
Chapter 1

Concepts in linear time series

analysis

To understand the term ”time series” and to follow the up-coming theory
smoothly, it may be necessary to recall some fundamental facts.

A discrete time series is a set of time-ordered data {y1, y2, . . . yn} taken
from observations of some phenomenon, usually at equally spaced time in-
tervals ([9]). A short-hand for the above sequence is yt, where the subscript
t = 1, . . . n is referred to as time, n denotes the length of the time series and
yt is assumed to be real. The main purpose of time series analysis is to un-
derstand the underlying mechanism that generates the observed data and, in
turn, to forecast future values. We assume that the generating mechanism is
probabilistic and that the observed series {y1, y2, . . . yt, . . .} is a realization of
a stochastic process {Y1, Y2, . . . Yt, . . .}, i.e., a sequence of random variables.
For simplicity, in the following the term time series refers both to observed
data and to stochastic process, and lower case notation is used.

Generally, when modelling typical (linear) time series one may encounter
the following (classes of) components [9]:

- trend, the long-term component representing growth or decline over an
extended period of time

- seasonal component, annually repeating pattern of changes constrained
within the most natural periodicity

- cyclical component, a wavelike fluctuation around the trend

- residuals, usually stochastic remains after deterministic components
removal
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The residuals contain plethora of information and needs to be further ana-
lysed by means of so-called Box–Jenkins methodology that covers a large
family of linear models such as autoregressive (AR), moving average (MA),
integrated ARMA (ARIMA) and the like. All the above components can
be picked up from a ”noisy heap” in sequence or at once, usually by the
ordinary least square (OLS) regression procedure, so that only a white noise
is assumed to remain. However, the decomposition is not as simple as it
may appear, there are many and different perspectives when dealing with
data generating processes, for example such phenomenon as trend can be
deterministic or stochastic and one possible way to define it (preferred also
in this work) is through the context of autoregressive models. Therefore, the
purpose of this chapter, mainly following [17] and [15], is to provide some
useful concepts in linear modelling which definitely come handy later when
describing extension to non-linear space and analysis of common features.

In section 1.1 we start our journey by the basics of Box-Jenkins method-
ology introducing the famous ARMA class of linear models, within context of
which (nonseasonal, linear and non-trending univariate time series with con-
stant variance) we can treat the concepts of empirical specification strategy
as model identification, estimation and evaluation (section 1.2). These are
generally useful or easily modifiable also in the case of contamination by the
key features such as trend, seasonality and aberrant observations (outliers),
which are focused on in the last three sections, consecutively.

1.1 Linear time series model

Assume the univariate time series of interest yt that might be any geometric
or physical variable observed for t = 1, 2, . . . n. Let Ωt−1 denote the history
or information set at time t − 1, which contains all available information
exploitable for forecasting future values yt, yt+1, yt+2, . . . . If Ωt−1 does not
contain any of such information, the corresponding time series is usually
called a white noise time series, hereafter denoted as εt, and is required to
have a constant (unconditional) mean equal to zero and a constant (uncondi-
tional) variance σ2 as well. More formally, white noise series can be defined
by

E[εt] = 0,

E[ε2
t ] = σ2, (1.1)

E[εtεs] = 0, ∀ s 6= t,

where E stands for expectation operator.
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So in general, any time series yt can be thought of as being the sum of
two parts: what can and what cannot be predicted using the knowledge from
the past as gathered in Ωt−1. That is, yt can be decomposed as

yt = E[yt|Ωt−1] + εt, (1.2)

where E[·|·] denotes conditional expectations. A commonly applied model
for the predictable component of yt assume that it is a linear combination of
p of its lagged values

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt, t = 1, . . . n, (1.3)

where φi are unknown parameters. This simple model is called autoregressive
model AR(p) or autoregression of order p and can be written in a more concise
form as

φp(L)yt = εt, (1.4)

using the lag operator L defined by Lkyt = yt−k for any integer k, and

φp(L) = 1 − φ1L− · · · − φpL
p, (1.5)

which is so-called AR-polynomial in L of order p.
When p in the AR(p) model is large, one may try to approximate the AR-

polynomial by a ratio of two polynomials which together involve a smaller
number of parameters. The resultant model

φp(L)yt = θq(L)εt (1.6)

then is called autoregressive moving average model ARMA(p, q) with θq(L)
being the polynomial of moving average model of order q. Sometimes it is
efficient to cope only with MA(q) part of the model. However, it’ll not be
the case in this work and we will concentrate on AR model which is much
more convenient for many practical purposes mainly because of the easiness
of parameter estimation, diagnostic measures calculation and that it can be
easily extended to allow for trending behaviour, seasonality, shifts and non-
linearity.

A white noise as defined by (1.1) is a special case of a time series that is
covariance stationary, which means it has constant mean and variance, and
autocovariances depend only on time lag k, formally

E[yt] = µ,

E[(yt − µ)2] = γ0, (1.7)

E[(yt − µ)(yt−k − µ)] = γk, ∀ k = 1, 2, . . . ,
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where µ, γ0, and γk are finite-valued numbers. Whether or not a time series
yt generated by an AR(p) model is covariance stationary is determined by
the autoregressive parameters φ1, . . . , φp. For example, consider first-order
autoregression

yt = φ0 + φ1yt−1 + εt (1.8)

with intercept φ0 included to describe a nonzero mean of yt and rewrite it by
recursive substitution as

yt = φt
1y0 +

t−1∑

i=0

φi
1φ0 +

t−1∑

i=0

φi
1εt−i. (1.9)

from which it follows that E[yt] = φt
1y0 +

∑t−1
i=0 φ

i
1φ0. When |φ1| < 1, it holds

that
t−1∑

i=0

φi
1 = (1 − φt

1)/(1 − φ1) <∞ ∀ t ≥ 0.

For t sufficiently large, E[yt] = µ = φ0

1−φ1

which shows the relevance of con-

dition |φ1| < 1 for stationarity. On the other hand, when |φ1| > 1 the time
series is explosive, which is the feature that rarely occurs in practice. An in-
teresting case concerns φ1 = 1 in which the effect of the past shocks remains
the same as time increases. We will pay attention to this case in section 1.3.
Similar conclusion holds from inspection of variance and autocovariances for
an AR(1) time series.

To generalize the above results to AR(p), consider the characteristic equa-
tion of the AR(1) and AR(p) models, given by

1 − φ1z = 0, (1.10)

1 − φ1z − · · · − φpz
p = 0, (1.11)

respectively. The solution, or root, of (1.10) is z = φ−1
1 . Hence, the condition

that |φ1| is less than 1 for time series yt generated by AR(1) model to be
stationary is equivalent to the condition that the root of (1.10) is larger than
1. The condition for covariance stationarity of yt generated by AR(p) model
then simply is that all p solutions of (1.11) are larger than 1 – or, rather, as
the solutions can be complex numbers, that they are outside the unit circle.
Notice that (1.11) can be rewritten as

(1 − α1z)(1 − α2z) . . . (1 − αpz) = 0 (1.12)

which shows that stationary condition is equivalent to the requirement that
all αi, i = 1, . . . p, are inside the unit circle. When the largest of the αis is
equal to 1, z = 1 is a solution to (1.11). In this case we say that the AR(p)
polynomial has a unit root.
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1.2 Model specification strategy

In this section a typical specification strategy for linear time series models
is described. It holds also for nonlinear models in general, although some-
times there are differences in the statistical tools which should be used. The
modelling sequence usually involves the following steps:

1. calculate certain statistics for a time series and compare with the the-
oretical values that would hold true if a certain model is adequate

2. estimate the parameters in the time series model suggested by the re-
sults in previous step

3. evaluate the model using diagnostic measures

4. respecify the model if necessary

5. use the model for descriptive or forecasting purposes

Model identification

If attention is restricted to linear ARMA(p, q) models, the main objective of
the first step is to determine the appropriate orders p and q. This part of
specification strategy is often called model identification. The most relevant
statistics that may suggest the appropriate orders are contained in the au-
tocorrelation function (ACF) and partial autocorrelation function (PACF).
The ACF of a stationary time series is defined by

ρk = γk/γ0, k = 1, 2, 3 . . . , (1.13)

where γk is the k-th order autocovariance of yt defined in (1.7). The k-th
order autocorrelation can be estimated by means of sample covariances as

ρ̂k =
1
n

∑n
t=k+1(yt − µ)(yt−k − µ)

1
n

∑n
t=1(yt − µ)2

, (1.14)

where µ is the sample mean of yt. The k-th order partial autocorrelation
can be interpreted as the correlation between yt and yt−k after accounting
for the correlation by intermediate observations yt−1, . . . yt−k+1. An easy way
to obtain estimates of the partial autocorrelations is by estimating AR(k)
models

yt − µ = ψ
(k)
1 (yt−1 − µ) + · · · + ψ

(k)
k (yt−k − µ) + υt, (1.15)
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for any values of k, where υt is not necessarily a white noise time series. The
k-th order partial autocorrelation is given by the last coefficient estimate,
ψ̂

(k)
k .

If a time series is described most adequately by an ARMA(p, q) model,
the orders p and q can be estimated by comparing the values of estimated
(P)ACF with the theoretical values as implied by ARMA models for different
p and q. However, the ACF and PACF are easy to interpret only for simple
models, when the models become more complicated – say, an ARMA(4,3) –
one needs considerable skill and experience to deduce the correct orders of
this model based on (P)ACF only. Note that ACF is useful for identification
of the order of a pure MA while PACF of the pure AR model.

An alternative specification strategy is to start off with a linear time
series model, based on a rough guess using linear autocorrelation functions,
and then, in a next step, to use diagnostic tests (performed on residuals)
which have power against the alternative model of interest. In case two or
more linear (also nonlinear) time series models pass relevant diagnostic tests,
usually the final model selection is based on minimizing the value of certain
criterion function. Whether the selection uses evaluation of in-sample fit or
out-of-sample forecasting, it depends on one’s concerns. Before we turn our
attention to details, few words should be dedicated to estimation.

Estimation

The parameters in the AR(p) model

yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt (1.16)

can be estimated by ordinary least square (OLS) procedure. It can be shown
that under relatively weak assumptions about the properties of the innova-
tions εt (much weaker than (1.1) which we use here), the OLS estimates of
the parameters are consistent and asymptotically normal, and that a stan-
dard t-statistic can be used to investigate the significance of φ1 to φp. The

mean µ of yt can be estimated from µ̂ = φ̂0/(1 − φ̂1 − φ̂2 − · · · − φ̂p). Be
aware of imposing the intercept φ0 to be zero while µ is not, as it forces the
estimate (1− φ̂1 − φ̂2 − · · · − φ̂p) toward zero, and hence spuriously suggests
the presence of a unit root. Other methods of AR as well as (AR)MA model
parameters estimation can be found, e.g., in [3]. Finally, using the parameter
estimates, the residual series εt can be constructed.
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Diagnostic testing

There are various ways of checking if a model is satisfactory. The commonly
used approach is to start with examining whether the residual series ε̂t is
approximately white noise, by testing whether its autocovariances - or auto-
correlations - are equal to zero. There are three commonly applied methods
to test for residual autocorrelations, all of which can also be considered (or
modified) for nonlinear time series models. The first method is to look at
individual elements of the sample ACF of the residuals

rk(ε̂) =

∑n
t=k+1 ε̂tε̂t−k∑n

t=1 ε̂
2
t

, (1.17)

for k = 1, 2, . . . to see if they lie between the ±1.96/
√
n bounds that, assum-

ing normality, correspond to 5% significance level. Given model adequacy,
the population equivalents of rk(ε̂) are asymptotically uncorrelated and have
variances approximately equal to 1/n.

A second method amounts to testing for the joint significance of the first
m residual autocorrelations. The test-statistic (developed by Ljung and Box,
also referred to as portmanteau test-statistic) is given by

LB(m) = n(n+ 2)
m∑

k=1

r2
k(ε̂)

n− k
(1.18)

and asymptotically follows a χ2(m − p − q) distribution under the null hy-
pothesis of no residual autocorrelation provided that m/n is small and m is
moderately large. Despite this test may not have much power as shown by
simulation studies, it is often used because of its ease of computation.

The third method follows the Lagrange Multiplier (LM) principle. To
test an AR(p) model against an AR(p + r) or an ARMA(p, r) model, we
consider the auxiliary regression

ε̂t = α1yt−1 + · · · + αpyt−p + β1ε̂t−1 + · · · + βrε̂t−r + υt, (1.19)

where ε̂t are the residuals of AR(p) model with ε̂t = 0 for t ≤ 0. The LM test-
statistic which tests the significance of the parameters β1, . . . βr is calculated
as nR2, where R2 is the (uncentred) coefficient of determination1 from (1.19)
and it is asymptotically χ2(r) distributed under the null hypothesis that the
AR(p) model is adequate. In small samples, the F -version of this LM test
has better size and power properties.

1The square of the multiple correlation coefficient, called the coefficient of determina-
tion, is defined by R2 = 1 − ∑n

t=1 ε̂2
t /

∑n

t=1(yt − µ̂)2 and indicates the proportion of the
variation in yt ”explained” by certain regression.
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There are various other tests for checking the randomness of the residuals,
for example the turning points test and difference-sign test, which can be
easily implemented into one’s hand-made algorithms. An observation yi is
a turning point if (yi − yi−1)(yi+1 − yi) < 0, in other words, it is a local
extremum. Let nTP denote the number of turning points. If the series is a
realization of an identically and independently distributed random process,
then nTP has an asymptotic normal distribution with mean µnTP

= 2(n−2)/3
and variance σ2

nTP
= (16n − 29)/90. In the difference-sign test, the number

of positive first differences (yi − yi−1 > 0) stands for the test-statistic which
asymptotically follows normal distribution with mean (n−1)/2 and variance
(n+ 1)/12. For proof, see [36].

Another property of the residuals which should be tested concerns the
constancy of their variance. If this is indeed the case, the residuals are
said to be homoscedastic, while if the variance changes they are called het-
eroscedastic. Neglecting heteroscedasticity of the residuals has potentially
quite severe consequences. For example, even though the OLS estimates of
the AR(MA) parameters are still consistent and asymptotically normal dis-
tributed, their variance-covariance matrix is no longer the usual one. Hence,
ordinary t-statistic cannot be used to asses the significance of individual re-
gressors in the model. Furthermore, other diagnostic tests, such as tests for
nonlinearity (some of which will be discussed in chapter 2), are affected by
heteroscedasticity as well, in the sense that their usual asymptotic distribu-
tions no longer apply. In particular, neglected heteroscedasticity can easily
suggest spurious nonlinearity in the conditional mean. Finally, confidence
intervals for forecasts, which are discussed in detail below, can no longer be
computed in the usual manner. Several statistics for testing the null hypoth-
esis of constant residual variance can be applied. Which test is used depends
partly on whether or not one has a specific alternative in mind. As it happens
much more often that no obvious alternative to homoscedasticity is available,
a general test can be applied such as that of McLeod and Li, who compute
the test-statistic in exactly the same way as the LB test (1.18), except that
it tests for autocorrelation in the squared residuals. Heteroscedastic time
series are treated by the class of models denoted as (Generalized) Autore-
gressive Conditional Heteroscedasticity, (G)ARCH, which are out of scope
of this thesis, however, interested reader is referred to [3, 9, 17, 24] among
many others.

The last but not the least among diagnostic tests is the testing for nor-
mality of the residuals. A usual assumption for the series εt is that its re-
alizations are independent and identically distributed (as already mentioned
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above) according to a normal distribution with zero mean and common vari-
ance σ2. The notation for this assumption is εt ∼ NID(0, σ2) and it adds
Gaussianity to (1.1). Given this assumption, we can use standard tools to
evaluate the parameter estimates and their t-ratios. Importantly, and rele-
vant to the next chapter, if we erroneously consider a linear time series model
while a nonlinear model would have been more appropriate, the estimated
residuals from the linear model often are not NID. For the purpose of test-
ing the assumption of NID, typically a χ2(2) normality test is used which
consists of a component for the skewness and for the kurtosis. Defining the
jth moment of the estimated residuals as m̂j = n−1

∑n
t=1 ε̂

j
t , the skewness of

ε̂t can be calculated as ŜK ε̂ = m̂3/
√
m̂3

2, and the kurtosis as K̂ε̂ = m̂4/m̂
2
2.

Because the normal distribution has skewness equal to 0 and kurtosis equal
to 3, under the null hypothesis of normality (and no autocorrelation in ε̂t),

the standardized skewness
√
n/6 · ŜK ε̂ and kurtosis

√
n/24 · (K̂ε̂ − 3) are

independent and have an asymptotic N(0,1) distribution. A joint test for
normality (the well-known Jarque-Bera test) is given by

JB =
n

6
ŜK

2

ε̂ +
n

24
(K̂ε̂ − 3)2, (1.20)

which has an asymptotic χ2(2) distribution. Rejection of normality may
indicate that there are outlying observations, that the error process is not
homoscedastic, and/or that the data should better be described by a nonlin-
ear time series model.

Model selection by in-sample fit

The previously discussed identification, estimation, and diagnostic stages
can result in a set of tentatively useful models, in the sense that these mod-
els cannot be rejected using the above diagnostic measures. We may now
want to select the best one by minimisation of some information criterion
based on in-sample fit, although we may also opt to consider all models for
out-of-sample forecasting in order to see, which one performs best on some
previously unseen data (discussed later).

The standard coefficient of determination R2 is not very useful for evalu-
ating time series models as it is only a function of the parameter values. More
appropriate model selection criteria are the information criteria put forward
by Akaike and Schwarz. Both criteria compare the in-sample fit, which is
measured be the residual variance, against the number of estimated parame-
ters. Let k denote the total number of parameters in the ARMA model (i.e.
k = p+ q+ 1) to be estimated, then the Akaike Information Criterion (AIC)
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is given by
AIC(k) = n ln σ̂2 + 2k (1.21)

and Schwarz criterion (BIC), which originates from Bayesian arguments, is
computed as

BIC(k) = n ln σ̂2 + k lnn, (1.22)

where σ̂2 = n−1
∑n

t=1 ε̂
2
t , with ε̂2

t being the residuals from the ARMA model.
The values of p and q that minimize AIC(k) and/or BIC(k) are selected as
the appropriate orders for the ARMA model. The minimization is done by
varying p and q such that k does not exceed certain upper bound which is
set in advance. Because lnn > 2 for n > 8, the BIC penalizes additional
parameters more heavily than the AIC, that means the improvement caused
by increasing the AR and/or MA orders needs to be quite substantial for
the BIC to favour a more elaborate model. This has implications for the
use of these criteria in evaluating nonlinear time series models, where some-
times quite a large number of parameters is needed to obtain only a slightly
improved fit.

Out-of-sample forecasting and model selection

The other main purpose of specifying a statistical model for a time series
yt, besides describing certain of its features, is to forecast future values. Let
ŷt+h|t denote a forecast of yt+h made at time t, which has an associated
forecast (or prediction) error et+h|t,

et+h|t = yt+h − ŷt+h|t. (1.23)

Obviously, many different forecasts ŷt+h|t could be used to obtain an estimate
of yt+h. Analogous to the estimation of a time series model, where the para-
meters are chosen such that the residual variance is minimized, in forecasting
it is often considered desirable to choose the forecast ŷt+h|t which minimizes
the squared prediction error (SPE)

SPE(h) = E[e2t+h|t] (1.24)

and which turns out to be the conditional expectation of yt+h at time t, that
is ŷt+h|t = E[yt+h|Ωt].

Forecasts from AR models (or ARMA models in general) for different
forecast horizons h can be obtained quite conveniently by using a recursive
relationship. For example, given AR(2) model, the 1-step-ahead forecast
at time t is ŷt+1|t = φ1yt + φ2yt−1. Notice that the parameters φ1 and φ2

are assumed to be known so that we do not explicitly introduce additional
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uncertainty by considering φ̂i instead of φi. In general the optimal forecast
(’optimal’ in the squared prediction error sense) is

ŷt+h|t = φ1ŷt+h−1|t + φ2ŷt+h−2|t (1.25)

with ŷt+i|t = yt+i for i ≤ 0. To obtain expressions for the SPE from
ARMA(p, q) model, it is convenient to rewrite the particular (stationary)
model as an MA(∞) model, that is yt = εt + η1εt−1 + η2εt−2 + . . . , for which
it holds that SPE(h) = σ2

∑h−1
i=0 η

2
i with η0 = 1. For the AR(2) model, e.g.,

it is easy to verify that η1 = φ1 and η2 = φ2
1 + φ2. Assuming normality, a

95% forecasting interval for yt+h is bounded by ŷt+h|t±1.96 ·RSPE(h) where
RSPE(h) denotes the square root of SPE(h). For most nonlinear time se-
ries models, the expressions for forecast error variances become much more
complicated or even intractable analytically. In that case, one needs to rely
on simulation techniques to construct confidence intervals for the forecasts
ŷt+h|t.

As already mentioned above, comparison of the forecast performance of
two or more models under consideration may be a desired alternative to
selecting a model according to measures of in-sample fit. Usually one then
retains m observations to evaluate h-step-ahead forecasts from models which
are fitted to the first n observations (thus the time series has length equal to
n+m).

A simple check on the quality of forecasts concerns the percentage of m
observations lying in the 95% forecast confidence interval. If there is less
than 95 per cent within the interval, it is likely that the variance of the data
is underestimated. Additionaly, a binomial test can be used to examine if
the forecast errors are about equally often positive or negative. Rejection
would point to under- or overestimation of the conditional mean, which is
usually interpreted as that the deterministic component in the model such
as mean and trend are not adequately specified. Another criteria are the
mean squared prediction error (MSPE) and the mean absolute prediction
error (MAPE)

MSPE =
1

m

m∑

j=1

(ŷn+j|n+j−h − yn+j)
2 (1.26)

MAPE =
1

m

m∑

j=1

|ŷn+j|n+j−h − yn+j| (1.27)

Sometimes, if a time series display rather erratic behaviour with sudden
exceptional values, it makes more sense to consider the median version of the
above two criteria.
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If we want to decide whether the SPEs or APEs of two alternative models
A and B are significantly different, a simple procedure is to create the new
variable (so-called loss differential)

dj = g(en+j|n+j−h,A) − g(en+j|n+j−h,B), j = 1, 2, . . .m, (1.28)

with the forecast errors e·,A and e·,B generated from models A and B, re-
spectively, and g(·) being some specified loss function, e.g., g(e) = e2 or
g(e) = |e| if the goal is to compare the SPEs or APEs, respectively. One
possibility to test the null hypothesis that there is no qualitative difference
between the forecasts from the two models is (according to [10]) to use the
sign test-statistic S ′ =

∑m
j=1 I[dj > 0] which has the binomial distribution

with parameters m and 1/2 under the null hypothesis. The indicator func-
tion I[A] equals 1 if the event A occurs and 0 otherwise. Significance may be
assessed using a table of the cumulative binomial distribution. For large val-
ues of m, the studentized version of the sign test-statistic is (asymptotically)
standard normal:

S =
S ′ −m/2√

m/4
=

2√
m

m∑

j=1

(
I[dj > 0] − m

2

)
a∼ N(0, 1). (1.29)

Because the statistic S compares only the relative magnitude of the pre-
diction errors, Diebold and Mariano [10] also developed a statistic which
compares the absolute magnitudes by testing whether the average loss dif-
ferential d̄ = m−1

∑m
j=1 dj is significantly different from zero. The relevant

test-statistic is given by

DM =
d̄√
ω/m

a∼ N(0, 1) (1.30)

where ω/m is the asymptotic variance of d̄ and ω is suggested to be estimated
by an unweighted sum of the autocovariances of dj, denoted as γ̂i(d), as

ω̂ = γ0 + 2
h−1∑

i=1

γ̂i(d) with γ̂i(d) =
1

m

m∑

j=i+1

(dj − d̄)(dj−i − d̄), (1.31)

assuming that h-step-ahead forecast exhibit dependence (or that forecast er-
rors are serially correlated) up to the order h− 1. As [10] reported, for mod-
erately large samples the performance of their test was satisfactory in a wide
range of situations, including contemporaneously correlated and autocorre-
lated forecast errors, and heavy-tailed as well as normal error distributions.
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However, the test was found to be quite seriously over-sized for smaller num-
ber of (predicted) observations. Therefore Harvey, Leybourne and Newbold
[25] proposed a modified version

MDM =

(
m+ 1 − 2h+ h(h− 1)/m

m

) 1

2

DM (1.32)

that corrects for the tendency of DM statistic to be over-sized in small sam-
ples, especially for greater horizons (h ≥ 2). A further improvement brought
by [25] lies in comparing MDM statistic with critical values from the Stu-
dent’s t-distribution with (m − 1) degrees of freedom, rather than from the
standard normal. Finally, as both tests converge withm→ ∞, it’s intuitively
reasonable to use the modified test in practice.

In case one is more interested in accurate forecasts of the direction in
which particular process is moving than in the exact magnitude of the change,
then the so-called Directional Accuracy test is available, see [17] for details.

1.3 Trend

When looking at most of plots of the data with trending pattern such as
position of a point moving in certain direction, the trend typically moves
upwards. Although many practitioners would be able to indicate roughly
what a trend is (”an upward moving pattern”) a formal definition of a trend
cannot be given otherwise than in the context of a model. In this thesis we
mainly deal with trends within the framework of AR class of time series mod-
els. It is important to investigate the precise formulation of trend in a time
series prior to putting effort in modelling and forecasting. Firstly, the trend
will dominate long-run out-of-sample forecasts, secondly, trend makes time
series to be non-stationary with no tendency of mean reversion (estimate of
mean does not converge as n increases). Thirdly, the variance of the forecast
errors increases with any new observation which implies that autocorrelation
function can vary over time as well. To keep the summary statistics (mean,
variance and autocovariances) to be interpretable, they should be constant
over time.

Deterministic and stochastic

For investigating stationarity or trending behaviour, consider again the AR(p)
model (1.3) or (1.4) with φp(L) = 1−φ1L−· · ·−φpL

p. Recall that the AR(p)
model is nonstationary if its characteristic equation has a unit root. The pres-
ence of unit root causes the autocorrelations to be varying over time and the
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effect of shocks remain permanent. In that case, the AR polynomial can be
factorized as

φp(L) = φ∗
p−1(L)(1 − L), (1.33)

where φ∗
p−1(L) is a lag-polynomial of order p− 1 which has all roots outside

the unit circle. Then the new variable (1−L)yt is described by a (covariance)
stationary AR(p−1) model. An important consequence of a unit root in the
AR(p) polynomial is that the regressors for the nonzero mean and trend
appears differently in models with and without unit root. For the sake of
illustration, take the simple AR(1) model where yt is considered in deviation
from a possible mean and deterministic trend, that is

yt − µ− δt = φ1(yt−1 − µ− δ(t− 1)) + εt, (1.34)

written in shorter form as

yt = µ∗ + δ∗t+ φ1yt−1 + εt, (1.35)

where µ∗ = (1−φ1)µ+φ1δ and δ∗ = (1−φ1)δ. Defining zt = yt −µ− δt, we
can solve (1.34) by recursively substituting lagged zt values as zt = φt

1z0 +∑t
i=1 φ

t−i
1 εi where z0 is pre-sample starting value of zt. When |φ1| < 1,

the impact of z0 decreases and the effect of shocks dies out in the long run
(in other words, the shocks εt are transitory). Writing (1.34) as ∆1zt =
(φ1−1)zt−1+εt, where ∆i = (1−Li) denotes a differencing operator, positive
and negative values of zt correspond with yt being larger or smaller than its
(trending) mean µ+ δt, thus yt displays so-called mean- (or trend-) reverting
behaviour. Since the deterministic trend variable t is included in (1.35),
the time series yt is said to be trend-stationary and can be described by
deterministic trend (DT) model.

When φ1 = 1, there is no mean-reverting behaviour (since ∆1zt = εt) and
(1.35) becomes

yt = δ + yt−1 + εt, (1.36)

where the trend variable has disappeared. This model is called random walk
with drift δ. Recursive substitution results in

yt = y0 + δt+
t∑

i=1

εi, (1.37)

where the partial sum time series St =
∑t

i=1 εi is called the stochastic trend.
Hence, when yt can be described by (1.36) it has a deterministic trend and
a stochastic trend. In order to avoid confusion, when φ1 = 1, yt is said
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to be described by a stochastic trend (ST) model. Note that shocks have
permanent effect.

When εt in (1.34) is replaced by ηt = [φp−1(L)]−1εt, where φp−1(L) does
not contain the component (1 − L), all the above results continue to hold.
Hence, when a AR(p) polynomial can be decomposed as φp−1(L)(1−L), the
time series yt has a stochastic trend. A time series with a stochastic trend
can be made stationary by applying the differencing filter ∆1, therefore in
this case yt is sometimes called difference-stationary.

Once again to sum up, we may see from (1.37) that stochastic trend
can be accompanied by (any) deterministic trend component. However, the
key difference between data generated by (1.35) and (1.36) is that ST series
can deviate from this trend for lengthy periods of time because it lacks any
mean-reverting forces.

The time series that requires first differencing to remove the stochastic
trend is called a time series that is integrated of order 1, and denoted I(1).
The meaning of the name becomes clear from expansion yt = ∆1yt + yt−1 =
∆1yt + ∆1yt−1 + yt−2 = · · · = ∆1yt + ∆1yt−1 + · · · + ∆1yt−k + yt−k−1, where
∆1yt = yt − yt−1. The effect of yt−k−1 dies out with large k, so the yt is ob-
tained by successive summation (”integration”) of the mixed process ∆1yt.
Further on, I(2) time series needs the ∆1 filter twice to become stationary
(contains two unit roots), etc. In the family of time series linear models
there is a class of models named ARIMA(p, d, q), where ”I” stands for inte-
grated of order d, to handle such a data that are stationary only after d-th
differentiation, i.e ∆d

1yt.

Testing for stochastic trend

In order to select between ST and DT model for a given empirical time series
yt, there exists a wide variety of methods. These methods either pay close
attention to the (1 − L) component in the AR(p) model for yt or to the
relative importance of the stochastic trend component

∑t
i=1 εi. The first set

of methods is called tests for unit roots, the second set is stationarity tests.

In order to test for a unit root, Dickey and Fuller proposed a simple
approach based on the idea that for AR(p) time series with unit root, the
sum of AR parameters equals 1. To test the empirical validity of such a
parameter restriction, it is useful to decompose the AR polynomial as

φp(L) = (1 − φ1 − · · · − φp)L
i + φ∗

p−1(L)(1 − L), (1.38)

which holds for any i ∈ {1, 2, . . . p}. For illustration, when setting i = 1, the
AR(2) polynomial is (1− φ1L− φ2L

2) = (1− φ1 − φ2)L+ (φ∗
0 − φ∗

1L)(1−L)
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with φ∗
0 = 1 and φ∗

1 = −φ2. Hence AR(2) model can be rewritten as

φ∗
p−1(L)∆1yt = (φ1 + φ2 − 1)yt−1 + εt, (1.39)

with φ∗
p−1(L) = (1 − φ∗

1L), or - going further - as

∆1yt = (φ1 + φ2 − 1)yt−1 + φ∗
1∆1yt−1 + εt.

When φ1 + φ2 − 1 equals zero, (1.39) collapses to an AR(1) model for ∆1yt,
in other words it becomes an ARI(1,1) model.

Based on (1.38), the so-called Augmented Dickey-Fuller (ADF) test fo-
cuses on the statistical relevance of yt−1 in the auxiliary regression

∆1yt = ρyt−1 + φ∗
1∆1yt−1 + · · · + φ∗

p−1∆1yt−(p−1) + εt. (1.40)

The null hypothesis is ρ = 0 and the relevant alternative is ρ < 0, resulting in
one-sided test-statistic. For ρ it is the t-test-statistic2 t(ρ̂) commonly referred
to as ADF test-statistic. It has nonstandard asymptotic distribution and the
critical values have to be obtained through Monte Carlo simulation. Some of
the critical values (at 5% significance level) are displayed in Table 1.1. The
null hypothesis of unit root is rejected when t(ρ̂) is lower than critical value.
When the order p in the AR model is selected through sequential t-tests on
the φ∗

p−1 to φ∗
1 parameters in (1.40) (or via an application of AIC or BIC),

the same critical values can be used.
Comparing (1.36) with (1.35) we see that the parameter µ for the mean

is not identified under the null hypothesis of a unit root, but only under the
alternative one. In general, it appears best to include a mean and linear trend
in the ADF regression to make the test independent of nuisance parameters.
The ADF regression (1.40) then becomes

∆1yt = µ∗∗ + δ∗∗t+ ρyt−1 + φ∗
1∆1yt−1 + · · · + φ∗

p−1∆1yt−(p−1) + εt. (1.41)

Under the null hypothesis not only ρ but also δ∗∗ is zero. There exists a joint
F -test for ρ = δ∗∗ = 0, and in the case of no trend, for ρ = µ∗∗ = 0, however a
common practice procedure is to test ρ = 0 in (1.41) and to consider critical
values depending on the type of deterministic regressors included. From
Table 1.1 it is clear that these critical values shift to the left. Intuitively,
if the data are generated by a random walk model, the inclusion of a trend
biases the estimate for ρ away from zero, and hence we need even larger
values of the test-statistic to reject the null hypothesis. It was shown (see

2Well-known as t(ρ̂) = ρ̂
SE(ρ̂) where SE denotes standard error.
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reference in [15]) that erroneously neglecting deterministic terms is worse
than including redundant variables.

The overall conclusion is that ADF test result should be evaluated with
care, in the sense that in case of doubt, we may be better off assuming
possible adequacy of both the DT and ST model, and to see which of the
two does a better job in out-of-sample forecasting. Further confidence in the
empirical outcomes is also obtained when the ADF test results appear robust
to changes in the sample size, outliers, additional lags and the inclusion or
exclusion of deterministic components.

The test procedure for unit roots compares ST model with DT model.
When the null hypothesis of a unit root can not be rejected, the ST model
is preferred over the DT model. Contrary to that ST model can be some-
times of most importance as it assumes permanent effects of shocks, in other
occasions, however, we may be interested more in DT model hypothesis. A
test that takes (trend) stationarity as the null hypothesis is called KPSS test
(after Kwiatkovsky, Phillips, Schmidt and Shin). It focuses on the partial
sum series Ŝt =

∑t
i=1 êi, where the relevant êt are obtained from an auxil-

iary regression like yt = µ̂ + δ̂t + êt. The test-statistic of interest (based on
LM-type test) is

LM =
1

n2s2(l)

n∑

t=1

Ŝ2
t , (1.42)

where the scaling factor s2(l) (so-called long-run variance of êt) can be esti-
mated as

ŝ2(l) =
1

n

n∑

t=1

ê2t +
2

n

l∑

j=1

w(j, l)
n∑

t=j+1

êtêt−j, (1.43)

where the weights can be of form w(j, l) = 1− j/(l+ 1) and the value of l is
usually set at l =

√
n. The null hypothesis of (trend) stationarity is rejected

when LM exceeds the (asymptotic) critical value given in Table 1.1. The
test is one sided.

1.4 Seasonality

When empirical time series originated in nature are observed in some sub-day
or sub-year time steps (such es every hour or month), it is often the case that
the time series display a seasonal pattern. Similar to the feature of a trend,
where definition of a trend depends on the model used to described the trend,
there does not exist a very precise definition of seasonality. We may often
refer to seasonality when observations follow the same more-or-less smooth
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Table 1.1: Critical values for ADF and KPSS tests at 5% significance level

test deterministic terms sample size

100 500 ∞
none -1.95 -1.95 -1.95

ADF constant -2.89 -2.87 -2.86

constant and trend -3.45 -3.42 -3.41

KPSS constant 0.46

constant and trend 0.18

(possibly sine-shaped) pattern every S time steps or, on the other hand,
when observations in certain seasons display strikingly different features to
those in other seasons. So if the seasonal component of the time series can be
suitably estimated by a mathematical curve like sinusoid, an AR time series
model will be accompanied by a pair of deterministic terms, such like in

yt = β1sin

(
2πt

S

)
+ β2cos

(
2πt

S

)
+ φ1yt−1 + · · · + φpyt−p + εt, (1.44)

where S is number of seasons, or period of seasonal variation. However, many
times such a deterministic behaviour is not the case and the model can be of
(less restrictive) form

yt = φ0,1D1,t + · · · + φ0,SDS,t + φ1yt−1 + · · · + φpyt−p + εt, (1.45)

where DS,t is a seasonal dummy variable. If we denote the number of seasonal
cycles in the sample period as N , the number of observations will be n = SN
and the dummy variable is defined as

Ds,t =

{
1 if t = (T − 1)S + s,

0 otherwise,
(1.46)

with s = 1, 2, . . . S and T = 1, 2, . . . N . In other words, Ds,t takes value 1 in
season s and 0 in other seasons. If we consider monthly observations gathered
for, e.g, 10 years, then S = 12 and n = 12 × 10 = 120. Anyway, varying
intercept φ0,s in (1.45) allows the mean to vary across different seasons. Note
that µs = φ0,s/(1 − φ1 − · · · − φp). If seasonal variation is approximately
deterministic, one will find that the estimated means µ̂s 6= µ̂, where µ̂ is the
estimated mean from an AR(p) model with a single intercept.
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Obviously, seasonal feature of a time series can be also of stochastic na-
ture. In the following, we briefly outline two commonly considered models for
such seasonal data. The first one assumes that seasonal variation appears
in the lag structure while the second model assumes seasonal variation in
ARMA parameters.

Loosely speaking, if seasonal variation appears in lags, a model (e.g.
(1.45)) contains yt−S, yt−2S, and so on3. Moreover, if the AR parameters in
the model are such that the differencing filter ∆S is required to transform
yt to stationarity, a time series are said to be seasonally integrated. Writing
∆S = (1 − LS) and solving the equation (1 − zS) = 0 or exp(Siφ) = 1
for z or φ, the solutions are equal to 1 and cos(2πk/S) + i sin(2πk/S) for
k = 1, 2 . . . S− 1 (compare to (1.10)). This amounts to S different solutions,
which all lie on the unit circle. The first solution 1 is called nonseasonal unit
root and the S−1 other solutions are called seasonal unit roots. When a time
series has seasonal unit roots, shocks change seasonal pattern permanently.

The alternative seasonal model is a periodic autoregression (PAR), which
extends a non-periodic AR model by allowing its autoregressive parameters
to vary with seasons. In other words, the PAR model assumes that the
observations in each of the seasons can be described by a different model. A
PAR(p) model can be written as

yt = µs + φ1,syt−1 + · · · + φp,syt−p + εt, (1.47)

or φp,s(L)yt = µs + εt, with µs =
∑S

s=1 φ0,sDs,t and s = 1, 2, . . . S. The εt is
assumed to be standard white noise with constant variance σ2, although it
may also be allowed to have seasonal variances σ2

s . Since some φi,s parameters
(i = 1, 2, . . . p) can take zero values, the order p is the maximum of all
ps, where ps denotes the AR order per season s. There are at least two
approaches to modeling PAR time series. The first is to investigate the
possible usefulness of periodic models via checking the properties of estimated
residuals from non-periodic ones. The second approach is simply to test the
estimated parameters of PAR model for periodic variation.

There are several tests for seasonal unit roots available for both seasonal
models, however as it is far behind the scope of this thesis, an interested
reader is referred to [15]. Details of seasonal adjustment methods (if a re-
moval is desired) are discussed in [9, 15].

3This, in fact, implies the inclusion of another member of ARMA family of models,
so-called Seasonal ARMA. For completeness, pure SAR(P ) is given a form φP (LS)yt = εt

whilst the full SARMA(p, q)(P,Q), which contains both (stationary) non-seasonal and sea-
sonal part, will be φp(L)φP (LS)yt = φq(L)θQ(LS)εt ([3]), where AR and MA polynomials
are built similarly to (1.5).
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1.5 Outliers

In most geodetic time series we are quite likely to find (few or plenty of)
observations that can be viewed as aberrant. An obvious question then
pops up concerning whether an aberrant observation somehow belongs to
the time series, in the sense that it is a part of data generating process, or
that it should be viewed as a measurement error. Hence, when modelling
linear (or nonlinear) data, it is important to study the presence of aberrant
observations and their effects on modelling and forecasting. In the following,
let’s take a look on the three most common representatives, that are additive
outlier, innovative outlier and permanent level shift.

In case of an additive outlier (AO), the data point is aberrant due to a
cause outside the intrinsic nature environment that generates the time series
data. Given a yt, additive outliers cannot be predicted using the historical
information set Ωt−1. More formally, if τ denotes the time of outlier occur-
rence, then

yt = xt + ω I[t = τ ], t = 1, . . . n (1.48)

where I[·] is the usual indicator variable yielding 1 or 0, the time series xt is
uncontaminated but unobserved, while yt is the observed variable, and the
size of AO is denoted by ω. In practice, time τ may be unknown. When we
apply OLS to estimate the parameters in, for instance, an AR(1) model for
yt, a neglected AO will have a downward-biasing effect on φ̂1 (in absolute
value). Also, AOs yield large values of skewness and kurtosis because the
two observations at time τ and τ + 1 cannot be properly predicted by the
model. Finally, the estimated standard error for AR parameter will increase
with increasing ω.

Another important type of outlier is the innovative outlier (IO), where
the outlier occurs in the noise process. Within an ARMA model framework
it can be found as φp(L)yt = θq(L)(εt + ω I[t = τ ]), or more illustratively
within AR(1) model

yt = φ1yt−1 + εt + ω I[t = τ ]. (1.49)

In case the IO is neglected, the forecast error associated with the optimal
1-step-ahead forecast equals ετ,τ−1 = ετ + ω, expectation of which does not
equal to zero and, hence, the predictor for yτ is biased. However, in contrast
to AO, the predictor ŷτ+1 has no bias and the OLS estimate φ̂1 will be
influenced in a much lesser amount.

When φ1 in (1.49) equals 1, IO at time τ can result in a permanent change
in the level of a time series. An alternative description of such a level shift
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in case of an AR model, which does not require that φ1 = 1, is given by

φp(L)yt = φ0 + ω I[t ≥ τ ] + εt, (1.50)

where the mean of yt shifts from φ0/(1 − φ1 − · · · − φp) in the first part of
the sample to (φ0 + ω)/(1 − φ1 − · · · − φp) in the second part.

In practice, the possible presence of aberrant observations is often indi-
cated by a large value of the JB normality test, see (1.20). There are also
other methods, that can be viewed as diagnostic checks for model accuracy,
and search over all possible τ for the presence of some type of aberrant data.
An alternative approach to guarding against the influence of outliers is to
use robust estimation methods to obtain unbiased estimates of a time series
model parameters. When a time series seems to have many aberrant data, it
is possible that a univariate time series model such as ARMA does not yield
a good description of data. In fact, approximating a nonlinear time series
model with a linear model may result in many large residuals. Furthermore,
outliers may reflect the fact that a multivariate time series model or an AR
model with exogenous variables may be more appropriate.

1.6 Multivariate modelling

Univariate time series autoregressive models can be very useful for out-of-
sample forecasting and descriptive analysis, however, their empirical speci-
fication may be hampered by many outliers and structural shifts, which in
turn may be attributed to one or more other variables. It is then desirable
to consider, e.g, φp(L)yt = βxt + εt where β measures the effect of xt on yt

at time t. Hence, if the estimated residuals do not show typical aberrant
data, including only a single variable can substantially reduce the number of
parameters since no additional descriptive measures for outliers and struc-
tural breaks are needed. Now, the above model brings new questions, mainly
whether the xt is to be included by its present value or with a time lag, i.e.
xt−k for some integer k. This time lag will surely depend also on the sampling
interval of the data. Another question concerns the reverse causality, whether
also xt cannot somehow depends on current and/or past yt. When we want
to take all possible relations between variables into account, it seems sensible
to construct a model for a vector of time series instead of constructing models
for all individual series, even in case we are not certain about which variables
are exogenous and which endogenous. Such a general (unrestricted) multiple
time series model can be a useful starting point of analysis, at least because
a static regression model like yt = αxt + ut may lead to spurious inference.
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In simple case, the general multivariate model can be of form

yt = φ1yt−1 + φ2xt−1 + εy,t

xt = φ3yt−1 + φ4xt−1 + εx,t

or

[
yt

xt

]
=

[
φ1 φ2

φ3 φ4

][
yt−1

xt−1

]
+

[
εy,t

εx,t

]
, (1.51)

which is called vector autoregression of order 1, VAR(1), since on the right-
hand side it includes only yt and xt variables with one time lag. Terms
εy,t, εx,t stand for corresponding white noise series. If possible simultaneous
effects (instead of lagged versions) of xt on yt and vice versa are to be al-
lowed, and retaining the same parameter notation, then a so-called dynamic
simultaneous model rise up from (1.51),

[
1 −φ2

−φ3 1

][
yt

xt

]
=

[
φ1 0

0 φ4

][
yt−1

xt−1

]
+

[
εy,t

εx,t

]
, (1.52)

which after simple rearrangement can be written in form of a VAR(1) model.
In fact, any simultaneous equation model with one or more lagged endogenous
variables leads to a VAR model.

For practical purposes, the VAR model is often the most useful (par-
ticularly for analysing stochastic trends) and in the following we therefore
discuss some of its aspects to be used in later chapters. Now, consider a
general VAR(p) model abbreviated as

yt = µ + Φ1yt−1 + · · · + Φpyt−p + εt (1.53)

or

Φp(L)yt = µ + εt, with Φp(L) = Ik − Φ1L− · · · − ΦpL
p,

where

yt =




y1,t

y2,t

...

yk,t



, Φi =




φ11,i · · · φ1k,i

φ21,i · · · φ2k,i

...
. . .

...

φk1,i · · · φkk,i



, εt =




ε1,t

ε2,t

...

εk,t



,

yt is (k × 1) vector of endogenous time series, Φi is (k × k) matrix of AR
parameters corresponding to i-th lag, and Ik is (k × k) identity matrix.
Vector εt of individually white noise series ε1,t to εk,t follows multinormal
distribution with zero mean and covariance matrix Σ, εt ∼ N(0,Σ), where Σ

not necessarily equals σ2Ik or diag(σ2
1, . . . σ

2
k). This means that the individual

εi,t series are uncorrelated with their own past and with the past of the other
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εj,t variables (i 6= j), but that there can be contemporaneous correlation
between the error series.

VAR(p) model is said to be stable, or corresponding vector yt series is
stationary, if all solutions to

|Φp(z)| = 0, (1.54)

lie outside the unit circle. Operator | · | denotes determinant of a matrix.
When one or more solutions to (1.54) lie on unit circle, the VAR(p) model
contains unit roots. Although testing hypotheses of the unit root presence
in VAR polynomial is difficult, there exist some useful methods based on
cointegration techniques. To obtain a preliminary and tentative impression
of stationarity, we can calculate the eigenvalues of

∑p
i=1 Φi to see if these

are close to unity, which may indicate unit roots in VAR model. Note that
finding a unit root in bivariate VAR(1) model means a presence of unit root
in each of the nested univariate AR models, hence it seems that they have
the unit root in common. The phenomenon of having such a common feature
is called a cointegration and will be discussed in chapter 3 in more detail.

Similar to univariate AR, the construction of VAR models involves sev-
eral specification steps. First, an initial value of p needs to be specified,
next we should estimate parameters and investigate the properties of esti-
mated residuals, and finally select between several values of p. For practical
purposes, multivariate extensions to ACFs are not very straightforward to
interpret since it involves a large system of serial and cross-equation correla-
tions, therefore we usually fit a set of VAR models with orders 1, 2, . . . pmax

for some value of pmax, and then evaluate whether one or more of these mod-
els fit well to data. The parameters can be estimated using OLS per equation,
which gives consistent and efficient estimates. When estimated, some of the
VAR parameters may seem insignificant. At this stage, however, it is not
sensible to restrict these parameters to zero, unless we are confident about
the stationarity of component series of yt, as the t-ratios of the estimates
are not distributed as standard normal in case of stochastic trends presence.
Model selection is similar to univariate case (though, in practice, performed
before examination of the estimated residuals), useful model selection criteria
are the multivariate extensions to AIC and BIC given by

AIC(p) = n ln |Σ̂p| + 2k2p, (1.55)

BIC(p) = n ln |Σ̂p| + ln(n)k2p, (1.56)

respectively, where |Σ̂p| denotes the determinant of the residual covariance
matrix for the VAR(p) model. These criteria performs well even in case
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of unit root contamination. Next step is diagnostic checking on estimated
residuals. As mentioned above, this is no easy matter because, besides the
white noise properties of individual ε̂t series, we must also check whether
there are no systematic patterns across current ε̂i,t and lagged ε̂j,t, for i 6=
j. Multivariate extensions to the portmanteau and LM tests for detecting
serial correlations can be used, however, only to give a warning of dramatical
model misspecification, since their power may not be very large. Additional
diagnostic tests are available and discussed in the work of several authors,
see references in [15].

After the whole investigation it may come out, that some variable is ex-
ogenous to key parameters in the model. Imposing exogeneity can imply
a reduction of the estimation demands and also improve precision in fore-
casting. In this context, one can encounter a term Granger causality in
works of many authors in a sense that it allows us to draw inference on
the dynamic impact of one variable on another. In concept of forecastabil-
ity, a variable (e.g.) y2,t is said to be Granger-non-causal for (e.g.) y1,t if
E[y1,t|Ω1,t−1,Ω2,t−1] = E[y1,t|Ω1,t−1], that is, the past of y2,t does not help in
forecasting y1,t. In bivariate AR(1) model this implies that φ12,1 = 0.

Forecasting from a VAR(p) is a straightforward extension of forecasting
from an AR(p). Consider (stationary) VAR(p) process at time (t+h) rewrit-
ten into VMA(∞) or multivariate Wold representation 4

yt+h = εt+h+Ψ1εt+h−1+ · · ·+Ψh−1εt+1+Ψhεt+ · · · =
∞∑

i=0

Ψiεt+h−i, (1.57)

εt ∼ N(0,Σ), then the optimal h-step-ahead forecast of yt+h at time t is

ŷt+h|t = E[yt+h|Ωt] = Ψhεt + Ψh+1εt−1 + . . . (1.58)

where Ωt denotes history of yt up to and including the observation at time
t. The forecast (prediction) error is given by

et+h|t = yt+h − ŷt+h|t = εt+h + Ψ1εt+h−1 + · · · + Ψh−1εt+1 (1.59)

and it’s covariance matrix (denoted as squared prediction error)

SPE(h) = E[et+h|te
′
t+h|t] =

h−1∑

i=0

ΨiΣΨ′
i. (1.60)

4From stationary VAR(p) model Φ(L)yt = εt we may write yt = Φ(L)−1εt =
Ψ(L)εt =

∑
∞

i=0 Ψiεt−i, where obviously Ψ0 = I and limi→∞ Ψi = 0. The Wold co-
efficients Ψi may be determined from the VAR coefficients Φi by solving Φ(L)Ψ(L) = I,
which implies Ψ1 = Φ1, Ψ2 = Φ1Φ1 + Φ2, generally Ψi = Φ1Ψi−1 + · · · + ΦpΨi−p.
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If εt follows normal distribution and εt and εs are uncorrelated for t 6= s, then
confidence interval for h-step-ahead forecast of j-th process in yt (j = 1, . . . k)
is bounded by ŷj,t+h|t ± u1−α/2σj(h), where α denotes significance level, uq

stands for q-th quantile of standard normal distribution and σj(h) is square
root of j-th diagonal element of SPE(h). Once estimates of VAR(p) model
parameters are available, forecast for horizon h may be computed using a
”chain rule”

ŷt+h|t = Φ̂1ŷt+h−1|t + · · · + Φ̂pŷt+h−p|t, (1.61)

where ŷt+i|t = yt+i for i ≤ 0.
To compare rival empirical models we may consider the determinant or

the trace of the SPE(h) matrices , since the forecast errors for yj,t are also
affected by the forecasts for the other k − 1 variables in yt.

In practice, having m additional observations at disposal, two models,
say A and B, can be efficiently compared by setting

dj = g(et+j|t+j−h,A) − g(et+j|t+j−h,B) j = 1, 2, . . .m (1.62)

with g(a) = a′a, instead of univariate version (1.28), and applying (modified)
Diebold-Mariano test (1.32).



26 CHAPTER 1. CONCEPTS IN LINEAR TIME SERIES ANALYSIS


