
Chapter 4

Copula

Geodesy and other technical disciplines have used in its history various math-
ematical models to describe observed as well as mediate variables of inspected
phenomenons. Univariate behaviour first, then multivariate capturing mu-
tual dependencies, the focus was always put to understanding and predicting
the values of individual concern. A copula function is (recently very popular)
tool for relating different dimensions of a data output.

Before we zoom to relevant theory, it may come handy to look ”a little” back
in section 4.1, following [19]. After introducing the idea of copula theory,
section 4.2 gives an interesting look into dependence measuring, which is
helpful in the discussion about association between random variables and
the role that copulas play in it. Section 4.3 is geared to Archimedean class of
copulas, pointing out the easiness with which they can be constructed, while
the section 4.1 describes the estimation procedure in details.

It is necessary to remark in advance, that the notation in this chapter differs
significantly from that in the other chapters. This is understandable since
the concept of copula, which is fairly new to the time series analysis, looks
at the modelled data from a different angle.

4.1 Introduction to copula

Understanding relationships among multivariate outcomes is a basic problem
in statistical science. In the late nineteenth century, Sir Francis Galton made
a fundamental contribution to understanding multivariate relationships with
his introduction of regression analysis, by which he linked the distribution of
heights of adult children to the distribution of their parents’ heights. Galton
showed not only that each distribution was approximately normal but also
that the joint distribution could be described as a bivariate normal. Thus,
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the conditional distribution of adult children ’s height, given the parents’
height, could also be described by using normal distribution. Regression
analysis has developed into the most widely applied statistical methodology
and become an important component of multivariate analysis, because it
allows researchers to focus on the effects of explanatory variables.
However, though widely applicable, regression analysis is limited by the ba-

sic setup that requires the analyst to identify one dimension of the outcome
as the primary measure of interest (the dependent variable) and other dimen-
sions as supporting or ”explaining” this variable (the independent variables).
This may generally be not of primary interest, thus our attention should be
focused on the more basic problem of understanding the distribution of sev-
eral outcomes, a multivariate distribution.
As normal distribution has the most practical use when describing one-

dimensional data sets, it has long dominated the study of multivariate dis-
tributions as well. Multivariate normal distributions are appealing because
the marginal distributions are normal too, and also because the associa-
tion between any two random outcomes can be fully described knowing only
the marginal distributions and additional parameter (correlation coefficient).
However, there are many datasets, to that normal distribution does not pro-
vide an adequate approximation. For that reason, many non-normal distri-
butions have been developed, mostly as immediate extensions of univariate
distributions (Pareto, gamma, ...). Drawbacks of such a construction are
that (a) a different family is needed for each marginal distribution, (b) ex-
tensions to more than just the bivariate case are not clear, (c) and measures
of association often appear in the marginal distributions. A construction of
multivariate distributions that does not suffer from these drawbacks is based
on the copula function.
Copula is a function that links univariate marginals to their full multivariate

distribution. To cast light on previous definition, consider p uniform (on
the unit interval) random variables U1, U2, . . . , Up whose joint distribution
function C is defined as

C(u1, u2, . . . , up) = Pr[U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up], (4.1)

where u denotes realizations. Those p variables are distribution functions
(also referred to as probability integral transforms) of p outcomes X1, X2, . . . ,
Xp (each of them being a continuous random variable) that we wish to under-
stand. They are the marginal distribution functions F1, . . . , Fp of multivariate
distribution function

C

(

F1(x1), F2(x2), . . . , Fp(xp)

)

= F (x1, x2, . . . , xp), (4.2)
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defined using a copula function, evaluated at realizations x1, x2, . . . , xp.
In 1959 Sklar formulated his famous theorem, where the converse of (4.2)

was established, and that practically meant the foundation of whole copula
theory. He proved that any joint distribution function F with univariate
marginal distribution functions F1, . . . , Fp can be seen as a copula function,
i.e.

F (x1, x2, . . . , xp) = C

(

F1(x1), F2(x2), . . . , Fp(xp)

)

. (4.3)

He also showed that if the marginal distributions are continuous, then there is
a unique copula representation (in general, C is unique on the RanF1×RanF2×
· · ·×RanFp, where RanF stands for the range of F ).
Thus copula functions provide a unifying and flexible way to study joint

distributions (with different marginals). Moreover, copula allows us to model
the dependence structure independently from the marginal distributions.
As for the basic properties, following [9] and restricting ourselves to bivariate

representation, copula is a function C : [0, 1]2 −→ [0, 1] which

• satisfies the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) =
C(1, t) = t for t ∈ [0, 1],

• satisfies the 2-increasing property:
C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 in
[0, 1] such that u1 ≤ u2 and v1 ≤ v2,

A copula is symmetric if C(u, v) = C(v, u) for all (u, v) in [0, 1]2 and is
asymmetric otherwise.
Now consider the functions M , Π and W defined on [0, 1]2 as follows:

M(u, v) = min(u, v),

Π(u, v) = uv, (4.4)

W (u, v) = max(u + v − 1, 0).

These functions are copulas, actually 2-copulas (i.e. copulas with two-dimensional
domain), and M , W satisfy so-called Fréchet-Hoeffding bounds inequality

W (u, v) ≤ C(u, v) ≤ M(u, v), (4.5)

where C is any 2-copula. W and M are called Fréchet-Hoeffding lower and
upper bound, respectively. They represent perfect dependence, either neg-
ative or positive, whereas the product copula Π stands for perfect indepen-
dence. If we extend the domain to [0, 1]p for p ≥ 3, (observe that M , Π and
W are associative and thus their p-ary extension is trivial), still the bounds
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are M and W . However, the lower bound W is no more a p-copula (but still
it is the best lower bound).
So far, numerous copulas have been developed and can be found listed in

literature (for instance see [42]). Because of the above mentioned appealing
properties of normal distribution, the most commonly applied function is the
normal copula

C
normal

(u1, . . . , un) = Ψ

(

Φ−1(u1), . . . , Φ
−1(un)

)

, (4.6)

where Ψ denotes the joint distribution function of the n-variate standard
normal distribution and Φ−1 the inverse of univariate normal standard dis-
tribution function (see [13]). Multi-normal distribution belongs to the ellip-
tical distributions, which captures only linear dependencies (the parameter
set being correlation matrix) and therefore is inadequate in many multivari-
ate analyses of data with probability density concentrated on tails (extreme
values), for instance.
In this paper, our main concern is an interesting class of copulas, denoted

Archimedean, that possess some outstanding useful properties. Archimedean
copulas are going to be introduced after we say few words about measures of
dependence.

4.2 Dependence and measures of association

In this section we recall some basic concepts of dependence or association
between random variables and the role that copulas can play in this most
widely studied subject in probability and statistics. Following [42], [19],
there is a variety of ways to discuss and to measure dependence. Many of
them are ”scale-invariant”, that is, they remain unchanged under strictly
increasing transformations of the random variables. To understand the spirit
of copula, consider two random variables X, Y and two functions f, g,
strictly increasing (but otherwise arbitrary) over the range of X, Y . Then
the transformed variables f(X) and g(Y ) have the same copula as X and Y
- in other words, the manner in which X and Y ”move together” is captured
by the copula, regardless of the scale in which each variable is measured.
The most famous and widely used measure of association is Pearson’s product-

moment correlation coefficient

corr(X,Y ) =
cov(X,Y )

√

var(X)var(Y )
, (4.7)

however, it measures only a linear dependence between random variables. In
context of joint distributions, corr(X,Y ) depends not only on the copula but
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also on the marginal distributions, thus this measure is affected by (nonlin-
ear) changes of scale. Since Pearson’s coefficient has adopted the customary
name, correlation coefficient, for scale-invariant measures we shall use more
modern term ”measure of association”. The most widely known ones are
the population versions of Kendall’s tau (τ) and Spearman’s rho (ρ), both
of which measure a form of dependence known as concordance.
Informally, a pair of random variables is concordant if ”large” values of one

tend to be associated with ”large” values of the other, and ”small” values of
one with ”small” values of the other. More precisely, if (xi, yi) and (xj, yj)
denote two observations of a vector (X,Y ) of continuous random variables,
we say that (xi, yi) and (xj, yj) are concordant if (xi − xj)(yi − yj) > 0, and
discordant if (xi − xj)(yi − yj) < 0.
From the sample version of Kendall’s tau defined as t = (c − d)/(c + d),

where c is the number of concordant and d the number of discordant pairs
(xi, yi) and (xj, yj), we may work out easily that the population version of
Kendall’s tau will be defined as the probability of concordance minus the
probability of discordance

τ = τX,Y = Pr[(X1 −X2)(Y1 −Y2) > 0]−Pr[(X1 −X2)(Y1 −Y2) < 0] , (4.8)

where (X1, Y1) and (X2, Y2) are assumed to be independent and identically
distributed random vectors. Before we link τ with copulas, define a ”concor-
dance function” Q in the same way as τ in (4.8), with that difference that the
continuous random variables in the two vectors (X1, Y1) and (X2, Y2) have
(possibly) different joint distributions H1 and H2, but common margins F
and G. Then the equality

Q = Q(C1, C2) = 4

∫∫

[0,1]2
C2(u, v)dC1(u, v) − 1 (4.9)

shows, that this function depends on the distributions of the two vectors only
through their copulas C1 and C2. According to (4.9) the population version
of Kendall’s tau in terms of copulas is given by

τX,Y = τC = Q(C,C) = 4

∫∫

[0,1]2
C(u, v)dC(u, v) − 1 , (4.10)

where C is the copula of X and Y . Integral, which appears in (4.10) can be
interpreted as the expected value of the function C(U, V ) of random variables
U and V uniform on (0, 1) whose distribution function is C; then τC =
4E[C(U, V )] − 1. Next section shows the taking advantage of linking τ to
Archimedean copulas in their estimation.
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Similarly, the population version of the measure of association known as
Spearman’s rho is based on concordance and discordance. Let (X1, Y1),
(X2, Y2) and (X3, Y3) be three independent random vectors with common
joint distribution function H (whose margin are again F and G) and copula
C. The population version of Spearman’s rho is defined to be proportional
to the probability of concordance minus the probability of discordance for
the two vectors (X1, Y1) and (X2, Y3) – i.e., a pair of vectors with the same
margins but one vector has distribution function H, while the components
of the other are independent:

ρ = ρX,Y = 3

(

Pr[(X1 − X2)(Y1 − Y3) > 0] − Pr[(X1 − X2)(Y1 − Y3) < 0]

)

,

(4.11)
(the pair (X3, Y2) could be used equally as well). Note that while the joint
distribution function of (X1, Y1) is H(x, y), the joint distribution function of
(X2, Y3) is F (x)G(x) (since X2 and Y3 are independent) and their copula is
Π. Then the population version of Spearman’s rho is given by

ρX,Y = ρC = 3Q(C, Π) = 12

∫∫

[0,1]2
uv dC(u, v) − 3

= 12

∫∫

[0,1]2
C(u, v)dudv − 3 . (4.12)

The coefficient ”3” that appears in (4.11) and (4.12) is a ”normalization” con-
stant, since Q(C, Π) ∈ [−1/3, 1/3], allowing ρ to satisfy the range property
of measures of concordance.
Here we list some of the properties that a measure κ of association between

two random variables X and Y should satisfy to be a measure of concordance:

• −1 ≤ κX,Y ≤ 1, κX,X = 1, κX,−X = −1,

• κX,Y = κY,X ,

• if X and Y are independent, then κX,Y = κΠ = 0,

• κ−X,Y = κX,−Y = −κX,Y .

Spearman’s rho is also called a ”grade”1 correlation coefficient. For closer
look, if x and y are observation from two random variables X and Y with
distribution functions F and G, respectively, then the grades of x and y
are given by u = F (x) and v = G(y). Note that the grades (u and v)

1Grade is the population analogue of rank
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are observations from the uniform (0,1) random variables U = F (X) and
V = G(Y ) whose distribution function is copula C. Thus Spearman’s rho
for a pair of continuous random variables X and Y is identical to Pearson’s
product-moment correlation coefficient for the grades U and V :

ρX,Y = corr(F (X), G(Y )).

Another interpretation of Spearman’s rho says that it is proportional to the
average difference between the graph of the copula C and the product copula
Π over the unit square [0, 1]2.

4.3 Archimedean copula

In this chapter we focus on an important class of copulas known as Archimedean
copulas. They find a wide range of applications mainly because of (a) the
ease with which they can be constructed, (b) the great variety of families of
copulas which belong to this class, and (c) the many nice properties possessed
by the members of this class. Archimedean copulas originally appeared not
in statistics, but rather in the study of probabilistic metric spaces, where
they were studied as a part of the development of a probabilistic version of
the triangle inequality. Like a copula, a triangle norm, or t-norm maps [0, 1]p

to [0, 1] and joins distribution functions (here the resulting distribution func-
tion is univariate). Some t-norms (exactly those which are 1-Lipschitz) are
copulas and vice versa, some copulas (exactly those which are associative) are
t-norms. Moreover, Archimedean t-norms which are also copulas are called
Archimedean copulas. Recall that (for p = 2) a mapping T : [0, 1]2 → [0, 1] is
called an Archimedean t-norm if it is continuous, associative, non-decreasing,
1 is its neutral element and T (x, x) < x for all x ∈]0, 1[. Each Archimedean
t-norm can be represented in the form T (x, y) = t−1

(

min(t(x) + t(y), t(0))
)

where t: [0, 1] → [0,∞] is continuous, strictly decreasing and t(1) = 0, see
[34].
The Archimedean representation allows us to reduce the study of a mul-

tivariate copula to a single univariate function. For simplicity, we consider
bivariate copulas so that p = 2. Assume that φ is a convex, decreasing func-
tion with domain (0, 1] and range in [0,∞), that is φ: (0, 1] → [0,∞), such
that φ(1) = 0. Use φ−1 for the function which is inverse of φ on the range of
φ and 0 otherwise. Then the function

Cφ(u, v) = φ−1

(

φ(u) + φ(v)

)

for u, v ∈ (0, 1] (4.13)

is said to be an Archimedean copula. φ is called a generator of the copula
Cφ. Archimedean copula is symmetric, also associative, i.e. C(C(u, v), w) =
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Table 4.1: Archimedean copulas with their generators.

Family of Generator Param. Bivariate copula Special cases

copulas φ(t) θ Cφ(u, v)

product − ln t uv C=Π

Gumbel (− ln t)θ θ ≥ 1 e−[(− ln u)θ+(− ln v)θ]1/θ

C1=Π, C∞=M

Clayton t−θ − 1 θ > 0 (u−θ + v−θ − 1)−1/θ
C0=Π, C∞=M

Frank − ln
(

e−θt
−1

e−θ
−1

)

θ ∈ ℜ − 1
θ ln

(

1 + (e−θu
−1)(e−θv

−1)
(e−θ

−1)

)

C0=Π
C−∞=W, C∞=M

C(u,C(v, w)) for all u, v, w ∈ [0, 1], and for any constant k > 0 the kφ
is also a generator of Cφ. Observe that Archimedean copulas (which are
always 2-copulas) as p-ary operators need not be p-copulas. A necessary and
sufficient condition for an Archimedean copula to be p-copula for each p ≥ 2
is the total monotonicity of the function φ−1 [42]. If the generator is twice
differentiable, the copula is absolutely continuous and the copula density
(probability density function of random vector (U, V ) ) is given by

cφ(u, v) =
∂2Cφ(u, v)

∂u∂v
=

−φ′′(Cφ(u, v))φ′(u)φ′(v)

[φ′(Cφ(u, v))]3
. (4.14)

As a generator uniquely determines an Archimedean copula, different choices
of generator yield many families of copulas, that consequently, besides the
form of generator, differ in the number of dependence parameters and their
range. Table 4.1 summarizes the most important one-parameter families of
Archimedean class. For convenience the copula notation Cφ is replaced by Cθ

in the last column, where θ assumes its limiting values. Note, that Clayton
and Gumbel copulas model only positive dependence, while Frank covers the
whole range.
Now that we’re talking about dependence, recall the population version of

Kendall’s tau whose evaluation requires the evaluation of the double integral

Table 4.2: Measures of association related to Archimedean copulas

Family product Gumbel Clayton Frank

Kendall’s τ 0 θ−1
θ

θ
θ+2 1 − 4

θ{1 − D1(θ)}

Spearman’s ρ 0 no closed form complicated form 1 − 12
θ {D1(θ) − D2(θ)}

Note: Dk(x) = k
xk

∫ x

0
tk

et
−1dt is so called ”Debye” function.
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in (4.10). For an Archimedean copula, the situation is simpler, in that τ can
be evaluated directly from the generator of the copula

τC = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt (4.15)

[21]. Indeed, one of the reasons that Archimedean copulas are easy to work
with is that often expressions with one-place function (the generator) can
be employed rather than expressions with a two-place function (the copula).
Table 4.2 shows particular closed forms of (4.15).

4.4 Fitting a copula to bivariate data

The Archimedean copula has simplified the construction of bivariate distrib-
utions and it has many families that are capable to present different structure
of dependence and there are many different methods developed to estimate
its parameters. We only need to find functions which will serve as generators,
define the corresponding copulas and estimate their dependence parameters.
For identifying the copula, we focus on the procedure of Genest and Rivest

[22], that is also referred to as nonparametric estimation of copula parameter.
Then we use semi-parametric estimation method developed in [23] and finally
the experiment with bivariate geodetic data is given to illustrate the proposed
theory. The procedures are also discussed in [19], [40] and [1].
In the following, we consider the three most widely used Archimedean fam-

ilies of copula: Clayton, Gumbel and Frank.

Nonparametric estimation

As [19] formulate, measures of association summarize information in the cop-
ula concerning the dependence, or association, between random variables.
Thus, following [22] we can also use those measures to specify a copula form
in empirical applications.
Assume that we have a random sample of bivariate observations (Xi, Yi)

for i = 1, . . . , n available. Assume that the joint distribution function H
has associated Archimedean copula Cφ; we wish to identify the form of φ.
First to begin with, define an intermediate (unobserved) random variable
Zi = H(Xi, Yi) that has distribution function K(z) = Pr[Zi ≤ z]. This
distribution function is related to the generator of an Archimedean copula
through the expression

K(z) = Kφ(z) = z −
φ(z)

φ′(z)
. (4.16)
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To identify φ, we:

1. Find Kendall’s tau using the usual (nonparametric or distribution-free)
estimate

τn =

∑n

i=2

∑i−1
j=1 sgn[(Xi − Xj)(Yi − Yj)]

∑n

i=2

∑i−1
j=1 | sgn[(Xi − Xj)(Yi − Yj)]|

.

2. Construct a nonparametric estimate of K, as follows:

a) first, define the pseudo-observations Zi = { number of (Xj, Yj)
such that Xj < Xi and Yj < Yi}/(n − 1) for i = 1, . . . n:

Zi = (n − 1)−1

n
∑

j=1

I[Xj < Xi ∧ Yj < Yi],

b) second, construct the estimate of K as proportion of Zis smaller
than z, that is

Kn(z) = n−1

n
∑

i=1

I[Zi ≤ z],

where indicator function I[A] gives 1 if A occurs and 0 otherwise.

3. Now construct a parametric estimate Kφ using the relationship (4.16).
Illustratively, τn −→ θn −→ φn(t) −→ Kφn

(z), where subscript n
denotes estimate. For various choices of generator, refer to Table 4.1,
and for linking τ to θ, Table 4.2 is helpful.

The step 3 is to be repeated for every copula family we wish to com-
pare. The best choice of generator then corresponds to the parametric esti-
mate Kφn

(z), that most closely resembles the nonparametric estimate Kn(z).
Measuring ”closeness” can be done either by a (L2-norm) distance such as
∫ 1

0
[Kφn

(z) − Kn(z)]2dz or graphically by (a) plotting of z − K(z) versus z
or (b) corresponding quantile-quantile (Q-Q) plots (see [22], [19], [12]). Q-Q
plots are used to determine whether two data sets come from populations
with a common distribution. If the points of the plot, which are formed from
the quantiles of the data, are roughly on a line with a slope of 1, then the
distributions are the same.

Semi-parametric estimation

To estimate dependence parameter θ, two strategies can be envisaged. The
first and straightforward one writes down a likelihood function, where the
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valid parametric models of marginal distributions are involved. The result-
ing estimate θ̂ would then be margin-dependent, just as the estimates of
the parameters involved in the marginal distributions would be indirectly
affected by the copula. As the multivariate analysis focus on the dependence
structure, it requires the dependence parameter to be margin-free. That’s
why [23] proposed a semi-parametric procedure for the second strategy, when
we don’t want to specify any parametric model to describe the marginal dis-
tribution. This procedure consist of (a) transforming the marginal observa-
tions into uniformly distributed vectors using the it empirical distribution
function, and (b) estimating the copula parameters by maximizing a pseudo

log-likelihood function.
So, given a random sample as before, we look for θ̂ that maximizes the

pseudo log-likelihood

L(θ) =
n

∑

i=1

log

(

c
θ
(Fn(x), Gn(y))

)

, (4.17)

in which Fn, Gn stands for re-scaled empirical marginal distributions func-
tions, i.e.,

Fn(x) =
1

n + 1

n
∑

i=1

I[Xi ≤ x] , (4.18)

Gn(y) arise analogically. This re-scaling avoids difficulties from potential
unboundedness of log(c

θ
(u, v)) as u or v tend to one. Genest et al. in [23]

examined the statistical properties of the proposed estimator and proved it
to be consistent, asymptotically normal and fully efficient at independence
case.
The copula density c

θ
for each Archimedean copula can be acquired from

(4.14). To examine a goodness of our estimation, there is the Akaike infor-
mation criterion available for comparison: AIC = −2(log-likelihood) + 2k,
where k is the number of parameters in the model (in our case, k = 1). The
lowest AIC value determines the best estimator.
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