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1. Preface

Geodesy and other technical disciplines have used in its history various math-
ematical models to describe observed as well as mediate variables of inspected phe-
nomenons. Univariate behaviour first, then multivariate capturing mutual depen-
dencies, the focus was always put to understanding and predicting the values of
individual concern. This article introduces the concept of a copula function as a
tool for relating different dimensions of a data output.

Before we zoom to relevant theory, it may come handy to look ”a little” back
in section 2, following [4]. After introducing the idea of copula theory, section 3
gives an interesting look into dependence measuring, which is helpful in the discus-
sion about association between random variables and the role that copulas play in
it. Section 4 is geared to Archimedean class of copulas, pointing out the easiness
with which they can be constructed, while the fifth section describes the estimation
procedure in details. There we give an application to position dynamics observed by
means of satellite based positioning technique (GPS). Finally, section 6 concludes.

All the theory preceding the experiment is presented in good belief that it
will help specialists in applied sciences to quickly and easily adopt the advantage of
relatively new procedures of modelling their data - by using copulas.

2. Introduction to copula

Understanding relationships among multivariate outcomes is a basic problem
in statistical science. In the late nineteenth century, Sir Francis Galton made a
fundamental contribution to understanding multivariate relationships with his in-
troduction of regression analysis, by which he linked the distribution of heights of
adult children to the distribution of their parents’ heights. Galton showed not only
that each distribution was approximately normal but also that the joint distribution
could be described as a bivariate normal. Thus, the conditional distribution of adult
children ’s height, given the parents’ height, could also be described by using normal
distribution. Regression analysis has developed into the most widely applied sta-
tistical methodology and become an important component of multivariate analysis,
because it allows researchers to focus on the effects of explanatory variables.

However, though widely applicable, regression analysis is limited by the ba-
sic setup that requires the analyst to identify one dimension of the outcome as
the primary measure of interest (the dependent variable) and other dimensions as
supporting or ”explaining” this variable (the independent variables). This may gen-
erally be not of primary interest, thus our attention should be focused on the more
basic problem of understanding the distribution of several outcomes, a multivariate
distribution.

As normal distribution has the most practical use when describing one-dimen-
sional data sets, it has long dominated the study of multivariate distributions as well.
Multivariate normal distributions are appealing because the marginal distributions
are normal too, and also because the association between any two random outcomes
can be fully described knowing only the marginal distributions and additional pa-
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rameter (correlation coefficient). However, there are many datasets, to that normal
distribution does not provide an adequate approximation. For that reason, many
non-normal distributions has been developed, mostly as immediate extensions of
univariate distributions (Pareto, gamma, ...). Drawbacks of such a construction are
that (a) a different family is needed for each marginal distribution, (b) extensions to
more than just the bivariate case are not clear, (c) and measures of association often
appear in the marginal distributions. A construction of multivariate distributions
that does not suffer from these drawbacks is based on the copula function.

Copula is a function that links univariate marginals to their full multivariate
distribution. To cast light on previous definition, consider p uniform (on the unit
interval) random variables U1, U2, . . . , Up whose joined distribution function C is
defined as

C(u1, u2, . . . , up) = Prob[U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up], (1)

where u denotes realizations. Those p variables are distribution functions (also
referred to as probability integral transforms) of p outcomes X1, X2, . . . , Xp (each
of them being a continuous random variable) that we wish to understand. They are
the marginal distribution functions F1, . . . , Fp of multivariate distribution function

C
(
F1(x1), F2(x2), . . . , Fp(xp)

)
= F (x1, x2, . . . , xp), (2)

defined using a copula function, evaluated at realizations x1, x2, . . . , xp.

In 1959 Sklar formulated his famous theorem, where the converse of (2) was
established, and that practically meant the foundation of whole copula theory. He
proved that any joint distribution function F with univariate marginal distribution
functions F1, . . . , Fp can be seen as a copula function, i.e.

F (x1, x2, . . . , xp) = C
(
F1(x1), F2(x2), . . . , Fp(xp)

)
, (3)

He also showed that if the marginal distributions are continuous, then there is
a unique copula representation (in general, C is unique on the RanF1×RanF2 ×
. . .×RanFp, where RanF stands for a range of F ).

Thus copula functions provide a unifying and flexible way to study joined
distributions (with different marginals). Moreover, copula allows us to model the
dependence structure independently from the marginal distributions.

As for the basic properties, following [9] and restricting ourselves to bivariate
representation, copula is a function C : [0, 1]2 −→ [0, 1] which

• satisfies the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) =
t for t ∈ [0, 1],

• satisfies the 2-increasing property:
C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 in [0, 1]
such that u1 ≤ u2 and v1 ≤ v2,

A copula is symmetric if C(u, v) = C(v, u) for all (u, v) in [0, 1]2 and is asymmetric
otherwise.
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Now consider the functions M, Π and W defined on [0, 1]2 as follows:

M(u, v) = min(u, v),

Π(u, v) = uv, (4)

W (u, v) = max(u + v − 1, 0).

These functions are copulas, actually 2-copulas (i.e. copulas with two-dimensional
domain), and M, W satisfy so-called Fréchet-Hoeffding bounds inequality

W (u, v) ≤ C(u, v) ≤ M(u, v), (5)

where C is any 2-copula. W and M are called Fréchet-Hoeffding lower and upper
bound, respectively. They represent perfect dependence, either negative or positive,
whereas the product copula Π stands for perfect independence. If we extend the
domain to [0, 1]p for p ≥ 3, (observe that M , Π and W are associative and thus
their p-ary extension is trivial), still the bounds are M and W . However, the lower
bound W is no more a p-copula (but still it is the best lower bound).

So far, numerous copulas have been developed and can be found listed in
literature (for instance see [9]). Because of the above mentioned appealing properties
of normal distribution, the most commonly applied function is the normal copula

C
normal

(u1, . . . , un) = Φ
(
Φ−1(u1), . . . , Φ

−1(un)
)

, (6)

where Φ denotes the joint distribution function of the n-variate standard normal
distribution and Φ−1 the inverse of univariate normal standard distribution function
(see [3]). Multi-normal distribution belongs to the elliptical distributions, which
captures only linear dependencies (the parameter set being correlation matrix) and
therefore is inadequate in many multivariate analyses of data with probability den-
sity concentrated on tails (extreme values), for instance.

In this paper, our main concern is an interesting class of copulas, denoted
Archimedean, that possess some outstanding useful properties. Archimedean copu-
las are going to be introduced after we say few words about measures of dependence.

3. Dependence and measures of association

In this section we recall some basic concepts of dependence or association
between random variables and the role that copulas can play in this most widely
studied subject in probability and statistics. Following [9], [4], there is a variety of
ways to discuss and to measure dependence. Many of them are ”scale-invariant”,
that is, they remain unchanged under strictly increasing transformations of the
random variables. To understand the spirit of copula, consider two random variables
X, Y and two functions f, g, strictly increasing (but otherwise arbitrary) over the
range of X, Y . Then the transformed variables f(X) and g(Y ) have the same copula
as X and Y - in other words, the manner in which X and Y ”move together” is
captured by the copula, regardless of the scale in which each variable is measured.

The most famous and widely used measure is Pearson’s product-moment
correlation coefficient

corr(X, Y ) =
cov(X, Y )√

var(X)var(Y )
, (7)
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however, it measures only a linear dependence between random variables. In context
of joined distributions, corr(X, Y ) depends not only on the copula but also on
the marginal distributions, thus this measure is affected by (nonlinear) changes
of scale. Since Pearson’s coefficient has adopted the customary name, correlation
coefficient, for scale-invariant measures we shall use more modern term ”measure of
association”. The most widely known ones are the population versions of Kendall’s
tau (τ) and Spearman’s rho (ρ), both of which measure a form of dependence known
as concordance.

Informally, a pair of random variables are concordant if ”large” values of one
tend to be associated with ”large” values of the other, and ”small” values of one
with ”small” values of the other. More precisely, if (xi, yi) and (xj, yj) denote two
observations of a vector (X,Y ) of continuous random variables, we say that (xi, yi)
and (xj, yj) are concordant if (xi− xj)(yi− yj) > 0, and discordant if (xi− xj)(yi−
yj) < 0.

From the sample version of Kendall’s tau defined as t = (c−d)/(c+d) = (c−
d)/(n

2
), where c is the number of concordant, d the number of discordant pairs (xi, yi)

and (xj, yj), n the number of observations and (n
2
) the number of all distinct pairs in

the sample; we may work out easily that the population version of Kendall’s tau will
be defined as the probability of concordance minus the probability of discordance

τ = τX,Y = Prob[(X1 −X2)(Y1 − Y2) > 0]− Prob[(X1 −X2)(Y1 − Y2) < 0] , (8)

where we assume (X1, Y1) and (X2, Y2) to be independent and identically distributed
random vectors. Before we link τ with copulas, define a ”concordance function” Q in
the same way as τ in (8), with that difference that the continuous random variables
in the two vectors (X1, Y1) and (X2, Y2) have (possibly) different joint distributions
H1 and H2, but common margins F and G. Then the equality

Q = Q(C1, C2) = 4
∫∫

[0,1]2
C2(u, v)dC1(u, v)− 1 (9)

shows, that this function depends on the distributions of the two vectors only
through their copulas C1 and C2. According to (9) the population version of
Kendall’s tau in terms of copulas is given by

τX,Y = τC = Q(C,C) = 4
∫∫

[0,1]2
C(u, v)dC(u, v)− 1 , (10)

where C is the copula of X and Y . Integral, which appears in (10) can be interpreted
as the expected value of the function C(U, V ) of random variables U and V uniform
on (0, 1) whose distribution function is C; then τC = 4E[C(U, V )]− 1. Next section
shows the taking advantage of linking τ to Archimedean copulas in their estimation.

Similarly, the population version of the measure of association known as
Spearman’s rho is based on concordance and discordance. Let (X1, Y1), (X2, Y2)
and (X3, Y3) be three independent random vectors with common joint distribution
function H (whose margin are again F and G) and copula C. The population version
of Spearman’s rho is defined to be proportional to the probability of concordance
minus the probability of discordance for the two vectors (X1, Y1) and (X2, Y3) – i.e.,
a pair of vectors with the same margins but one vector has distribution function H,
while the components of the other are independent:

ρ = ρX,Y = 3
(
Prob[(X1−X2)(Y1−Y3) > 0]−Prob[(X1−X2)(Y1−Y3) < 0]

)
, (11)
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(the pair (X3, Y2) could be used equally as well). Note that while the joint dis-
tribution function of (X1, Y1) is H(x, y), the joint distribution function of (X2, Y3)
is F (x)G(x) (since X2 and Y3 are independent) and their copula is Π. Then the
population version of Spearman’s rho is given by

ρX,Y = ρC = 3Q(C, Π) = 12
∫∫

[0,1]2
uv dC(u, v)− 3

= 12
∫∫

[0,1]2
C(u, v)dudv − 3 . (12)

The coefficient ”3” that appears in (11) and (12) is a ”normalization” constant,
since Q(C, Π) ∈ [−1/3, 1/3], allowing ρ to satisfy the range property of measures of
concordance.

Here we list some of the properties that a measure κ of association between
two random variables X and Y should satisfy to be a measure of concordance:

• −1 ≤ κX,Y ≤ 1, κX,X = 1, κX,−X = −1,

• κX,Y = κY,X ,

• if X and Y are independent, then κX,Y = κΠ = 0,

• κ−X,Y = κX,−Y = −κX,Y .

Spearman’s rho is also called a ”grade” correlation coefficient. For closer look,
if x and y are observation from two random variables X and Y with distribution
functions F and G, respectively, then the grades of x and y are given by u = F (x)
and v = G(y). Note that the grades (u and v) are observations from the uniform
(0,1) random variables U = F (X) and V = G(Y ) whose distribution function is
copula C. Thus Spearman’s rho for a pair of continuous random variables X and
Y is identical to Pearson’s product-moment correlation coefficient for the grades U
and V :

ρX,Y = corr(F (X), G(Y )).

Another interpretation of Spearman’s rho says that it is proportional to the volume
between the graph of the copula C and the product copula Π over the unit square
[0, 1]2.

4. Archimedean copula

In this chapter we focus on an important class of copulas (introduced above)
known as Archimedean copulas. They find a wide range of applications mainly
because of (a) the ease with which they can be constructed, (b) the great variety
of families of copulas which belong to this class, and (c) the many nice properties
possessed by the members of this class. Archimedean copulas originally appeared
not in statistics, but rather in the study of probabilistic metric spaces, where they
were studied as a part of the development of a probabilistic version of the triangle
inequality. Like a copula, a triangle norm, or t-norm maps [0, 1]p to [0, 1] and joins
distribution functions. Some t-norms (exactly those which are 1-Lipschitz) are cop-
ulas and vice versa, some copulas (exactly those which are associative) are t-norms.
Moreover, Archimedean t-norms which are also copulas are called Archimedean cop-
ulas.
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The Archimedean representation allows us to reduce the study of a multi-
variate copula to a single univariate function. For simplicity, we consider bivariate
copulas so that p = 2. Assume that φ is a convex, decreasing function with domain
(0, 1] and range in [0,∞), that is φ: (0, 1] → [0,∞), such that φ(1) = 0. Use φ−1

for the function which is inverse of φ on the range of φ and 0 otherwise. Then the
function

Cφ(u, v) = φ−1
(
φ(u) + φ(v)

)
for u, v ∈ (0, 1] (13)

is said to be an Archimedean copula. φ is called a generator of the copula Cφ.
Archimedean copula is symmetric, also associative, i.e. C(C(u, v), w) = C(u,C(v, w))
for all u, v, w ∈ [0, 1], and for any constant k > 0 the kφ is also a generator of Cφ.
Observe that Archimedean copulas (which are always 2-copulas) as p-ary operators
need not be p-copulas. A necessary and sufficient condition for an Archimedean
copula to be p-copula for each p ≥ 2 is the total monotonicity of the function φ−1
[9]. If the generator is twice differentiable and the copula is absolutely continuous,
the copula density (probability density function of random variables U and V ) is
given by

cφ(u, v) =
∂2Cφ(u, v)

∂u∂v
=
−φ′′(Cφ(u, v))φ′(u)φ′(v)

[φ′(Cφ(u, v))]3
(14)

As a generator uniquely determines an Archimedean copula, different choices
of generator yield many families of copulas, that consequently, besides the form of
generator, differ in the number and the range of dependence parameters. Tab.1
summarizes the most important one-parameter families of Archimedean class. For
convenience the copula notation Cφ is replaced by Cθ in the last column, where θ
assumes its limiting values. Note, that Clayton and Gumbel copulas model only
positive dependence, while Frank covers the whole range.

Tab.1 Archimedean copulas with their generators.

Family of Generator Parameter Bivariate copula Special cases

copulas φ(t) θ Cφ(u, v)

Independence − ln t uv C=Π

Gumbel (− ln t)θ θ ≥ 1 e−[(− ln u)θ+(− ln v)θ]−1/θ

C1=Π, C∞=M

Clayton t−θ − 1 θ > 0 (u−θ + v−θ − 1)−1/θ
C0=Π, C∞=M

Frank − ln
(

e−θt−1
e−θ−1

)
θ ∈ < − 1

θ ln
(
1 + (e−θu−1)(e−θv−1)

(e−θ−1)

)
C0=Π

C−∞=W, C∞=M

Now that we’re talking about dependence, recall the population version of
Kendall’s tau whose evaluation requires the evaluation of the double integral in
(10). For an Archimedean copula, the situation is simpler, in that τ can be evaluated
directly from the generator of the copula

τC = 1 + 4
∫ 1

0

φ(t)

φ′(t)
dt (15)

[5]. Indeed, one of the reasons that Archimedean copulas are easy to work with
is that often expressions with one-place function (the generator) can be employed
rather than expressions with a two-place function (the copula). Tab.2 shows partic-
ular closed forms of (15).
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Tab.2 Measures of association related to Archimedean copulas

Family Independence Gumbel Clayton Frank

Kendall’s τ 0 θ−1
θ

θ
θ+2 1− 4

θ{1−D1(θ)}
Spearman’s ρ 0 no closed form complicated form 1− 12

θ {D1(θ)−D2(θ)}
Note: Dk(x) = k

xk

∫ x

0
tk

et−1dt is so called ”Debye” function.

5. Fitting a copula to bivariate data

The Archimedean copula has simplified the construction of bivariate distri-
butions and it has many families that are capable to present different structure of
dependence and there are many different methods developed to estimate its para-
meters. We only need to find functions which will serve as generators, define the
corresponding copulas and estimate their dependence parameters.

For identifying the copula, we focus on the procedure of Genest & Rivest
[6], that is also referred to as nonparametric estimation of copula parameter. Then
we use semi-parametric estimation method developed in [7] and finally the exper-
iment with bivariate geodetic data is given to illustrate the proposed theory. The
procedures are also discussed in [4], [8] and [1].

In our application, we consider the three most widely used Archimedean
families of copula: Clayton, Gumbel and Frank.

5.1. Nonparametric estimation

As [4] formulate, measures of association summarize information in the cop-
ula concerning the dependence, or association, between random variables. Thus,
following [6] we can also use those measures to specify a copula form in empirical
applications.

Assume that we have a random sample of bivariate observations (Xi, Yi) for
i = 1, . . . , n available. Assume that the joint distribution function H has associated
Archimedean copula Cφ; we wish to identify the form of φ. First to begin with, define
an intermediate (unobserved) random variable Zi = H(Xi, Yi) that has distribution
function K(z) = Prob[Zi ≤ z]. This distribution function is related to the generator
of an Archimedean copula through the expression

K(z) = Kφ(z) = z − φ(z)

φ′(z)
. (16)

To identify φ, we:

1. Find Kendall’s tau using the usual (nonparametric or distribution-free) esti-
mate

τn =
(

n

2

)−1 n∑

i=2

i−1∑

j=1

Sign[(Xi −Xj)(Yi − Yj)] .

2. Construct a nonparametric estimate of K, as follows:

a) first, define the pseudo-observations Zi = { number of (Xj, Yj) such that
Xj < Xi and Yj < Yi}/(n− 1) for i = 1, . . . , n:

Zi = (n− 1)−1
n∑

j=1

If [Xj < Xi && Yj < Yi, 1, 0] ,
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b) second, construct the estimate of K as proportion of Z ′
is ≤ z, that is

Kn(z) = n−1
n∑

i=1

If [Zi ≤ z, 1, 0] ,

where function If [condition, 1, 0] gives 1 if condition holds, and 0 otherwise.
”&&” stands for logic operator ”and”.

3. Now construct a parametric estimate Kφ using the relationship (16). Illustra-
tively, τn −→ θn −→ φn(t) −→ Kφn(z), where subscript n denotes estimate.
For various choices of generator, refer to Tab.1, and for linking τ to θ, Tab.2
is helpful.

The step 3 is to be repeated for every copula family we wish to compare. The
best choice of generator then corresponds to the parametric estimate Kφn(z), that
most closely resembles the nonparametric estimate Kn(z). Measuring ”closeness”
can be done either by a (L2-norm) distance such as

∫ 1
0 [Kφn(z)−Kn(z)]2dz or graph-

ically by (a) plotting of z − K(z) versus z or (b) corresponding quantile-quantile
(Q-Q) plots (see [6], [4], [2]). Q-Q plots are used to determine whether two data
sets come from populations with a common distribution. If the points of the plot,
which are formed from the quantiles of the data, are roughly on a line with a slope
of 1, then the distributions are the same.

5.2. Semi-parametric estimation

To estimate dependence parameter θ, two strategies can be envisaged. First,
the straightforward one writes down a likelihood function, where the valid parametric
models of marginal distributions are involved. The resulting estimate θ̂ would then
be margin-dependent, just as the estimates of the parameters involved in the mar-
ginal distributions would be indirectly affected by the copula. As the multivariate
analysis focus on the dependence structure, it requires the dependence parameter
to be margin-free. That’s why [7] proposed a semi-parametric procedure for the
second strategy, when we don’t want to specify any parametric model to describe
the marginal distribution. This procedure consist of (a) transforming the marginal
observations into uniformly distributed vectors using the it empirical distribution
function, and (b) estimating the copula parameters by maximizing a pseudo log-
likelihood function.

So, given a random sample as previously, we look for θ̂ that maximizes the
pseudo log-likelihood

L(θ) =
n∑

i=1

log
(
c

θ
(Fn(x), Gn(y))

)
, (17)

in which Fn, Gn stands for re-scaled empirical marginal distributions functions, i.e.,

Fn(x) =
1

n + 1

n∑

i=1

If [Xi ≤ x, 1, 0] , (18)

Gn(y) arise analogically. This re-scaling avoids difficulties from potential unbound-
edness of log(c

θ
(u, v)) as u or v tend to one. Genest et al. in [7] examined the

statistical properties of the proposed estimator and proved it to be consistent, as-
ymptotically normal and fully efficient at independence case.
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The copula density c
θ
for each Archimedean copula can be acquired from (14).

To examine a goodness of our estimation, there is the Akaike information criterion
available for comparison: AIC = −2(log-likelihood) + 2k, where k is the number
of parameters in the model (in our case, k = 1). The lowest AIC value determines
the best estimator.

5.3. Application to point co-ordinate time-series analysis
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Fig.1 Two univariate time-series linked together to form bivariate random vector of a
point location

Finally we have come to an experiment, that is to illustrate the above proce-
dures. We employed bivariate time series - daily observations of plane co-ordinates
of a point gathered 2 years, (which gives 728 realizations). Observations were made
by means of NAVSTAR Global positioning system (GPS) on permanent station
MOPI that takes part in European Reference Network. Establishment of such a
network serves for various geodetic and geophysical purposes, e.g. for regular moni-
toring of recent kinematics of the Earth’s crust (local, regional and global). The two
random variables that make our bivariate observations thus share common physical
phenomenon through the geometry and time reference. Indeed, as seen on Fig.1, we
may expect some dependence. By default, position of a point is given in horizontal
topocentric co-ordinate system, whose axes has north-east orientation (the third -
vertical - we do not consider), however we swapped the east direction for the west,
because the original configuration gives negative dependence and some copulas can
model only positive dependencies.

The data was processed as follows. Firstly, we examined the two individual
univariate time-series. Interestingly, both of them follow logistic distribution rather
than normal. The logistic distribution with mean and scale parameter is frequently
used in place of the normal distribution when a distribution with longer tails is
desired. Nevertheless, further on we worked solely with the empirical marginal
distribution function (18) to avoid any influence of a biased marginal model upon
estimation of dependence structure. Next we computed scalar representatives of this
structure, that is, measures of dependence

Correlation Spearman’s Kendall’s

coefficient ρ τ

0.3670 0.3314 0.2343 .
Note that, if the data were nonstationary and required some variance stabilizing
such as logarithmic transformation (which is strictly increasing), the pre-processing
would have biased only the correlation coefficient, and none of the others.

Following nonparametric procedure described in section 5.1, we estimated
Kn, and using Kendall’s τ also the three parametric estimates corresponding to
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each one-parameter copula from Tab.1. Then, Fig.2 shows their ”closeness” to Kn

graphically, while Tab.3 numerically.
Within a semi-parametric procedure, (a) we firstly applied the procedure out-

lined in section 5.2, (b) then as an alternative (and as a backup too) we utilized
nonlinear parametric least-square fit to empirical copula. For linking both (a) and
(b) approaches, we computed L2-norm distance between estimated and empirical
copula. As seen from Tab.3, the differences are nonsignificant and in preferring
Gumbel family to Frank and Clayton both methods agree with the nonparametric
one. However, there seems to be a disharmony with AIC criterion of maximum
likelihood estimate goodness, which surprisingly promotes the Clayton. On that
account we performed some computations under different input conditions and fig-
ured out, that log-likelihood function of Clayton copula density (see Fig.3) is pretty
sensitive to lower tail dependencies, namely to ”perfect” extremes in data (notice
the lower tail protruders in the very right-hand plot of Fig.1). Even just one (the
most extremal) outlier chopped off from the lower tail of the data pushed the AIC of
Clayton to between Frank and Gumbel. Dropping the other two degraded Clayton
into ”least appropriate” position among copulas under consideration. Upper tail
extremes have no evident impact to Clayton likelihood estimate.
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Fig.2 Graphical evaluation of nonparametric method:
a) Empirical function Kn fitted by Kφ of corresponding copula function

b) Quantile-quantile plots
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This kinds of ”revelations” appears to be quite important when choosing
the best copula. Since nonlinear least-square fit demands a much more CPU time
and memory1, discussion of the nonparametric and semi-parametric (pseudo log-
likelihood) is surely in order. As mentioned in [1], neither method is generally more
convenient, but if there are outliers or if the marginal distributions are heavy tailed,
it seems reasonable to choose the nonparametric approach. If we work with large
data set, the likelihood estimator may be more precise.

Tab.3 Nonparametric and semi-parametric
estimates of copula dependence parameters θ

Family: Gumbel Clayton Frank

Nonparametric procedure

θ 1.3060 0.6120 2.2083

d(Kφ,Kn) 0.445 0.542 0.492

Log-Likelihood procedure (semi-parametric)

θ 1.3044 0.5638 2.3153

AIC -106.2 -109.0 -90.7

d(Cθ, Cn) 3.700 4.127 3.806

Nonlinear Fit procedure (semi-parametric)

θ 1.3031 0.5595 2.103

d(Cθ, Cn) 3.700 4.127 3.598

Influences on estimation is a subject to study and one has to be clear about
what he prefer to understand, whether it is extreme situations, overall dependence
structure or anything else. There are many other families of copula, that could
be estimated by above procedures and, if necessary, should be considered as the
alternatives to the three but mainly to most used Gaussian distribution, which - by
its nature - cannot be satisfactory in numerous applications. In that of ours, the
sum of squares of residuals unambiguously refused the appropriateness of bi-normal
distribution.

6. Conclusion

From the very beginning of our paper we have outlined an approach of mul-
tivariate statistical analysis, that contemplates entirely the dependence structure,
keeping individual variable properties isolated for optional concern. The approach
is based on multivariate distribution function named copula, and we have provided
a quick survey of definitions, properties, relation to dependence measures and a spe-
cial class of copulas in order to interest any researcher in seeking new applications
for this promising tool. As the copula functions are parametric families, an ordinary
nonlinear least-squares fit can be applied for estimation. Moreover we described

1All the computation was made in Mathematica 5.0 on 1.2GHz CPU system with 256MB of
RAM. With this configuration and for all the three copulas together the nonparametric procedure
took few seconds, semi-parametric log-likelihood few minutes and least-square fit more than 2
hours. Usually, the size of fast physical memory RAM plays the crucial role when handling with
a large data, however the most time consuming procedure here (summing up frequencies into the
empirical distribution function) has the full CPU usage for about two hours without needing any
access to a slow complementary (virtual) memory.
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here other two methods, nonparametric and semi-parametric maximum likelihood.
Also, an application to a position dynamics of GPS permanent station MOPI drew
our attention to some pitfalls of a particular copula and method selection, more
specifically the impact of tail dependencies in data.

Copula density
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Fig.3 Copula density for three Archimedean families

Acknowledgements

I would like to document my immense gratitude to Professor Magda Ko-
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