
Chapter 3

Common features

When doing an experiment in which several variables are observed, it is
often not just a coincidence that the features like trend, seasonal component
and the others (described in previous chapters) contaminating the individual
time series are in fact a consequence of the same underlying processes. Then
the time series are said to have these features in common and it is natural
to build a multivariate model to utilize these connections for reducing the
number of parameters and improving the forecast performance. Moreover,
investigating the presence of the common features allows us to solve the
problem of spurious regressions, as already noted in section 1.6.

The matter of nonsense regression can be easily explained on the example,
where two time series variables are independently generated as random walks,
i.e. y1,t = y1,t−1 + ε1,t and y2,t = y2,t−1 + ε2,t, thus both time series are
dominated by smooth, long term trend and it seems suitable to specify a
relation by static regression y1,t = βy2,t + ut. This often produce significant
estimate of the unknown parameter β with a large absolute t-ratio and the
coefficient of determination close to unity, and the residuals ut appear to
be stationary. But such an empirical result tells us little of the short run
relationship between y1,t and y2,t. In fact, if the two series are both I(1) then
we will often reject the hypothesis of no relationship between them even
if none exists. For there to be such a long run relationship, the variables
must be cointegrated. The cointegration analysis is therefore very useful in
preventing misleading inference and will be discussed in the following section.

3.1 Cointegration

Before any analytical description of the term cointegration is given, consider
following illustration [6]. In a crowded open-field park we observe old man
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being on an afternoon walk and a young lady walking her dog. Both persons
are unrelated to each other and their motions are mutually unaffected except
they may collide accidentally for a moment. However, the dog is related
physically to his mistress by one of those leashes that has cord rolled up inside
the handle on a spring. It is intuitive that information about the old man’s
location tells us nothing about the woman’s location, whereas although she
and her dog are both individually on a random walk, they cannot wander
too far from one another because of the leash. We say that the random
processes describing their paths are cointegrated. In other words, if there
exists a stationary linear combination of nonstationary random variables,
the variables combined are said to be cointegrated.
In the following, first we try to formulate the problem with different repre-

sentations, then the most favourite tests for cointegration are described. We
continue to use the notation from [15].

Representation

A good representation to start with is the following simple bivariate model
similar to the dynamic simultaneous model (1.52), that is,

y1,t + δy2,t = vt, vt = µ∗

1 + ρ1vt−1 + ε∗1,t,

y1,t + ηy2,t = wt, wt = µ∗

2 + ρ2wt−1 + ε∗2,t, (3.1)

where 0 ≤ ρi ≤ 1, i = 1, 2, and δ 6= η. The later restriction prevents δ
and η from being equal zero at the same time. The µ∗

1 and µ∗

2 are intercept
terms and ε∗1,t, ε

∗

2,t are assumed to be standard white noise error processes
mutually independent at all lags. The two equations (3.1) reflect that two
distinct linear combinations of y1,t and y2,t can be described by AR(1) models.
The interpretation of the two linear combinations depends on the values of
ρ1 and ρ2. In this bivariate case, we may encounter three relevant cases:

a) ρ1 = ρ2 = 1; Any linear combination of y1,t and y2,t is a random walk
variable (possibly with drift if µ∗

1 or µ∗

2 is unequal to zero). Also y1,t

and y2,t are I(1) variables, nonstationary themselves. Since no linear
combination of them is stationary, they do not have stochastic trend
in common and they are said not to be cointegrated.

b) 0 ≤ ρi < 1, i = 1, 2; Any linear combination of y1,t and y2,t is sta-
tionary AR(1) process, hence y1,t and y2,t are themselves stationary
variables. There is no sense in talking about cointegration.

c) ρ1 = 1 and 0 ≤ ρ2 < 1 (or vice versa); There is one linear com-
bination of y1,t and y2,t which is stationary AR(1) process, while the
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another combination is a random walk (with drift). When there is such
a stationary relationship between y1,t and y2,t, which individually have
a stochastic trend, cointegration among y1,t and y2,t implies that both
series also have a common stochastic trend.

The model framework (3.1) is useful when we analyse relation of two vari-
ables, however generalisation to multivariate case becomes complicated, there-
fore it is convenient to rewrite the dynamic simultaneous model as VAR
model (for now, of order one). Let us summarize (3.1) as

[

1 δ

1 η

][

y1,t

y2,t

]

=

[

µ∗

1

µ∗

2

]

+

[

ρ1 δρ1

ρ2 ηρ2

][

y1,t−1

y2,t−1

]

+

[

ε∗1,t

ε∗2,t

]

, (3.2)

which multiplying both sides with the inverse of the left-hand side matrix
and subtracting the one period lagged yt−1 from both sides gives

∆1yt = µ+ Πyt−1 + et (3.3)

with yt = (y1,t, y2,t)
′ and the error series in et = (e1,t, e2,t)

′ are functions of
ε∗1,t, ε

∗

2,t, δ and η, and with

µ =
1

η − δ

[

ηµ∗

1 − δµ∗

2

µ∗

2 − µ∗

1

]

, (3.4)

Π =
1

η − δ

[

ηρ1 − δρ2 − η + δ ηδ(ρ1 − ρ2)

ρ2 − ρ1 ηρ2 − δρ1 − η + δ

]

. (3.5)

Again, when

a) ρ1 = ρ2 = 1, all elements of Π have value zero and hence the rank of
Π is equal zero,

b) 0 ≤ ρi < 1, i = 1, 2, the matrix Π has full rank, rank(Π) = 2,

c) ρ1 = 1 and 0 ≤ ρ2 < 1 (for instance), this is the cointegration case
when the (2×2) matrix Π equals the outer product of (2×1) matrices,
i.e.

Π = αβ′ (3.6)

with

α =
1

η − δ

[

δ(1 − ρ2)

−(1 − ρ2)

]

and β =

[

1

η

]

(3.7)
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Note, that this leads to reduction from 4 to 3 parameters in Π. In gen-
eral, cointegration reduces the number of parameters in VAR model.
However, the decomposition is not unique, and we can find other non-
linear parameter restrictions on Π which also correspond with cointe-
gration. In this particular case, the characteristic polynomial of the
VAR(1) model (3.3), |I− (Π+I)z| = 0, yields one solution on the unit
circle. Hence, both series have a unit root, while the vector series has
only a single unit root, which then represents the common stochastic
trend.

The parameter vector β is said to contain the cointegration parameters,
and βyt is the equilibrium (or long-run) relation between y1,t and y2,t. The
parameter matrix α contains the so-called adjustment parameters, which
reflect the speed of adjustment toward equilibrium. This is easily seen from
(3.3) with (3.6) when written as equations

∆1y1,t = µ1 + α1(y1,t−1 + ηy2,t−1) + e1,t,

∆1y2,t = µ2 + α2(y1,t−1 + ηy2,t−1) + e2,t. (3.8)

Notice the term in parentheses. It is the equilibrium common for both equa-
tions. Each of the above equations is so-called error correction model (ECM),
together denoted as VECM.
To help fix the idea, consider again the analogy [6] of the young lady (say,

Lin) walking the dog (Spike). Now they are seen staggering out of nearby
pub and heading home. Lin has too much to drink and her movement away
from the pub is obviously erratic. Spike is also prone to wander aimlessly,
randomly attracted by various smells. Now, they don’t need to be connected
by a leash, Lin is still conscious of being the owner of the dog and Spike
will respond to his master’s voice. Lin’s meandering down the street can be
modelled as a random walk along the real line y1,t − y1,t−1 = ε1,t. The real
line in this case can be taken to be a narrow path leading away from the
bar through an open field. Suppose we enter the bar and lose Lin from our
sight for a moment. On coming out of the bar a short time later, our best
prediction for her current location is where we last saw her. Because her
movements are a random walk, she is as likely to be on the path as out in
the middle of the field. If the coefficient on y1,t−1, her last position, was less
then one (in absolute value) then she would tend to return to the path no
matter how long we remained in the bar. Similarly, Spike’s wandering can
also be modelled as a random walk along the real line, y2,t − y2,t−1 = ε1,t.
If in her stupor Lin notices that Spike is not at her side she will call his
name. In response he will trot closer to the source of his name. By the
same token, Spike will bark when he realizes that he has wandered off from
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his mistress and Lin will stagger off in the direction of the bark. Hence we
have a long run relationship which recognizes the association between Lin
and Spike, y1,t + ηy2,t = wt with wt being stationary. Furthermore, Lin and
Spike determine their next ”step” according to the system of equations (3.8).
The series for the change in, say, Lin’s position is determined by the extent
to which she and Spike have wandered far apart. In fact, Lin’s next step
closes the deviation from long run equilibrium in the previous period by the
amount α1.

Now consider a more general case, the VAR(p) model expanded by deter-
ministic terms,

yt = µ+ δt+ Φ1yt−1 + · · · + Φpyt−p + εt, (3.9)

with k-dimensional Gaussian white noise process εt (with mean zero and
variance matrix Σε), which is convenient to rewrite as vector error correction
model (VECM)

∆yt = µ+ δt+ Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + Πyt−p + εt, (3.10)

where Γi = (Φ1 + · · · + Φi) − I, for i = 1, 2, . . . p− 1, and Π = (Φ1 + · · · +
Φp) − I. VECM combines short-run dynamics in and among the processes
together with long-run relationships (contained in parameter matrix Π), thus
construction of VECM allows to investigate these two types of relations sep-
arately. Again, there are three alternative events that may occur with the
rank of Π. The first two cases, as listed above, result in zero or full rank,
while the reduced rank refers to cointegration relations between processes.
The later case is originally treated by the famous Granger’s Representation
Theorem1 (see [31]), which shows that a system of cointegrated time series
can be formulated as VAR, ECM and VMA. It is interesting to notice that
the matrix Π has a counterpart in VMA representation, to be denoted as C,
for which CΠ = ΠC = 0 and rank(C) + rank(Π) = k holds. If the rank
deficiency allows for decomposition C = αγ ′, then γ contains parameters
of common stochastic trends. The theorem has greatly influenced all later
works concerned in testing for cointegration in a system of nonstationary
processes.
In the following we discuss two most widely used methods of testing for

cointegration (or common stochastic trends), the first is meant for single-
equation representation whereas the second one is based on VAR.

1Clive W. J. Granger was awarded the Nobel Prize for Economics in 2003 for methods
of economic time series analysis with common trends
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Testing and parameters estimation

A simple method to test for cointegration between two (and possibly more)
variables, that is despite its limitation still popular among practitioners, al-
lows to estimate the cointegrating vector β without necessity of modelling the
dynamics, until the itself estimation of ECM. The so-called Engle-Granger

two step method involves testing the residuals from static regression for sta-
tionarity and then using them as equilibrium to estimate the parameters of
error correction model. More formally,

1. we first perform the static regression

y1,t = β0 + β1y2,t + ut

and use OLS estimates ût of long-run relationship residuals in auxiliary
test regression (with an AR(q) model)

∆ût = θ0 + ρût−1 + θ1∆ût−1 + · · · + θq∆ût−q + υt

to carry out the augmented Dickey-Fuller test, that is to evaluate the
t-test for the significance of ρ. When ρ = 0, ût has a unit root and
hence the linear combination is a nonstationary time series. When
ρ < 0, i.e. t(ρ̂) is significantly negative, y1,t and y2,t are cointegrated.
The only departure from standard unit root testing is that the tables
of ADF test critical values are not applicable since the series tested
has been obtained from regression. Table 3.2 provides correct critical
values for analysis of up to 4 variables (source: [38]). Note, that above
we described the case with only a constant included in regressions.
The critical values are available also for the case with both constant
and trend. Finally, the choice of which variable to regress on which in
the static regression can be assisted by maximising R2.

2. Once the variables has been ascertained to be cointegrated, the residual
estimates ût are used in ECM

∆y1,t = c+

p1∑

i=1

ai∆y1,t−i +

p2∑

j=1

bj∆y2,t−j + α1(y1,t−1 − β0 − β1y2,t−1),

instead of the error correction term (in parentheses) to estimate the
parameters (a1, . . . , b1, . . . , c, α1). Lag orders p1, p2 are chosen using
standard diagnostic techniques.
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The limitation of Engle-Granger procedure comes from imposing a common
factor restriction on the dynamics of the relationship between variables. In-
validity of such assumption leads to significant loss of power. There are also
several other disadvantages, however from practical point of view, we may
found the method being less useful for analysis of more than two variables as
the most limiting feature. As the number of possible cointegration relations
increases with the number of time series and so does the ambiguity in de-
termining the empirical validity of single equation models, this suggests that
multivariate methods may be more appropriate.

One such multivariate method, which has been used extensively in applied
work, came from Johansen’s approach and provides a unified framework for
estimation and testing in the context of a multivariate vector autoregressive
model in error correction form (VECM) with normal errors. The normality
assumption allows a neat application of maximum likelihood theory, which
produces both the test statistics and the maximum likelihood estimators of
the parameters in model. Now consider the VECM (3.10), for which the goal
remains twofold: to determine the number of cointegrating vectors in β and
to estimate parameters (µ, δ,Γ1, . . .Γp−1,Π,Σε) of this model. Because the
topic is interesting to understand in more details, we follow [31] and [2] in
describing the estimation background. For simplicity of notation, let n be
the length of time series with the initial values y0, . . .y−p excluded, then let

z0t = ∆yt

z1t = (1, t,∆y′

t−1, . . .∆y
′

t−p+1)
′, (3.11)

z2t = yt−p,

and Γ = (µ, δ,Γ1, . . .Γp−1) is k × [(p − 1)k + 2] parameter matrix. Thus
model (3.10) can be expressed as

z0t = Γz1t + Πz2t + εt, (3.12)

and the normal equations for this model become

M 01 = ΓM 11 + ΠM 21, (3.13)

where M ij = n−1
∑n

t=1 zitz
′

jt, i, j = 0, 1, 2, are product moment matrices.
Thus parameter matrix

Γ = M 01M
−1
11 − ΠM 21M

−1
11 (3.14)

incorporated back into the model leads to the equation

r0t = Πr2t + εt (3.15)



54 CHAPTER 3. COMMON FEATURES

where rit = zit −M i1M
−1
11 z1t, i = 0, 2, are the residuals we would obtain

by regressing ∆yt and yt−p (respectively) on 1, t,∆y′

t−1, . . .∆yt−p+1. The
parameters Π and Σε are to be estimated via maximizing the logarithm of
conditional likelihood function

lnL(Π,Σε) = −pn
2

ln(2π) − n

2
ln |Σε| −

1

2

n∑

t=1

(r0t − Πr2t)
′Σε(r0t − Πr2t),

(3.16)
such that

Π̂ = S02S
−1
22 (3.17)

Σ̂ε = S00 − S02S
−1
22 S20 (3.18)

where Sij = n−1
∑n

t=1 ritr
′

jt = M ij −M i1M
−1
11M 1j, i, j = 0, 2, are sums of

squared residuals. Because the likelihood function is maximal for
∑n

t=1(r0t−
Πr2t)

′Σε(r0t − Πr2t) = 0, its maximum can be written as

L−2/n
max = |Σ̂ε| (3.19)

omitting constant term (2π)p. The estimate of Π inserted into (3.14) gives
the estimate of Γ.
Now assume the model where rank(Π) = r < k makes the long run pa-

rameter matrix Π to be a product of two k × r matrices, i.e. Π = αβ′,
thus containing r cointegration vectors. The regression (3.15) becomes r0t =
αβ′r2t + εt and for fixed β the least square estimates will be

α̂(β) = S02β(β′S22β)−1, (3.20)

Σ̂ε(β) = S00 − S02β(β′S22β)−1β′S20 = S00 − α̂(β)(β′S22β)−1α̂(β)′,
(3.21)

and the maximized likelihood function

L−2/n
max (β) = |Σ̂ε(β)| =|S00 − S02β(β′S22β)−1β′S20| = (3.22)

=|S00||β′S22β − β′S20S
−1
00 S02β)|/|β′S22β| = (3.23)

=|S00||β′(S22 − S20S
−1
00 S02)β|/|β′S22β| (3.24)

The maximum likelihood estimator of β is found minimizing L
−2/n
max (β), that

is by solving the eigenvalue problem2

|λS22 − S20S
−1
00 S02| = 0. (3.25)

2The generalized eigenvalue problem (3.25) can be reduced to simpler form |λI−A| = 0,
where A is symmetric, first by decomposition S22 = CC ′ for some non-singular k × k
matrix C, then by solving |λI −C−1S20S

−1

00
S02C

′−1| = 0. We get the same eigenvalues,
but different eigenvectors w1, . . .wk, for which the equality v̂i = C ′−1wi holds.
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This gives eigenvalues λ̂1 > · · · > λ̂k and eigenvectors V̂ = (v̂1, . . . v̂k) nor-
malized to satisfy V̂ ′S22V̂ = I. Then

β̂ = (v̂1, . . . v̂r) (3.26)

and

L−2/n
max = |S00|

r∏

i=1

(1 − λ̂i). (3.27)

The estimates of other parameters are found by inserting β̂ into the corre-
sponding equations, e.g., α̂ = S02β̂. One can interpret λ̂i as a squared canon-
ical correlation between ∆yt and yt−p conditional on ∆yt−1, . . .∆yt−p+1.
Thus the estimate of the ’most stable’ relations between the levels are those
that correlate most with the stationary process ∆yt corrected for lagged
differences and deterministic terms.
To test for (the order of) cointegration means testing the rank of Π or the

number of cointegration vectors. Let Hr denote the hypothesis that (or the
model (3.10) in which) rank(Π) = r, so that Hk means system consisting
purely of I(0) time series. Note that in model Hr the parameters α and
β are not identified, since Π = αβ′ = αξ−1(βξ′)′ for any ξ of full rank,
but that one can estimate the spaces spanned by α and β, respectively, and
the parameters in β can be estimated if they are identified or normalised
suitably. Thus cointegration analysis is formulated as the problem of making
inference on the cointegration space, sp(β), and the adjustment space, sp(α).
If we want to estimate individual coefficients it is necessary to normalise β
or impose restrictions so that the parameters become identified (see [32] for
further details).
To find r, we formulate a nested sequence of hypotheses

H0 ⊂ · · · ⊂ Hr ⊂ · · · ⊂ Hk

so the test that there are (at most) r cointegrating relations is the test of Hr

in Hk, performed by comparing likelihood functions (3.27). The likelihood
ratio (LR) statistic is then

Q−2/n(Hr|Hk) =
L
−2/n
max (Hr)

L
−2/n
max (Hk)

=
|S00|

∏r
i=1(1 − λ̂i)

|S00|
∏k

i=1(1 − λ̂i)
=

1
∏k

i=r+1(1 − λ̂i)
(3.28)

which after taking a logarithm gives the so-called trace test statistic

LRTrace = −2 lnQ(Hr|Hk) = −n
k∑

i=r+1

ln(1 − λ̂i). (3.29)
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We begin with testing whether there is no cointegration (H0) versus the
general alternative of k such relations or less (Hk). If this is rejected, we test
H1 (of at most 1 relation) against Hk, and so on. The rank of Π is estimated
as r if Hr is the first hypothesis which cannot be rejected. Another useful
test is given by testing Hr in Hr+1, i.e. the significance of the estimated
eigenvalues themselves. This yields so-called λ-max test statistic

LRλ−max = −2 lnQ(Hr|Hr+1) = −n ln(1 − λ̂r+1) (3.30)

The asymptotic null distribution of these statistics, expressed in terms of vec-
tor Brownian motion functionals, is derived and summarised in, e.g., [31][33],
and depends on the specification of deterministic terms. Some of the crit-
ical values for both test statistics are provided here in Table 3.2 (source:
[39],[15]).

Unsurprisingly, in small samples the distribution of the LR test is not well
approximated by limiting distribution. There were suggested several ways
of corrections to the test statistic, some authors propose degrees of freedom
correction, e.g., LRTrace = −(n − pk)

∑k
i=r+1 ln(1 − λ̂i), while for example

Johansen in his more recent work used the idea of Bartlett correction.

Deterministic terms

A characteristic feature of the error-correction formulation is the inclusion
of both differences (∆yt) and levels (yt) in the same model, allowing us to
investigate both short-run and long-run effects in the data. However, the
interpretation of the coefficients in terms of dynamic effects is difficult, and
this is true also for the trend and the constant term, as well as other deter-
ministic terms (like dummy variables for modelling seasonal or exceptional
effects) included in the model. In the following we will discuss the dual role
of trend and constant in cointegrated VAR model, which is important to
understand, partly because the asymptotic distributions of the cointegration
tests are not invariant to the specifications of these components, and further-
more, the properties of the resulting formulation may prove undesirable for
(say) forecasting, by inadvertently retaining unwanted components such as
quadratic trends ([30]).

To illustrate the idea, recall (3.10) with constant and trend component
decomposed into

µ = µd +αµc, (3.31)

δ = δd +αδc, (3.32)
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so that VECM attains the form

∆yt = µd + δdt+

p−1
∑

i=1

Γi∆yt−i +α(µc + δct+ β′yt−p) + εt (3.33)

or

z0t = (µd, δd,Γ1, . . .Γp−1)z1t +α(µc, δc,β
′)z2t + εt (3.34)

where again z0t = ∆yt and z1t = (1, t,∆y′

1, . . .∆y
′

p−1), but now

z2t = (1, t,y′

t−p)
′. (3.35)

We can always choose µc and δc such that equilibrium error (the term in
parentheses) has mean zero, so that equation E[∆yt] = µd + δdt allows us to
see that µd 6= 0 corresponds to constant growth in the variables yt, whereas
δd 6= 0 corresponds to linear trends in growth, and so quadratic trends in
the variables. To correctly interpret the cointegrated model, one has to
understand the dual role of constant term and deterministic linear trend
therein, i.e. the distinction between the part of the deterministic component
that belongs to the cointegration relations, and the part that belongs to the
differences. Below we list five of the most frequently used models arising
from restricting the deterministic components in (3.33):

1. No restrictions on trend and intercept. With unrestricted parameters µ
and δ the model is consistent with linear trend in the differenced series
∆yt and, thus, quadratic trends in yt. Although quadratic trends may
sometimes improve the fit within sample, forecasting outside the sample
is likely to produce implausible results, therefore it is preferable to
treat this case with care, find out what induced the apparent quadratic
growth and, if possible, increase the information set of the model (e.g.,
by including appropriate exogenous variable).

2. δd = 0. The trend is restricted to lie in the cointegration space, but the
constant is unrestricted in the model. This allows linear, but precludes
quadratic, trends in the levels of data (yt). Because δc 6= 0, these linear
trends in the variables do not cancel in the cointegrating relations, so
the model contains trend-stationary relations. Such model also include
the case when a single variable is trend-stationary.

3. δ = 0. Since the constant term µ is unrestricted, there are still linear
trends in the data, but no deterministic trends in any cointegration
relations.
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Table 3.1: Restrictions on deterministic terms

Case Terms in VECM Determ. components in Regressors

µ δ variables equilibrium z1t z2t

1. unrest. unrest. quadr. linear (1, t, ∆y′

t−1
, . . . ∆y′

t−p+1
)′ (1, t, y′

t−p)′

2. unrest. δd = 0 linear linear (1, ∆y′

t−1
, . . . ∆y′

t−p+1
)′ (1, t, y′

t−p)′

3. unrest. absent linear constant (1, ∆y′

t−1
, . . . ∆y′

t−p+1
)′ (1, y′

t−p)′

4. µd = 0 absent constant constant (∆y′

t−1
, . . . ∆y′

t−p+1
)′ (1, y′

t−p)′

5. absent absent zero zero (∆y′

t−1
, . . . ∆y′

t−p+1
)′ yt−p

4. δ = 0, µd = 0. The constant term is restricted to lie in the cointegration
space, i.e. only equilibrium means are different from zero.

5. δ = 0, µ = 0. The model excludes all deterministic components in
the data, with both E[∆yt] = 0 and E[β′yt] = 0. Since an intercept is
generally needed to account for the initial level of measurements, the
restriction µ = 0 can be justified only in exceptional cases.

In empirical work, usually it is clear whether there is linear deterministic
trend in some (or all) of the variables. It might, however, be more difficult to
know if they cancel in the cointegrating relations or not. Fortunately, we do
not need to know beforehand, all the above (1.–5.) cases – being expressed
as linear restrictions on the deterministic components of VAR model – can
be tested. Table 3.1 summarises the restrictions and is helpful in performing
test and estimation procedures.

Denote the hypothesis of r cointegration relations for particular case as
H

(case)
r . According to [11], a consistent test procedure follows the idea of

testing H
(1)
r if H

(2)
r has been rejected. That means testing the hypotheses

H
(2)
0 , H

(1)
0 , H

(2)
1 , H

(1)
1 , . . . H

(2)
k−1, H

(1)
k−1,

sequentially against the unrestricted alternative and stopping whenever the
hypothesis is ”accepted”. Correspondingly, if H

(3)
r appears more appropriate,

the hypotheses testing sequence is

H
(4)
0 , H

(3)
0 , H

(4)
1 , H

(3)
1 , . . . H

(4)
k−1, H

(3)
k−1.

It is possible, but not very likely, that an insignificant value is followed by
a significant statistic. An example would be: reject H

(2)
0 , accept H

(2)
1 , and

reject H
(2)
2 . This could be indicative of more general model mis-specification.
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Table 3.2: Asymptotic critical values for cointegration tests at 5% significance
level

Engle-Granger method

Deterministic terms Number of variables

in regressions 2 3 4

constant -3.34 -3.74 -4.12

constant and trend -3.78 -4.10 -4.40

Johansen’s method (Trace/λ − max)

Case k − r

1 2 3 4 5

1. 11.55/11.55 23.37/18.04 39.04/23.97 58.57/30.31 82.18/36.65

2. 12.52/12.52 25.86/19.38 42.92/25.83 63.87/32.12 88.79/38.32

3. 8.18/8.18 17.95/14.90 31.52/21.07 48.28/27.14 70.60/33.32

4. 9.17/9.17 20.25/15.88 35.19/22.30 54.09/28.58 76.96/34.80

5. 4.13/4.13 12.32/11.23 24.28/17.80 40.17/24.16 60.06/30.42

Restriction on cointegrating vector

In the previous we talked out testing hypotheses on certain restrictions upon
deterministic terms. Sometimes, it is reasonable to restrict also long-run re-
lationships represented by β to comply with certain theoretical assumptions.
Whether the assumptions really hold, we may verify by testing hypotheses
on parameters β.
One such hypothesis can be defined as

Ha : β = Hϕ, (3.36)

where (k × s) matrix H , r ≤ s < k, reduces β to the (s × r) parameter
matrix ϕ. The hypothesis corresponds to restriction H ′

⊥
β = 0, where H⊥ is

orthogonal complement of H (i.e. H ′

⊥
H = 0). In this way, various hypoth-

esis can be stated, e.g, if one of the columns of H is of form (1,−1,−1, 0, 0)′,
this means that in every cointegration vector the first three parameters are
of equal magnitude but opposed signs. Another example: by leaving i-th row
in matrix H zero valued we may prevent yi,t from entering the cointegration
relationships.
To test the hypothesis (3.36), we compare the estimated eigenvalues ζ̂i,
i = 1, . . . r, from

|ζH ′S22H −H ′S20S
−1
00 S02H| = 0 (3.37)



60 CHAPTER 3. COMMON FEATURES

with λ̂i from (3.25) via the likelihood ratio test statistic

LR = −2 lnQ(Ha|Hr) = n

r∑

i=1

ln
[

(1 − ζ̂i)/(1 − λ̂i)
�
. (3.38)

Under the null hypothesis and conditional on correct value of r, the test
statistic in (3.38) asymptotically follows the χ2(r(k − s)) distribution.
The hypothesis that some cointegrating vectors are known can be formu-

lated as
Hb : β = (G,ψ) (3.39)

where G is known (k×r1) and ψ unknown (k×r2) matrix, while r1 +r2 = r.
In particular, we may test that individual (i-th) variable is stationary by
defining G as unity vector with 1 in i-th row. Notice that the same is
testable by putting the unity vector into H from previous hypothesis. Thus
the stationarity of a single component of yt is a special case of cointegration.
Under hypothesis Hb the eigenvalue problem to be solved is

|ζS22.G − S20.GS
−1
00.GS02.G| = 0 (3.40)

where Sij.G = Si2G(G′S22G)−1G′S2j, i, j = 0, 2, and the resulting nor-
malised eigenvectors constitute parameter matrix ψ. The eigenvalues ζ
are, naturally, different from that by Ha. Now likelihood ratio test statistic
LR = −2 lnQ(Hb|Hr) asymptotically follows χ2 distribution with r1(k − r)
degrees of freedom.
There can be formulated many other and more general linear hypotheses,

obviously we could benefit also from testing restrictions on adjustment pa-
rameter α. If interested, further information can be found in lots of publi-
cations, e.g., [32] or [2].

Common stochastic trends

Finding r cointegration relations imply that there are k − r common sto-
chastic trends in the system. Their estimation can sometimes be of practical
interest, particularly in order to get insight into the driving non-stationary
forces. Among several works of various authors, Gonzalo and Granger pro-
posed a method, which explicitly exploits the duality of cointegration and
stochastic trends. The canonical correlation approach, used to find those
combinations of the elements of yt which have maximum partial correlation
with the stationary variables, can also be reversed to find those combinations,
which have minimum correlation. The relevant eigenvalue problem, which is
dual version of (3.25), then becomes

|λS00 − S02S
−1
22 S20| = 0 (3.41)
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and the solutions are the same eigenvalues as before, but now we obtain dif-
ferent eigenvectors ŵ1, . . . ŵk. In case of r cointegration relations, stochastic
trend variables can be constructed as ŵ′

r+1yt to ŵ′

kyt.

3.2 Deterministic trend

Although common deterministic trend has already been treated in the previ-
ous section - within the context of common stochastic trend (recall the case
2 of restricting deterministic terms) - we still owe to say some remarks on
this topic. Firstly in the single equations analysis we consider interesting
to assign a geometrical aspect to common feature like trend, assuming it is
indeed deterministic. Secondly, a test whether (deterministic) trends in a
system of multivariate time series have statistically the same slope is given.

Geometrical aspect

As geodesy deals with geometric variables to a great extent, it often uses
Cartesian coordinate system and various transformation rules within to analyse
and to display observables and computed quantities. Consider bivariate
observations yt = (y1,t, y2,t)

′, that represent position of a point in certain
horizontal (topocentric) coordinate system. Interested ourselves in process
that causes data to display trending behaviour, we try to decompose yt into
components according to the stationarity, in other words we look for linear
combination

u1,t = c11y1,t + c12y2,t

u2,t = c21y1,t + c22y2,t (3.42)

such that u1,t represents a common trend direction and u2,t is a stationary
trend-free variable, orthogonal to u1,t. In the light of our geometrical appli-
cation, it’s easy to rewrite the general common trend problem into familiar
transformation

u1,t = cos(α) y1,t + sin(α) y2,t

u2,t = − sin(α) y1,t + cos(α) y2,t (3.43)

as shown in Figure 3.1. The angle α can be determined via regression

y1,t = a1 + b1t+ e1,t , y2,t = a2 + b2t+ e2,t (3.44)
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Figure 3.1: Transformation into common trend direction

with regression parameters a1, . . . b2. If we place (3.44) into (3.43) and focus
on series u2,t, which is supposed to be trend-free, then

u2,t = −(a1 + b1t+ e1,t) sinα+ (a2 + b2t+ e2,t) cosα,

= (a2 cosα− a1 sinα) + (b2 cosα− b1 sinα)
︸ ︷︷ ︸

0

t+ (e2,t cosα− e1,t sinα)

(linear trend term in u2,t is eliminated), so

tanα =
b2
b1

(3.45)

and the angle α is used in (3.43) to obtain the new variable ut = (u1,t, u2,t)
′.

If stochastic trend is present, the above decomposition is applicable as well,
however the angle is then determined from

y2,t = a0 + b0y1,t , tanα = b0 (3.46)

and it looses its former geometric interpretation.
We would get ut equally well from cointegration analysis of bivariate time

series as (v1,w2)
′yt, where v1 andw2 are eigenvectors from solution of (3.25)

and (3.41), respectively.

Testing for common deterministic trend slopes

If time series yt was tested for the presence of stochastic trend and no random
walk but linear deterministic trend was detected, it may be of interest to
examine if two or more of such a trend-stationary time series have the same
deterministic trend. Such a hypothesis can be written as linear restrictions
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on the slope parameters across the series and we can apply the multivariate
linear trend tests [18].
Consider the multivariate trend model

y1,t = µ1 + δ1t+ e1,t (3.47)

y2,t = µ2 + δ2t+ e2,t (3.48)

... (3.49)

yk,t = µk + δkt+ ek,t (3.50)

that can be compactly written as yt = µ + δt + et, where µ and β are
classical constant and linear trend parameters, et denotes residuals and k is
again the number of time series. We are interested in testing hypotheses of
the form

H0 : Rδ = r , H1 : Rδ 6= r, (3.51)

where R is q × k matrix and r is a q × 1 vector of known constants. The
linear hypotheses of (3.51) are quite general, they include linear hypotheses
on slopes within given trend equations (q = k − 1) as well as joint trend
hypotheses across equations (q = k). According to [18] we apply two F-tests,
both test statistics are functions of the following HAC (heteroskedasticity
autocorrelation) variance covariance matrix estimator. Let µ̂ and δ̂ denote
the stacked single equation OLS estimates and ût = yt − µ̂ − δ̂t be the
residuals. Define

Ω̂HAC = Γ̂0 +
n−1∑

j=1

(1 − j

L
)(Γ̂j + Γ̂

′

j) , (3.52)

which is the Bartlett kernel estimator, where Γ̂j = 1
n

∑n
t=j+1 êtê

′

t−j and L

is the truncation lag or bandwidth. Usually a consistent Ω̂HAC is needed,
yet [18] offers an alternative, where L = n. Although it does not result
in consistent estimator, valid testing is still possible because of asymptotic
proportionality and moreover it has certain advantage coming from the choice
of bandwidth. It holds that

Ω̂L=n =
2

n2

n∑

t=1

ŜtŜ
′

t , (3.53)

where Ŝt =
∑t

j=1 êj. It is also convenient to express an element of δ̂ as

δ̂i =

(
n∑

t=1

t̃ 2

)−1( n∑

t=1

t̃yi,t

)

for i = 1, 2, . . . , k , (3.54)
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where t̄ = 1
n

∑n
t=1 t and t̃ = t − t̄. Now the first of test statistics can be

defined

F1 = (Rδ̂ − r)′
[

R(
n∑

t=1

t̃ 2)−1Ω̂L=nR
′

]−1

(Rδ̂ − r)/q . (3.55)

Following [18] we also consider an alternative to Ω̂L=n which is constructed
using t̃êt instead of êt. Because t̃êt is not a vector of stationary time series,
establishing consistency of HAC estimator would be difficult if even feasible,
yet again if we use L = n, the asymptotic behaviour of the HAC estimator
can be derived. We can write

Ω̃L=n =
2

n2

n∑

t=1

S̃tS̃
′

t , (3.56)

where S̃t =
∑t

j=1 (j − t̄)êj, and then the second test statistic is

F2 = n(Rδ̂−r)′
[

R(
1

n

n∑

t=1

t̃ 2)−1Ω̃L=n(
1

n

n∑

t=1

t̃ 2)−1R′

]−1

(Rδ̂−r)/q . (3.57)

The null hypothesis in (3.51) is rejected if test statistic F1 (F2) exceeds critical
value given for q restrictions in [18], Table 3 (Table 2, alternatively). It is
worth noting that due to practical reasons indices of the F-statistics has been
swapped in our work.
The asymptotic distribution theory for these F statistics is nonstandard

and was developed for the case where the errors are covariance stationary.
Simulation evidence reported by [18] suggests that the F -tests suffers much
less from over-rejection problem caused by strong positive serial correlation
than the compared standard alternative, whereas the power of F -s is slightly
lower. Finite sample simulation evidence in [18] also suggested that the
performance of the tests are improved when Ω̂ estimator is computed using
VAR(1) prewhitening. However, this we do not do here.
The standard alternative to F1 and F2 is a Wald test based on consistent

Ω̂HAC estimator, which uses the same Bartlett kernel. For Ω̂HAC to be con-
sistent, the bandwidth L must increase as the sample increases but at the
slower rate. As referred in [18], the rate 3

√
n minimizes the approximate mean

square error for Ω̂ and considering this in (3.52), the Wald test is defined as

W = (Rδ̂ − r)′
[

R(
n∑

t=1

t̃ 2)−1Ω̂HACR
′

]−1

(Rδ̂ − r) . (3.58)

Asymptotic distribution of the Wald test is χ2 with q degrees of freedom.
For illustration we recommend to see an interesting application of this the-

ory in [20] too.
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3.3 Seasonality

Investigating common trends across observed variables may often be influ-
enced by seasonality. Instead of preprocessing through seasonal adjustment
methods, it is most sensible to use seasonally unadjusted data to study com-
mon long-run non-seasonal trends, which furthermore may provoke us to ask
if also the seasonal pattern detected individually within each component time
series (see section 1.4) can be a consequence of one and the same underlying
process. However, the issue can be quite exhaustive and as was said it’s
far behind the scope of this thesis to cope with all types of seasonal models.
Therefore if stochastic seasonality is found either through seasonal unit roots
or periodic properties, interested reader is kindly referred to [15] and [16] (to
see also references therein), we presume here the case when data contain sea-
sonal deterministics. This assumption mostly comes true when dealing with
natural processes. In either case, the motivation for investigating common
cycles remains the same as with trends: to reduce the number of estimated
parameters and to improve forecasting performance.
At first we consider simple case when we may impose cross-equation para-

meter restrictions. Inspired by the example in [15] let’s define model

y1,t = δ1t+
S∑

s=1

ω1,sDs,t + φ1y1,t−1 + ε1,t

y2,t = δ2t+
S∑

s=1

ω2,sDs,t + φ2y2,t−1 + ε2,t (3.59)

where the dummy variables Ds,t are defined as in (1.46). These two series
would have their deterministic seasonality in common when ω2,s = ψω1,s for
some non-zero value of ψ. This common feature amounts to S parameter
restrictions and can be seen to substantially decrease the number of parame-
ters. If joint estimation of (3.59) gives the covariance matrix Σ̂u while im-
posing the restrictions results in Σ̂r, then its appropriateness can be judged
by likelihood ratio test, n(ln |Σ̂r| − ln |Σ̂u|) ∼ χ2(S).
In [14] a general approach to testing for common seasonality is proposed.

Consider the multivariate regression

∆yt = Ωvt +

p−1
∑

i=1

Γi∆yt−i + Πyt−p + εt (3.60)

where vt is an m-dimensional vector of deterministic seasonal variables at
period t, Ω is k ×m parameter matrix and the other terms are denoted as
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in (3.10). A variable is said to have a deterministic seasonal feature if after
incorporating the effects of lagged dependent variables, the variable will have
a corresponding row of Ω non-zero. If there exists a k× l matrix ϑ such that
ϑ′Ω = 0 then these linear combinations of the series have no deterministic
seasonality and this seasonality is common. In this case, the rank of Ω can
be at most equal to q = min(k − l,m). The k ×m matrix Ω may then be
written as the product of two matrices α and β′ both of rank q and of order
k × q and q × m respectively. The test of the (reduced) rank of Ω = αβ′

can then be performed as a test of the number of zero canonical correlation
coefficients between ∆yt and vt conditional on the lagged values of ∆yt and
on yt−p. Such an approach is also familiar from the cointegration tests of
Johansen in section 3.1. Preserve the notation such that only (3.11) changes
into

z0t = ∆yt,

z1t = (∆y′

t−1, . . .∆y
′

t−p+1,yt−p)
′, (3.61)

z2t = vt,

then the canonical correlations3 can be found as the square roots of the
eigenvalues of the k × k matrix A = S−1

00 S02S
−1
22 S20 where the Si,j are

the moment matrices between zit and zjt, i, j = 0, 2. Denote the ordered
eigenvalues of A as 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk < 1 and the corresponding
eigenvectors wi, i = 1, 2 . . . k normalised such that w′

iS00wi = 1. Then the
likelihood ratio test statistic

LR = −(n− p)
r∑

i=1

ln(1 − λi) (3.62)

has an asymptotic χ2(r[k[m − 1] + r]) distribution under the null that the
smallest r canonical correlations are zero. Under the alternative that the r-th
canonical correlation is nonzero the statistic will be larger so that a one tailed
test is appropriate. When there are exactly r zero canonical correlations, the
linear combinations w′

i∆yt, i = 1, 2, . . . r, are uncorrelated with any linear
combinations of the elements of the seasonal variables in vt, whereas the
linear combinations w′

i∆yt, i = r + 1, . . . k, are maximally correlated with
the seasonals, carry all the seasonal information and can be thought of as
the seasonal common feature which determines the seasonal pattern in all of
the (k − 1) elements of ∆yt in a way which makes vt superfluous.

3Imagine for few seconds that no lagged values of the left hand side variables are
needed to render the errors white noise, i.e. Γi = 0 for all i and Π = 0 as well. Then the
canonical correlations coefficients measure the correlations between linear combinations of
the elements of ∆yt and linear combinations of the elements of vt.
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As [14] continues, three potentially serious, and closely related problems
arise. First, the variables in vt must encompass the kind of seasonality which
is common among the elements of yt. Second, the rank and parameters of any
potential cointegration (corresponding to term Πyt−p) must be determined.
And third, the augmentation by lagged values of the dependent variables
must render the errors white noise. In case the first condition is not met, the
test is deficient and will lack power to detect the common seasonal features.
If the second or third condition is violated, the size of the test may be higher
than the selected level of significance. However, the augmentation must not
be overparametrised either as this may reduce the power of the test.
Additional problem arise for data with sampling frequency much smaller

than are the seasonal (annual, daily or other natural) frequencies. To reduce
the potentially large number of parameters (because of large S) in multivari-
ate models, several plausible strategies can be used, see for example [16]. One
way is to impose restrictions on parameters by a certain smooth function,
of which the most familiar example being trigonometric polynomials (as in
(1.44) for instance).
The specification of the proper augmentation is done by estimating a gen-

eral VAR (3.60) and then testing down in order to obtain the most parsi-
monious lag structure, rendering the errors multivariate white noise. Then
cointegration is tested and a vector error correction model specified. Finally,
restrictions on seasonals are tested.
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