified Diebold-Mariano test to statistically
distinguish the predictive accuracy of models found in the first and second
section as the most appropriate ones.

Table 5.7: Testing the equality of predictive accuracy (at α = 0.10)

reference model compared to model No. sum hit

description No. 1 2 3 4 5 6 parade

LST VAR(4) u2 (1,-0.7,100) 1 · 1 1 -1 -1 -1 -1 2

AR(4) 2 -1 · 0 -1 -1 -1 -4 3

VAR(4) 3 -1 0 · -1 -1 -1 -4 3

AR(4) in Y T 4 1 1 1 · 0 0 3 1

AR(4) in Y TS 5 1 1 1 0 · 0 3 1

AR(4) in Y S 6 1 1 1 0 0 · 3 1

For every 2-tuple of the six selected models, the MDM test statistic (1.32)
had been checked whether it falls into 90% confidence interval of Student
t-distribution with (30 − 1) degrees of freedom, and if so, zero value was
assigned to the pair denoting their equality in accuracy. Otherwise if MDM
is smaller (larger) than 0.05 (0.95) quantile, the first model in the pair is
significantly more (less) accurate and value 1 (-1) is assigned. The test results
are shown in Table 5.7. According to the ”hit parade” column, the linear
models applied in common-feature-transformed systems are the winners of
our competition.

5.4 Fitting copulas

We employed bivariate time series - daily observations of plane co-ordinates
of a point gathered 2 years (728 realizations). Observations were made by
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Figure 5.4: Two univariate time-series linked together to form bivariate ran-
dom vector of a point location
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Figure 5.5: Graphical evaluation of nonparametric method:
a) Empirical function Kn fitted by Kφ of corresponding copula function
b) Quantile-quantile plots

means of GPS on permanent station MOPI taking part in European Refer-
ence Network too. The two random variables that make our bivariate obser-
vations thus share common physical phenomenon through the geometry and
time reference. Indeed, from visual check on Figure 5.4, we may expect some
dependence.
The data was processed as follows. Firstly, we examined the two individual

univariate time-series. Interestingly, both of them follow logistic distribution
rather than normal. The logistic distribution with mean and scale parameter
is frequently used in place of the normal distribution when a distribution
with longer tails is desired. Nevertheless, further on we worked solely with
the empirical marginal distribution function (4.18) to avoid any influence
of a biased marginal model upon estimation of dependence structure. Next
we computed scalar representatives of this structure, that is, measures of
dependence

Correlation coef. Spearman’s ρ Kendall’s τ

0.3670 0.3314 0.2346 .
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Table 5.8: Nonparametric and semi-parametric estimates of copula depen-
dence parameters

a)

Family: Gumbel Clayton Frank

Nonparametric procedure

θ 1.3066 0.6131 2.2117

d(Kφ,Kn) 0.446 0.543 0.493

Log-Likelihood procedure (semi-parametric)

θ 1.3044 0.5638 2.3153

AIC -106.2 -109.0 -90.7

d(Cθ, Cn) 5.665 6.370 6.003

Nonlinear Fit procedure (semi-parametric)

θ 1.2914 0.5597 2.0245

d(Cθ, Cn) 5.612 6.369 5.219

b)

Linear convex combination: Clayton-Gumbel Clayton-Frank Frank-Gumbel

Nonlinear Fit procedure (semi-parametric)

α 0.4437 0.3185 0.6345

d

(

α Cθ1 + (α − 1)Cθ2, Cn

)

3.953 4.850 5.013

Note that, if the data were nonstationary and required some variance stabi-
lizing such as logarithmic transformation (which is strictly increasing), the
pre-processing would have biased only the correlation coefficient, and none
of the others.

Within a semi-parametric procedure, (a) we firstly applied the second pro-
cedure outlined in section 4.4, (b) then as an alternative (and as a backup
too) we utilized nonlinear parametric least-square fit to empirical copula. For
linking both (a) and (b) approaches, we computed L2-norm distance between
estimated and empirical copula. As seen from Table 5.8, the differences are
nonsignificant and in preferring Gumbel family to Frank and Clayton both
methods agree with the nonparametric one. However, there seems to be a
disharmony with AIC criterion of maximum likelihood estimate goodness,
which surprisingly promotes the Clayton. On that account we performed
some computations under different input conditions and figured out, that
log-likelihood function of Clayton copula density (see Figure 5.6) is pretty
sensitive to lower tail dependencies, namely to ”perfect” extremes in data
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(notice the lower tail protruders in the very right-hand plot of Figure 5.5).
Even just one (the most extremal) outlier chopped off from the lower tail of
the data pushed the AIC of Clayton to between Frank and Gumbel. Drop-
ping the other two degraded Clayton into ”least appropriate” position among
copulas under consideration. Upper tail extremes have no evident impact to
Clayton likelihood estimate.

Copula density
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Figure 5.6: Copula density for three Archimedean families

This kinds of ”revelations” appears to be quite important when choosing the
best copula. Since nonlinear least-square fit demands a much more CPU time
and memory, discussion of the nonparametric and semi-parametric (pseudo
log-likelihood) is surely in order. As mentioned in [1], neither method is
generally more convenient, but if there are outliers or if the marginal distri-
butions are heavy tailed, it seems reasonable to choose the nonparametric
approach. If we work with large data set, the likelihood estimator may be
more precise.
There are many families of copula, that could be estimated by above proce-

dures and, if necessary, should be considered as the alternatives to the three
above but mainly to most used Gaussian distribution, which - by its nature -
cannot be satisfactory in numerous applications. In that of ours, the sum of
squares of residuals unambiguously refused the appropriateness of bi-normal
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distribution.

Finally, as we have estimated the copula parameters by particular method
and chose ”the best” of them, we contemplated a possibility to improve the
nonlinear fit of parametric copulas by simply fitting their linear convex com-
binations to empirical copula and compare the L2 distances. It can be shown,
that the linear convex combination αC1 + (1 − α)C2 of any two copulas C1

and C2 is also a copula with parameter α ∈ [0, 1]. Such a copula may posses
benefits of both parents when fitting empirical copula. And indeed, Table
5.8 supports this assumption. The best combination is given by Clayton and
Gumbel, with a slight dominance of Gumbel.

5.5 Program outline

The source code provided for Mathematica users in Appendix and on the web-
site www.math.sk/bacigal/homepage/research en.html spreads in four calcu-
lation sheets (notebooks) with the following content:

1. Regime-switching modelling of the artificial, TAR generated bivariate
stationary time series with detailed guidance to data preliminary analy-
sis, testing, model specification and evaluation. Afterwards a survey
on real data modelling is given in a more compact way.

2. Linear modelling of nonstationary bivariate time series with significant
deterministic trend and seasonal component. Three main approaches
are compared in term of out-of-sample performance: univariate AR and
multivariate VAR model of given data, and multivariate VAR model
applied to data transformed such that the deterministic components
are segregated in single variable.

3. Definition of all functions utilized in the foregoing notebooks. In such
a form, functions need to be evaluated manually at the beginning after
all the necessary built-in Mathematica packages has been loaded. An
alternative way of initialisation is to load a package provided on our
website, where functions are encapsulated and can be easily summoned
with automatic call for other required packages.

4. Analysis of dependence structure of a vector variable. In three subsec-
tions three one-parameter copulas are fitted to real data, then a linear
extension to three-parameters copula is considered and additionally
standard errors for copula parameters are computed.
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In the following paragraphs we try to outline the potential of our routines in
particular stage of time series analysis. Note that their naming differs from
that of Mathematica built-in functions in starting character f.
For more exhaustive details we recommend reading the description provided

within the notebooks.

Preliminaries and linear modelling

Generally the notebooks begin with initial settings such as loading of pack-
ages and data followed by preliminary analysis by plotting correlations or
spectral densities. To find order of linear AR or VAR model the selection
criteria AIC, BIC and HQIC are computed via Levinson-Durbin procedure
provided by the TimeSeries package. Alternatively we generalise imple-
mentation of this procedure to account for exogenous time series. If data
are nonstationary because of deterministic components, namely polynomial
trend (constant, linear, quadratic...) or sine waves, and stationarity is re-
quired for further processing, fDeterministicsRemoval uses OLS to return
deterministic-free residuals. Irregular cyclic patterns and lagged data may
enter the linear model through design matrix and fΦ.

Regime-switching nonlinearity

Two tests of linearity are available, fTsayLTest for testing against thresh-
old and fLMtypeLTest against smooth switching (either logistic or exponen-
tial) alternative. Both functions allow to use aggregation operators (some
are predefined in fAggregationOperator) and exogenous variables, they re-
turn test statistic and degrees of freedom that are converted into p-value
by fChiSquarePValue. If applied over grid of input parameters (order and
max. delay), fArgMinTensor finds the best configuration which minimizes
the p-value.
Estimation of regime-switching model is the job of fConditionalRegime-
Switching. As the name betrays, OLS (conditional on delay d, threshold
r and smooth parameter γ) applies instead of NLS. The function has seven
arguments, it allows both endogenous (response) and exogenous variables to
enter the regression, also with lags that can be arbitrarily chosen either by
their maximum values (orders) or listed, jointly or separately for every vari-
able, jointly or separately for every regime. Parameters (d, r, γ) constitute
the fifth argument, either as lists of discrete values or uniform sequence given
by its boundary values and step. Here fThresholdRange comes useful since
it divides central bandwidth of transition variable to get sequence of thresh-
olds. If we prefer abrupt transition (threshold model), parameter γ must be
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excluded from the list. The last argument determines the general purpose of
function and may contain additional input data. Its first element serves as
switch across modes (see below), between logistic and exponential transition
function, and over the options for threshold variable construction. Second
element carries a name of aggregation operator and the third element covers
the needs of individual mode. The modes of fConditionalRegimeSwitching
are nothing more than particular tasks to be executed and outputs to be re-
turned. At present, five modes (kinds of output) are available: 1) sum of
squared residuals as trace of covariance matrix, 2) estimates of parameter
matrix, Φ̂, covariance matrix, Σ̂, and residuals, ε̂t, 3) AIC and BIC selection
criteria, 4) forecast errors and finally 5) forecasts. The forecast errors are
computed over the sample data tail, the length of which have to be specified
together with horizon and number of Monte Carlo cycles. If forecasts are
desired from regression on exogenous variables, these must be generated in
advance and put in specification argument.
The results are structured as nested lists according to parameters d, r1, . . .

rm−1, γ1, . . . γm−1 (in case of m-regimes). Values of the parameters are
situated in the second part of output. For modes 1 and 3 the function
fArgMinTensor searches the (first part of) output heap and returns the pa-
rameters corresponding to the global minimum. They then enter the mode 2
and the result is subjected to test for residual correlations (fPortmanteauTest)
and linearity (fResidualTest).

Comparison of predictive accuracy

As an evaluation of out-of-sample fit, two kinds of ”hit parades” come avail-
able. By fMeanXPredictionErrorHitparade we may directly compare over-
all MSPE, MAPE or other measures of fit, while fDieboldMarianoHitparade
at first tests the equality of predictive accuracy and then returns ranking
which may award one position to multiple entries. Both functions are fed
with forecast errors and a loss function, Diebold-Mariano test additionally
requires horizon of forecasts and significance level.

Estimation of dependence structure

Routines in the last notebook need not many comments as they consist of
simple commands and built-in functions. It might be interesting to notice
computing times by each estimation method provided by Timing. The most
consuming procedure at all is the generation of empirical copula which takes
half an hour on a 1GHz machine. Obviously this is one of the main drawbacks
of such computer algebra system as Mathematica which stays far behind
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(e.g.) C-compiled programs in the sense of data handling speed.


