
Chapter 2

Non-linearity

Processes that appear in nature and are subject to observation and analysis
in such disciplines as geodesy, hydrology and meteorology, need not be always
sufficiently described by linear models like ARMA and the like. There are
many types of non-linearities that could ”make things turbid” in practice,
but nearly unlimited number of theoretical models, that could be made up on
demand. These models, however, should respect some reasonable restrictions
to become applicable, mainly, it should be (at least partly) interpretable, not
leading to explosive behaviour, and easily usable for forecasting. Still, there
are plethora of models possessing these properties ([9]).

At present, the greatest attention is given to regime-switching models and
artificial neural network models. The later originates in neurological sciences,
where external pulses are filtered through hidden layers such that the initial
signals can be properly analysed by brain cells. Artificial neural network
(ANN) models achieve increasing popularity for its ability to approximate
almost any nonlinear function arbitrarily close. An often-quoted drawback
of ANN models is their difficult, if not impossible, interpretability. For this
reason they are often considered as ”black box” models and constructed
mainly for the purpose of pattern recognition and forecasting, although the
superior in-sample fit is no guarantee for good out-of-sample performance.
For further description see [17], ANNs will not be dealt with in the following.
Instead, we focus on the another favourite class of nonlinear models - the
regime-switching models- that reflect piecewise linear structures in time series
where the transition between different states is indicated by dynamics in
certain variable(s). Such a behaviour of a model is easily interpretable and
can be found in nature, for example, a change in atmospheric temperature
causes sudden change in river flow rate due to the snow melting in mountains.

The chapter is organised as follows. Section 2.1 describes several ways in
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which the models are designed to give a true picture of switching mechanism
between regimes that is determined by some observable variables, particu-
larly TAR and STAR models are foregrounded. To make any application
meaningful, it is essential to test the data for linearity against this particu-
lar nonlinearity, which is the topic of section 2.2. Next, a theory for model
specification – shape identification, parameters estimation and suitability
evaluation – is given in section 2.3. Last section brings up a new approach
to the regime-switching models, which allows the breaks in linear structure
to be indicated by several observables and an aggregation operator. The
underling theory is investigated in the framework of multivariate threshold
autoregression.

2.1 Description of regime-switching models

The idea behind the regime-switching models quite naturally defines differ-
ent states of an environment system or regimes, and allows the dynamic
behaviour of (observed) variables for possibility to depend on the regime
that occurs at any given point in time ([17]). This ”state-dependent” (or
regime-switching) dynamic behaviour of time series means that certain of
its properties, such as mean, variance and/or autocorrelations, are different
in different regimes. For the example of such a state-dependent behaviour,
recall (1.45) or (1.47) in section 1.4 where mean and variance vary through
seasons. Hence, every season constitutes a different regime, and, in this in-
terpretation, the regime switch process is deterministic (since we know with
certainty in advance, when the regimes occur). In contrast, the focus in this
chapter is put on the case when regime switch is stochastic.

Threshold and smooth transition AR

The most prominent member of the regime-switching class of models is the
Threshold Autoregressive (TAR) model, which assumes that the regime that
occurs at time t can be determined by relation between an observable variable
zt and some threshold value r. For completeness, there is also a subclass
covering the case of determination by an unobservable process, representative
of which is the Markov-Switching model. Anyway, a 2-regime TAR model
assuming an AR(p) in both regimes can be written as

yt =

{

φ0,1 + φ1,1yt−1 + · · · + φp,1yt−p + εt if zt ≤ r,

φ0,2 + φ1,2yt−1 + · · · + φp,2yt−p + εt if zt > r,
(2.1)
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or alternatively in matrix notation

yt = φ′
1X t(1 − I[zt > r]) + φ′

2X t I[zt > r] + εt, (2.2)

where φj = (φ0,j, φ1,j, . . . , φp,j)
′ are unknown parameters of j-th regime,

X t = (1, yt−1, . . . , yt−p)
′, I[A] is an indicator function with I[A] = 1 if the

event A occurs and I[A] = 0 otherwise. M ′ denotes transposition of M . A
special case arises when the threshold variable zt is taken to be a lagged value
of the time series itself, that is zt = yt−d for a certain integer d > 0. Then
the resulting model is called a Self-Exciting TAR (SETAR).

A more gradual transition between the different regimes can be obtained
by replacing the indicator function I[zt > r] in (2.2) by a continuous function
G(zt, γ, r) which changes smoothly from 0 to 1 as zt increases. The resultant
model

yt = φ′
1X t(1 − G(zt, γ, r)) + φ′

2X tG(zt, γ, r) + εt, (2.3)

is called a Smooth Transition Autoregressive (STAR) and if rearranged a
little it is given by

yt = φ′
1X t + (φ2 − φ1)

′X tG(zt, γ, r) + εt, (2.4)

which is easily extendable to m-regimes version

yt = φ′
1X t + (φ2 − φ1)

′X tG(zt, γ1, r1) + . . .

+ (φm − φm−1)
′X tG(zt, γm−1, rm−1) + εt. (2.5)

This is, however, not the only possible generalisation to multiple regime case,
other ways are shown in [44], where one can find quite exhaustive and nice
illustrative survey of various extensions of STAR models.

Sometimes it is of practical purpose to consider the models (2.2) or (2.3)
to allow for exogenous variables x1t, x2t, . . . xlt as additional regressors, ei-
ther in their current or time-lagged values. In smooth transition case, the
resultant model is simply called smooth transition regression (STR) and is
discussed at length in [24]. Some authors denote such extension by adding
X (for ”eXogenous”) to the acronym of a model, e.g., STARX. Nevertheless,
henceforth we always point out inclusion of exogenous variables explicitly by
word or by expressing the regression matrix X t, if relevant.

Smooth transition functions

Different choices for the transition function G(zt, γ, r) give rise to different
types of regime-switching behaviour. A popular choice for G(zt, γ, r) is the
first-order logistic function

G(zt, γ, r) =
1

1 + e−γ(zt−r)
, γ > 0, (2.6)
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Figure 2.1: Transition functions

which results into the so-called Logistic STAR (LSTAR) model. The pa-
rameter r can be interpreted as the threshold between the two regimes, in
the sense that the logistic function changes monotonically from 0 to 1 as zt

increases, and G(r, γ, r) = 0.5. The parameter γ determines the smoothness
of the transition from one regime to another. Notice that the AR model is
a special case of the LSTAR model in case γ = 0 and likewise the LSTAR
becomes TAR as γ → ∞. Alternatively, if situation requires to specify the
transition function such that the regimes are associated with small and large
absolute values of zt, an even function can be used, e.g. exponential function

G(zt, γ, r) = 1 − e−γ(zt−r)2 , γ > 0, (2.7)

which has the property that G(zt, γ, r) → 1 both as zt → −∞ and zt → ∞
whereas G(zt, γ, r) = 0 for zt = r, so that corresponding model (Exponential

STAR or ESTAR) assumes symmetric response of yt to positive or negative
values of zt − r. A drawback of the exponential function is that for either
γ → 0 or γ → ∞, the function collapses to a constant (equal to 0 and 1,
respectively). Hence the model becomes linear in both cases and the ESTAR
does not nest a TAR model as a special case. If this is thought to be desirable,
one can instead use the second-order logistic function

G(zt, γ, r) =
1

1 + e−γ(zt−r1)(zt−r2)
, r1 < r2, γ > 0, (2.8)

where now r = (r1, r2)
′. As seen from Figure 2.1, behaviour of this later

function causes the STAR to nest a restricted three-regime TAR model, where
the restriction is that the outer regimes are identical.

For practical purposes it may be more useful to consider the LSTAR
model instead of the TAR or ESTAR models since it allows for smooth
changes and asymmetric response to shocks. Either way, the decision ob-
viously should subordinate to a rationale behind particular application.
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Transition variable

An essential part of the STAR model is surely the threshold (transition) vari-
able zt which indicates what behaviour to expect at time t. In univariate case
it is usual to set zt = yt−d for an positive integer d, or to use an explanatory
variable xt instead, however in more general case it is worth considering other
options, e.g. some linear combination of lagged endogenous and exogenous
variables included in regression (see [24] for inspiration) or most recent idea
of utilizing aggregation operators to construct the threshold variable (for re-
cent developments on the theory see [41]). In section 2.4 we provide closer
look to the aggregation operators being a part of general Threshold VAR
model.

Multivariate (S)TAR

Linear Vector AR models, see section 1.6, constitute the most common way
of modelling vector time series. In some situations, it could be worthwhile to
consider nonlinear models for this purpose. Conceptually it is straightforward
to extend the existing univariate regime-switching models to a multivariate
context. However, it must be accompanied by a relevant statistical theory.
In the following sections, we mainly draw from developments of [45] on this
account.

A k-dimensional analogue of the univariate 2-regime STAR model with
VAR(p) in both regimes for (k × 1) vector time series yt = (y1t, . . . ykt)

′ can
be specified as

yt = (Φ1,0 + Φ1,1yt−1 + · · · + Φ1,pyt−p)(1 − G(zt, γ, r))

+ (Φ2,0 + Φ2,1yt−1 + · · · + Φ2,pyt−p)G(zt, γ, r) + εt, (2.9)

or shortly

yt = Φ1X t(1 − G(zt, γ, r)) + Φ2X tG(zt, γ, r) + εt, (2.10)

where (k × 1) vectors Φj,0 and (k × k) matrices Φj,i, j = 1, 2, i = 1, . . . p,
are stacked to k × (1 + kp) parameter matrices Φj = (Φj,0,Φj,1, . . .Φj,p)
corresponding to j-th regime,

X t = (1,y′
t−1, . . . y

′
t−p)

′, (2.11a)

is (1 + kp)-dimensional regressor, and εt = (ε1t, . . . εkt)
′ is a k-dimensional

vector white noise process with mean zero and (k×k) positive definite covari-
ance matrix Σ. If an l-dimensional vector time series of exogenous variables,
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xt = (x1t, . . . xlt)
′, is considered to enter the model (2.10), then the regressor

will be of form
X t = (1,y′

t−1, . . . y
′
t−p,x

′
t)

′ (2.11b)

with dimension equal (1 + kp + l) or alternatively, if lagged values up to q
time points are more appropriate,

X t = (1,y′
t−1, . . . y

′
t−p,x

′
t−1, . . . x

′
t−q)

′ (2.11c)

with (1 + kp + lq)-dimensionality. Obviously, the dimension of parameter
matrix will change as well. Such models like (2.10) have among many authors
adopted an acronym STVAR.

Substitution G(zt, γ, r) → I[zt > r] in (2.10) yields Threshold VAR model

yt = Φ1X t(1 − I[zt > r]) + Φ2X t I[zt > r] + εt, (2.12)

corresponding to (2.2).
Notice that the regimes are common to the k variables. It is straight-

forward to generalize the model to incorporate equation-specific transition
functions Gi(zit, γi, ri) (or I[zit > ri]), i = 1, . . . k, and thereby to allow for
equation-specific regime-switching.

In practice, it is many times the case that the parameter matrix of VAR
model (in certain regimes) contains unit roots that may indicate common
stochastic trend(s). Indeed, it seems that the model of currently most con-
siderable interest among practitioners is the one in which the components
of yt are linked by a linear long-run equilibrium relationship, whereas ad-
justment towards this equilibrium is nonlinear and can be characterised as
regime-switching, with the regimes determined by the size and/or the sign
of deviation from equilibrium. In linear time series analysis, this behaviour
is captured by cointegration and error-correction models which we will talk
about in chapter 3.

2.2 Testing for non-linearity

Before any specific non-linear model is getting started to build up, it is de-
sirable to test the time series for linearity against the suspected nonlinearity.
There are several methods, one possible way of detection is to compare the
in-sample fit of the regime-switching model with that of a linear model (which
can be considered as 1-regime model), when the linear model is taken as null
and regime-switching one as alternative hypothesis. In the case of 2 regimes
it means equality against inequality of the regression parameters in the two
regimes.
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However, the testing problem is complicated by the presence of uniden-
tified nuisance parameters under the null hypothesis ([44]). These are the
parameters of a model which are not restricted by the null hypothesis, but
about which nothing can be learned from the data when the null hypothesis
holds true. For example, with the (L)STAR model as alternative, the null
hypothesis H0 : φ1 = φ2 does not restrict the parameters γ and r in the
transition function, but when the null hypothesis is valid, the likelihood is
unaffected by the values of γ and r. Likewise, when reformulating the null
hypothesis of linearity into H ′

0 : γ = 0 (LSTAR model reduces to AR model
with parameters (φ1 + φ2)/2) then the location parameter r and the para-
meters φ1, φ2 are the unidentified parameters (φjs can take any value as
long as their average remains fixed). The main consequence is that the con-
ventional statistic theory is not available for obtaining the asymptotic null
distribution of the test-statistics. Instead, the test-statistics tend to have
nonstandard distributions for which analytic expressions are most often not
available and the critical values have to be determined by means of simu-
lation. Fortunately, there still exist solutions that lead to applicability of
standard asymptotic theory.

Tsay in [45] propose a test that put threshold non-linearity (abrupt tran-
sition between regimes) against linearity, using a regression rearranged ac-
cording to the increasing order of threshold variable that effectively trans-
forms a threshold model into a changepoint problem. Another approach,
firstly developed by Luukkonen, Saikkonen and Teräsvirta, utilizes Lagrange
Multipliers (LM) statistic and is available for STAR models. Both tests are
simple and perform well in finite samples, yet they do not depend on the al-
ternative model, nor do they encounter the problem of unidentified nuisance
parameters under the null hypothesis.

In the following, we give a brief survey of Tsay’s test, which was a priori
designed for multivariate time series and the switching between regimes is
indicated by lagged values of some threshold variable. The more details we
provide in section 2.4 where a more general case with zt based on aggregation
operators is treated. As for the LM-type test, it originated as univariate and
later a simple extension to multivariate case was given ([46]). It is described
in the second part of this section.

Linearity against threshold nonlinearity

Testing the null hypothesis H0 of linearity versus the alternative hypothesis
H1 that yt follows the multivariate TAR model (2.12) with (2.11c) and zt

equal to some lagged variable, ξt−d, assuming p, q and d are known, is the
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problem of detecting the change in data behaviour along the increasing zt.
A linear regression framework yt = ΦX t + εt, t = h + 1, . . . n, where

h = max(p, q, d) and the estimates are biased under H1, can be rewritten to

yt(i)+d = ΦX t(i)+d + εt(i)+d, i = 1, . . . n − h, (2.13)

without any interference to dynamics of the data. The ordering of zt has been
rearranged, so that z(i) denotes the i-th smallest element of {zh+1−d, . . . zn−d}
and t(i) the time index of z(i). To detect the model change in (2.13), Tsay
used recursive least squares method to compute the standardized predictive
residuals

η̂t(ñ+1)+d =
yt(ñ+1)+d − Φ̂ñX t(ñ+1)+d

[

1 + X ′
t(ñ+1)+dV ñX t(ñ+1)+d

]1/2
, (2.14)

where Φ̂ñ is a least squares estimate of Φ in (2.13) using data points asso-

ciated with ñ smallest values of zt−d, and V ñ =
[

∑ñ
i=1 X t(i)+dX

′
t(i)+d

]−1

.

From the regression

η̂t(j)+d = ΨX t(j)+d + wt(j)+d, j = ñ0 + 1, . . . n − h, (2.15)

where ñ0 denotes starting point of the recursive least square estimation (usu-
ally ñ0 ≈ 3

√
n), he tested the hypothesis H0 : Ψ = 0 versus H1 : Ψ 6= 0.

The test-statistic is defined as

C = (n − h − ñ0 − K)
(

ln |S0| − ln |S1|
)

, (2.16)

where K = (pk + ql + 1) is the length of regressor X t, |M | determinant of
M and

S0 =
1

n − h − ñ0

n−h
∑

j=ñ0+1

η̂t(j)+dη̂
′
t(j)+d, S1 =

1

n − h − ñ0

n−h
∑

j=ñ0+1

ŵt(j)+dŵ
′
t(j)+d.

Under the null hypothesis of linearity, C is asymptotically a χ2 random
variable with kK degrees of freedom.

Linearity against smooth transition nonlinearity

Before we give a description of general test for multivariate LSTAR model,
it comes handy firstly to see background of the test in univariate case.

As already mentioned, besides equality of the AR parameters in two
regimes, H0: φ1 = φ2, the null hypothesis of linearity can alternatively
be expressed as H ′

0: γ = 0. If γ = 0, the logistic function (2.6) is equal to 0.5
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for all zt and the LSTAR model collapse to an AR model with parameters
(φ1 + φ2)/2. Following [44], rewrite STAR model (2.4) as

yt =
1

2
(φ1 + φ2)

′X t + (φ2 − φ1)
′X tG

∗(zt, γ, r) + εt, (2.17)

where G∗(zt, γ, r) = G(zt, γ, r)− 1/2 and regressor X t may contain q lagged
values of exogenous variable xt such that X t = (1, yt−1, . . . yt−p, xt−1, . . . xt−q)

′,
for instance. In order to derive a linearity test against (2.17), we approxi-
mate the shape function G∗(zt, γ, r) with a third-order Taylor approximation1

around γ = 0, that is

T3(zt, γ, r) ≈ G∗(zt, 0, r) +
3
∑

i=1

1

i!
γ

(

∂iG∗(zt, γ, r)

∂γi







γ=0

)

=
1

4
γ(zt − r) +

1

48
γ3(zt − r)3, (2.18)

where we have used the fact that G∗(zt, γ, r) and its second derivative with
respect to γ evaluated at γ = 0 equals zero. After substituting T3(·) for G∗(·)
in (2.17) and rearranging terms this yields the auxiliary regression

yt = β0,0 + β′
0X t + β′

1X tzt + β′
2X tz

2
t + β′

3X tz
3
t + et, (2.19)

where βi = (βi,0, βi,1, . . . βi,p+q)
′, i = 0, 1, 2, 3, are functions of the parameters

φ1, φ2, γ and r. Inspection of the exact relationships show that the null
hypothesis H ′

0 : γ = 0 corresponds to H ′′
0 : β1 = β2 = β3 = 0 (and et = εt),

which can be tested by a standard LM-type test. Note that if zt is one of
the variables included in X t, the terms βi,0z

i
t, i = 1, 2, 3, should be dropped

from the auxiliary regression to avoid perfect multi-collinearity. This drop
off can be simply achieved by omitting the first element of vectors β1, β2,
β3 and X t.

Now consider multivariate system (2.12) with (2.11c). The LM3 test-
statistic based on (2.19) for this multiple equation system can be computed
as follows:

1. Estimate the model under the null hypothesis of linearity by regressing
yt on X t. Compute the residuals ε̂t and the variance-covariance matrix
Σ0 = (n − h)−1

∑n
t=h+1 ε̂tε̂

′
t.

2. Estimate the auxiliary regression of ε̂t on X t and X tz
j
t , j = 1, 2, 3,

then Σ1 = (n − h)−1
∑n

t=h+1 êtê
′
t.

1First-order approximation is not sufficient enough in situation, when zt is identical
with one of the variables included in the regressor Xt and the intercept φi,0 is the only
parameter that differs across regimes.
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3. The χ2 version of the LM3 statistic for testing linearity equation by

equation can now be computed as

LM3 i =
(n − h)(Σ0 i,i − Σ1 i,i)

Σ0 i,i

, i = 1, . . . k, (2.20)

where Mi,i denotes i-th diagonal element of a matrix M .

If we again denote the dimension of the regressor X t as K, in this general
case it holds that K = (pk + ql + 1), then under the null hypothesis of
linearity, the test-statistic LM3 has an asymptotic χ2 distribution with 3K
degrees of freedom. Note again that n is length of the k-dimensional time
series yt and h = max(p, q, d).
In small samples it is recommended to use F -version of the LM3, as it has

better size and power properties. Under the null hypothesis, the F -version
which can be computed as

LM3 i =
(Σ0 i,i − Σ1 i,i)/3K

Σ1 i,i/(n − h − 4K)
, i = 1, . . . k, (2.21)

is approximately F distributed with 3K and (n−h−4K) degrees of freedom.
Following [46], the appropriate test for linearity in the system as a whole is

a log-likelihood test of the null hypothesis H0 : γ = 0 in all of the equations.
Then the test-statistic

LM3 = (n − h)(ln |Σ0| − ln |Σ1|) (2.22)

is asymptotically χ2(3kK) distributed (compare to (2.16)).
Testing linearity against ESTAR alternative is very similar and uses the

auxiliary regression (2.19) with one extra term, β4X tz
4
t . Then under H0 :

β1 = β2 = β3 = β4 = 0 the resultant LM-type test-statistic LM4
a∼ χ2(4kK)

The LM -type test can also be used to select the appropriate transition
variable by minimizing the p-value of LM3 computed for several candidates.

2.3 Model specification strategy

When building nonlinear time series models, it is strongly recommended to
use a ”specific-to-general” strategy, which implies starting with a simple or
restricted model and proceeding to more complicated ones only if diagnostic
tests indicate inadequacy of the maintained model. An empirical specification
procedure for nonlinear model basically follows these steps: (i) specify an
appropriate linear AR (possibly with included exogenous variables) model
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of order p, (ii) test the null hypothesis of linearity against the alternative
of (STAR or TAR) regime-switching nonlinearity; if linearity is rejected,
select the appropriate transition (threshold) variable zt and the form of the
transition function, (iii) estimate the parameters in the selected (S)TAR
model, (iv) evaluate the model using diagnostic tests, (v) modify the model
if necessary and (vi) use the model for descriptive or forecasting purposes.
In the following, we will go through these steps, more details can be found

in [17], [44], [45] and many others. We will try to keep focus on generality
to cover the largest area of applicability, yet the most useful and/or simple
procedures will be described to provide easiness of practical implementation.
Consult also the concepts introduced in chapter 1. For convenience, the TAR
model will mostly be treated as special case of LSTAR (when γ is large).

Preliminary specification

When selecting orders of linear model (ideally by AIC and BIC), an over-
specification of dynamics may be preferred to under-specification as the re-
maining autocorrelations could affect the outcome linearity test. Transition
variable zt can be sufficiently chosen from the LM-type linearity test by
minimizing the p-value or directly from estimation of particular models by
minimizing the sum of squared residuals. To choose the number of regimes,
in some applications, past experience and substantial information may help,
in others, few procedural techniques are available. One way is to divide the
data into subgroups according to the empirical percentiles of zt and use of
linearity test statistic (e.g. LM3) to detect any model change within each
subgroup. Another way is to use a modification of LM-test to test a 2-
regime STAR model against the alternative of an additive 3-regime model.
For selecting the transition function G there exist several methods based on
LM-type tests.

Selection criteria

An important question concerns detecting the appropriate orders p1, p2 and
q1, q2 in the general 2-regime model (2.10), where notation (2.11c) needs to
be respecified, such as

Xj,t = (1,y′
t−1, . . . y

′
t−pj

,x′
t−1, . . . x

′
t−qj

)′, j = 1, 2, (2.23)

to distinguish the regimes. The approach of setting p1 = p2 = p, q1 =
q2 = q from linear model can easily be inappropriate and the direct choice
of pj, qj from nonlinear model based upon information criterion need not be
satisfactory either. It seems fair to penalize the inclusion of the additional
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parameters (pj, qj) not for the whole sample size but only for the number of
regime-corresponding observations, nj.
To our present knowledge, no general formula has been derived and pub-

lished for the information criteria covering multivariate smooth transition
model with regime-varying orders of VAR, yet. Actually, it is an easy exer-
cise and we may start from 2-regime univariate TAR model of order p1 and p2,
for which AIC(p1, p2) =

∑2
j=1

(

nj ln σ̂2
j + 2(pj + 1)

)

given in [17], where the

estimated variance σ̂2
j = n−1

j

∑(j)
t (yt−ŷt)

2, where
∑(j)

t denotes summing over
observations in j-th regime. If we denote the indicator function for regime j
as I[rj−1 < zt ≤ rj] = I[zt > rj−1] − I[zt > rj] = Ij−1,t − Ij,t, where r0 = −∞
and rm = ∞, it is obvious that the nj will be the number of times when
Ij−1,t − Ij,t becomes 1, and the summation can be rewritten in more explicit
form, so that nj =

∑n
t=h+1(Ij−1,t − Ij,t) and σ̂2

j = n−1
j

∑n
t=h+1(Ij−1,t − Ij,t)ε̂

2
t ,

where h = max(p1, . . . pm, d). Now it is quite straightforward to do general-
ization replacing abrupt transition function for the smooth one and consid-
ering multivariate version of commonly used information criteria (see [45]).
Then AIC and BIC criteria that suit the m-regimes version of the model
(2.10) with (2.23) can be defined as

AIC(p, q) =
m
∑

j=1

(

nj ln |Σ̂j| + 2k(kpj + lqj + 1)
)

, (2.24)

BIC(p, q) =
m
∑

j=1

(

nj ln |Σ̂j| + ln(nj)k(kpj + lqj + 1)
)

, (2.25)

where p = (p1, . . . pm), q = (q1, . . . qm), |M | denotes determinant of M , and

Σ̂j =
1

nj

n
∑

t=h+1

(yt − Φ̂jXj,t)(yt − Φ̂jXj,t)
′∆Gj,t (2.26)

is estimated covariance matrix. Regime-specific number of observations is
not necessarily an integer, actually, it is a weight nj =

∑n
t=h+1 ∆Gj,t with

∆Gj,t = Gj−1,t − Gj,t, where Gj,t = Gj(zt, γj, rj) is the transition function
corresponding to j-th regime, G0,t = 1 and Gm,t = 0. Recall that h =
max(p, q, d) and d is a time lag associated with transition variable.

Estimation

Estimation of the parameters θ = (Φ1,Φ2, γ, r)′ in the STVAR model (2.10)
with regime-specific regressors (2.23) 2, when it comes handy to assign Φ =

2Generalisation to m-regimes is straightforward: Φ = (Φ1, . . .Φm) and Xt(γ, r) =
(

X ′

1,t∆G1,t, . . . X
′

m,t∆Gm,t

)

′

etc., with notation as by (2.26).
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(Φ1,Φ2) and

X t(γ, r) =
(

X ′
1,t[1 − G(zt, γ, r)],X ′

2,tG(zt, γ, r)
)′

,

is the problem of minimizing the trace of

Σ(Φ, γ, r) =
n
∑

t=h+1

(yt − ΦX t(γ, r)) (yt − ΦX t(γ, r))′ . (2.27)

This can be performed directly by nonlinear least squares (NLS) routine

θ̂ = argmin
θ

Tr (Σ(Φ, γ, r)) , (2.28)

for which several iterative optimization algorithms are available in statistical
software. Alternatively, for fixed values of γ and r the model is linear in the
parameters Φ1,Φ2, so that these can be (conditionally upon γ, r) estimated
by ordinary least squares (OLS) through

Φ̂(γ, r)′ =

(

n
∑

t=h+1

X t(γ, r)X t(γ, r)′

)−1( n
∑

t=h+1

X t(γ, r)y′
t

)

(2.29)

and
(γ̂, r̂) = argmin

(γ,r)

Tr
(

Σ(Φ̂(γ, r), γ, r)
)

. (2.30)

As the NLS need not always result in global minimum immediately, the con-
ditional OLS grid search can help to define starting values for NLS. However,
there is still a notorious problem with parameter γ that converges too slowly
so that its estimate is rather imprecise (thus may appear insignificant) unless
a large amount of observations (zt) is available in the neighbourhood of the
threshold r. Especially when γ is large, rescaling it becomes important (see
[24], pp.123). Also, for ensuring reliable estimates of φ, each regime should
contain at least about 15% of observations, which limits the choice of r.

Evaluation

After a ST(V)AR or T(V)AR model has been estimated, its properties have
to be evaluated. A first check is to ensure that the parameter estimates
seem reasonable in the light of application (e.g. r outside the range). The
next step is to examine residuals for remaining dynamics, that means the
specific tests for autocorrelations, normality, parameter constancy and lin-
earity tests as described in [44],[17],[24] or [3] in details. Furthermore, out-
of-sample forecasting can also be considered as a way to evaluate estimated
regime-switching model, in particular by comparison with forecasts from a
benchmark linear model.
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Point forecasts in univariate case

Consider yt being described by the general (single equation) nonlinear au-
toregressive model

yt = F (yt−1; θ) + εt (2.31)

for some nonlinear function F (yt; θ). The optimal h-step-ahead forecast of
yt+h at time t is given by

ŷt+h|t = E[yt+h|Ωt], (2.32)

where Ωt again denotes the history of the time series up to and including
the observation at time t. Using (2.31) and the fact that E[εt+1|Ωt] = 0, the
optimal 1-step-ahead forecast is ŷt+1|t = E[yt+1|Ωt] = F (yt−1; θ). When the
forecast horizon is longer than 1 period, things become more complicated,
because in general, the linear conditional expectation operator E cannot be
interchanged with the nonlinear operator F , that is E[F (·)] 6= F (E[·]).
Several methods have been developed to obtain adequate multi-step-ahead

forecast. One might attempt to obtain the conditional expectation (2.32)
directly by computing

ŷt+h|t =

∫ −∞

−∞

F
(

ŷt+h−1|t + ε; θ
)

f(ε)dε, (2.33)

where f denotes the density of εt. An alternative approach is to approximate
the conditional expectation using Monte Carlo or bootstrap methods. The
h-step-ahead Monte Carlo forecast is given by

ŷ
(mc)
t+h|t =

1

k

k
∑

i=1

F
(

ŷt+h−1|t + εi; θ
)

, (2.34)

where k is some large number and the εi are drawn from the presumed distri-
bution of εt+h−1. The bootstrap forecast is very similar, the only difference
being that the residuals from the estimated model, ε̂t, t = 1, . . . n, are used,

ŷ
(b)
t+h|t =

1

k

k
∑

i=1

F
(

ŷt+h−1|t + ε̂i; θ
)

. (2.35)

2.4 Switching by aggregation operators in

threshold VAR

In this section we give detailed theoretical survey on testing and modelling
multivariate time series with threshold vector autoregressive model, where
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threshold variable is constructed using aggregation operators. Firstly, a
threshold variable is defined on the basis of aggregation operators and a
brief introduction to such operators is given. Then we provide a modifi-
cation of Tsay’s test for linearity against threshold nonlinearity to utilize
newly defined threshold variable. For this purpose we also give a modified
conditional least square estimation procedure of [45] with corresponding as-
ymptotic properties.

Aggregation operators

In general, the threshold variable zt can be defined as

zt = A(a1, . . . , ad) (2.36)

where A is a continuous aggregation operator (agop) and ai, i = 1, . . . d, is i-
th constituting variable that may contribute to the switch between regimes.
Usually, for ai we use lagged values of certain variable, say ξt−i, which is
either endogenous or exogenous variable, so that

zt = A(ξt−1, . . . , ξt−d). (2.37)

Either way, again, it should somehow reflect practical experience.

Typical continuous agops on the real line (Rd → R) are

- arithmetic mean M(a1, . . . ad) = 1
d

∑d
i=1 ai,

- weighted mean W(a1, . . . ad) =
∑d

i=1 wiai, where wi ∈ [0, 1] and
∑d

i=1 wi = 1,

- OWA operators OWA(a1, . . . ad) =
∑d

i=1 wia
′
i with a′

i as
non-decreasing permutation of ai inputs, i.e. a′

1 ≤ · · · ≤ a′
d,

and the wi denotes a weight assigned to i-th input. In the class of OWA
we can find also MIN (w1 = 1 and wi = 0 otherwise) eventually MAX
(wd = 1, wi = 0) operators and all order statistics. Similarly a projection
to j-th coordinate, with wj = 1 and wi = 0 otherwise, is a special weighted
mean. A convenient way of producing a decreasing sequence (w1, . . . wd)
of weight coefficient is based on utilisation of increments of a generating
increasing convex bijection ϕ of [0, 1], if we put wi = ϕ

(

d−i+1
d

)

− ϕ
(

d−i
d

)

for
i = 1, . . . d.
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Testing for threshold nonlinearity

Given k-dimensional vector yt of endogenous and l-dimensional vector xt of
exogenous variables, a general m-regimes multivariate threshold model can
be defined combining (2.5) and (2.12) as

yt =
m
∑

j=1

ΦjX t I[rj−1 < zt ≤ rj] + εt, (2.38)

with −∞ = r0 < r1 < r2 < · · · < rm = ∞ and with (pk + ql+1)-dimensional

regressor X t given by (2.11c). The error time series εt = Σ
1/2
j ǫt, where j

denotes the regime occurred at time t, Σ
1/2
j is symmetric positive definite

matrix and {ǫt} is a sequence of serially uncorrelated random vectors with
mean 0 and covariance matrix I, the identity matrix. The threshold variable
is assumed to be stationary and have a continuous distribution.
Now consider the null hypothesis (H0) that time series yt is linear versus

the alternative hypothesis (H1) that it follows (2.38). The goal is to detect
the threshold nonlinearity assuming that p and q are known as well as the
threshold variable zt is defined by (2.37) with known lag d. Let us define a
(linear) regression framework

yt = ΦX t + εt, t = h + 1, . . . , n (2.39)

where h = max(p, q, d) and Φ denotes a k × (pk + ql + 1) parameter matrix.
If the H0 holds, then the least squares estimates of (2.39) is useful, otherwise
the estimates are biased under H1.
Now, let the ordering of the threshold variable zt be rearranged increasingly,

so that z(i) denotes the i-th smallest value of zt for i = 1, . . . n − h. Further-
more, let t(i) be the time index of z(i), i.e., zt(i) = z(i). When we rewrite
(2.39) in the form

yt(i) = ΦX t(i) + εt(i) i = 1, . . . n − h (2.40)

the dynamic of yt will not change, X t remains the independent variable of yt

for all t. What will change is the ordering by which data enter the regression
setup. Thus the arranged regression effectively transforms a threshold model
into a changepoint problem.
One way to detect the changepoint is to use predictive residuals ε̂t(i+1). If

yt is linear, the recursive least squares estimator of the arranged regression
(2.40) is consistent, so that the predictive residuals approach white noise and
are uncorrelated with the regressor X t(i+1).
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Let Φ̂ñ be a least squares estimate of Φ in (2.40) using data points associated
with ñ smallest values of zt. Let

êt(ñ+1) = yt(ñ+1) − Φ̂ñX t(ñ+1) (2.41)

be the residual of the 1-step-ahead prediction in the arranged regression, and

η̂t(ñ+1) =
êt(ñ+1)

[

1 + X ′
t(ñ+1)V ñX t(ñ+1)

]1/2
(2.42)

be its standardized version, where

V ñ =

[

ñ
∑

i=1

X t(i)X
′
t(i)

]−1

.

Under the H0, η̂(j) and X t(j) should be uncorrelated for all j = 1, . . . n − h.
We test this hypothesis using the regression

η̂t(j) = ΨX t(j) + wt(j), j = ñ0 + 1, . . . n − h, (2.43)

where ñ0 is the starting point of recursive regression (ñ0 ≈ 3
√

n). The
problem of interest is then to test the hypothesis H0 : Ψ = 0 against
H1 : Ψ 6= 0 with the test-statistic

C = [n − h − ñ0 − (pk + ql + 1)] × (ln |S0| − ln |S1|), (2.44)

where

S0 =
1

n − h − ñ0

n−h
∑

j=ñ0+1

η̂t(j)η̂
′
t(j), S1 =

1

n − h − ñ0

n−h
∑

j=ñ0+1

ŵt(j)ŵ
′
t(j).

Under the null that yt is linear, C is asymptotically a χ2 random variable
with k(pk + ql + 1) degrees of freedom.

Remark 1. If εt has conditional heteroscedasticity, then (2.42) no longer
holds. The remedy is in modifying the standardization of predictive residuals
so that the j-th element

η̂j,t(ñ+1) = êj,t(ñ+1)/
[

σ̂2
j + X ′

t(ñ+1)V
∗
ñX t(ñ+1)

]1/2
,

where σ̂2
j =

∑ñ
i=1 ê2

j,t(i)/(ñ − pk − ql − 1) is the residual mean squared error
of the j-th element of yt and

V ∗
ñ = V ñ

(

ñ
∑

i=1

ê2
j,t(i)X t(i)X

′
t(i)

)

V ñ.
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Estimation

Assuming that p, q and m are known and the threshold variable zt is given
like in (2.37), then the parameters of the TAR model (2.38) are delay d,
thresholds rj, linear model parameter matrices φj and covariance matices
Σj, j = 1, . . . m. Their conditional least squares estimates can be obtained
in two steps. First, for given d and r = (r1, . . . rm−1) the model reduces to
two separated multivariate linear regressions and the estimates are

Φ̂j(d, r) =





(j)
∑

t

X tX
′
t





−1



(j)
∑

t

X ty
′
t



 (2.45)

Σ̂j(d, r) =
1

(nj − K)

(j)
∑

t

(

yt − Φ̂j(d, r)X t

)(

yt − Φ̂j(d, r)X t

)′

, (2.46)

where
∑(j)

t denotes summing over observations in j-th regime, nj is the
number of data points in regime j, and K is the dimension of X t satisfying
K < nj, j = 1, . . . m. In the second step, the conditional least squares
estimates of d and r are obtained by

(d̂, r̂) = argmin
d,r

Tr

(

m
∑

j=1

(nj − K)Σ̂j(d, r)

)

, (2.47)

where d ∈ {1, 2 . . . dmax}, thresholds in r lies on a bounded subsets of the
real line, say R0 ⊂ R, and Tr(M) denotes trace of matrix M . The resulting
least squares estimates are

Φ̂j = Φ̂j(d̂, r̂) and Σ̂j = Σ̂j(d̂, r̂).

Now, let us define

D(r) = E[X tX
′
t|zt = r],

D2(r) = E[(X ′
tX t)

2|zt = r],

V i(r) = E[X tX
′
tǫ

2
it|zt = r],

V2,i(r) = E[(X ′
tX t)

2ǫ4
it|zt = r],

and consider the following

Assumptions

1. (X t, zt, ǫt) is strictly stationary with β-mixing coefficient βj = O(j−δ),
for some δ > 4.
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2. E[ǫt|Ft−1] = 0, where Ft−1 is the σ field generated by (X i+1, zi+1, ǫi)
for i ≤ t − 1.

3. E[|yit|4] < ∞, E[|xjt|4] < ∞ and E[|ǫit|4] < ∞ for all i and j.

4. The density function f(r) of zt = A(ξt−1, . . . , ξt−d), as defined in (2.37),
is positive on R0 ⊂ R, and r1, . . . , rm−1 are interior points of R0.

5. f(r), D(r), D2(r), V i(r), V2,i(r) are continuous at r ∈ {r1, . . . rm−1}.
6. ∆j ≡ Φj − Φj+1 6= 0;

7. ∆j,iD(rj)∆
′
j,i > 0, ∆j,iV i(rj)∆

′
j,i > 0 for i = 1, . . . k and j = 1, . . . m−

1, where ∆j,i is the i-th row of ∆′
j.

Then, walking the same path as [45], asymptotic properties of the condi-
tional least squares estimates can be established for model (2.38).
Consider model (2.38) and suppose that Assumptions 1–7 hold. We expect

that conditional least squares estimators are strongly consistent as the sample
size increases. That is, Φ̂j → Φj, r̂ → r, d̂ → d, and Σ̂j → Σj almost surely
as the sample size n goes to infinity. Furthermore, if Vec(M) is column
stacking vector of the matrix M , we expect that

√
nj Vec(Φ̂j − Φj) are

asymptotically normal with mean 0 and covariance matrix Γj ⊗ Σj, where

Γj = limn→∞

(

∑(j)
t X tX

′
t

)

/nj and ⊗ denotes the Kronecker product.

Note that univariate form of the above hypotheses is proved in [7], [8]. The
theory of multivariate aggregation-based switching models is in development
only and the verification of the above hypotheses will be the subject of our
next investigations.
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