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MULTIVARIATE LSTAR IN GEODESY

Tomáš Bacigál ∗

Regime-switching models such as threshold autoregressive ones are used to process the data, that are nonlinear in the sense
of being piecewise linear. Here we extend the multivariate TAR to LSTAR family of models, where the transition function
between regimes is smooth rather then abrupt. LSTAR stands for logistic smooth transition autoregressive. Inclusion of
exogenous variables is considered. We briefly outline an application to geodetic data processing.
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1 INTRODUCTION

Processes that appear in nature and are subject to ob-
servation and analysis in such disciplines as geodesy, hy-
drology and meteorology, need not be always sufficiently
described by linear models like ARMA and the like. There
are many types of non-linearities that could ”make things
turbid”, one of them being threshold non-linearity which
represents piecewise linear structures and is easily inter-
pretable as we can identify a particular variable (such as
temperature or precipitation) that indicates the change
in behaviour of other variables (e.g. river flow rate).

Section 2 deals with theoretical background of the
models that describe such behaviour (switching between
regimes determined by observable variables), particularly
the TAR and STAR models. To make the application
meaningful, it is essential to test the data for linearity
against this particular non-linearity, which is the topic
of section 3. Next the theory for model shape identifica-
tion, its parameters estimation and suitability evaluation
is given in section 4, whereas the last two sections con-
tains some practical results of application in geodesy.

2 REGIME–SWITCHING

The most prominent member of the class, which as-
sumes that the regime that occurs at time t can be deter-
mined by an observable variable zt , is the Threshold Au-
toregressive (TAR) model. For completeness, there is also
a class covering the determination by an unobservable
process, representative of which is the Markov-Switching
model, however it is not of our interest here. The TAR
model assumes that the regime is determined by relation
between the value of threshold variable zt and threshold
value denoted as r .

Then a 2-regime TAR model assuming an AR(p) in
both regimes can be written

yt =
{

φ0,1 + φ1,1 yt−1 + · · ·+ φp,1 yt−p + εt if zt ≤ r,

φ0,2 + φ1,2 yt−1 + · · ·+ φp,2 yt−p + εt if zt > r,
(1)

or alternatively in matrix notation

yt = φ′1Xt(1− I[zt > r]) + φ′2XtI[zt > r] + εt, (2)

where φj = (φ0,j , φ1,j , . . . , φp,j)′ are unknown parame-
ters of j -th regime , Xt = (1, yt−1, . . . , yt−p)′ , I[A] is an
indicator function with I[A] = 1 if the event A occurs
and I[A] = 0 otherwise. M ′ denotes transposition of M .

A more gradual transition between the different regimes
can be obtained by replacing the indicator function
I[zt > r] in (2) by a continuous function G(zt, γ, r) which
changes smoothly from 0 to 1 as zt increases. The resul-
tant model is called a Smooth Transition Autoregressive
(STAR) and if rearranged a little it is given by

yt = φ′1Xt + (φ2 − φ1)′XtG(zt, γ, r) + εt, (3)

which is easily extendable to m-regimes version

yt = φ′1Xt + (φ2 − φ1)′XtG(zt, γ1, r1) + . . .

+ (φm − φm−1)′XtG(zt, γm−1, rm−1) + εt, (4)

A popular choice for the so-called transition function
G is the logistic function

G(zt, γ, r) =
1

1 + e−γ(zt−r)
(5)

which results in the Logistic STAR (LSTAR). The pa-
rameter γ determines the smoothness of the transition.
Notice that AR model is a special case of the LSTAR
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model in case γ = 0 and likewise the LSTAR becomes
TAR as γ → ∞ . Alternatively an even transition func-
tion can be used, e.g. exponential function G(zt, γ, r) =
1−e−γ(zt−r)2 , so that corresponding model (Exponential
STAR) assumes symmetric response of yt to positive or
negative values of zt − r .

For practical purposes it may be more useful to con-
sider the LSTAR model instead of the TAR or ESTAR
models since it allows for smooth changes and asymmetric
response to shocks.

A more general case considers some explanatory vari-
able xt to be included in regression and further extension
to multivariate space yields

yt = Φ1Xt(1−G(zt, γ, r)) + Φ2XtG(zt, γ, r) + εt, (6)

with

Xt = (1, y′t−1, . . . , y
′
t−p, x

′
t−1, . . . , x

′
t−q)

′ (6a)

where yt = (y1t, . . . , ykt)′ is k -dimensional modelled and
xt = (x1t, . . . , xlt)′ l -dimensional exogenous variable, p
and q are the orders of auto and exogenous regression,
respectively, and Φj is the k × (1 + pk + ql) matrix
of unknown parameters corresponding to j -th regime.
It is questionable how to denote the resultant general
model (6,6a), one possible way is to put the names of all
participant model together into the acronym STVARX
(Smooth Transition Vector Autoregressive model with
eXogenous variables) preferred by some recent authors,
or to adopt a simpler version STR (Smooth Transition
Regression model) introduced in [8] where contrary to
(6a), the model does not incorporate lagged but rather
actual value of exogenous variable.

An essential part of the STAR model is surely the
threshold (transition) variable zt which indicates what
behaviour to expect at time t . In univariate case it is
usual to set zt = yt−d for an positive integer d , how-
ever in more general case it is worth considering other
options, e.g. some linear combination of lagged endoge-
nous and exogenous variables included in regression (see
[8] for inspiration) or most recent idea of utilizing aggre-
gation operators to reconstruct the threshold variable as
shown in [7] (an application to univariate river flow rate
time series analysis). In short, for univariate self-exciting
model zt = A(yt−1, . . . , yt−d) where A is an aggregation
operator (agop). Typical continuous agops on the real line
(Rn → R) are arithmetic mean, weighted means or OWA
operators AOWA(a1, . . . , an) =

∑n
i=1 wia

′
i , where a′ de-

notes a non-decreasing permutation of a = (a1, . . . , an)
and w are weights. In class of OWA we can find also
MIN (w1 = 1 and wi = 0 otherwise) eventually MAX
(wn = 1, wi = 0) operators and all order statistics. A
multivariate case with exogenous elements using agops
obviously allows for greater variety of construction meth-
ods of transition variable zt , e.g. straightforward nesting
A(A1(. . . ), . . . , Am(. . . )) etc.

3 TESTING FOR NONLINEARITY

Before any specific non-linear model is getting started
to build up, it is desirable to test the time series for lin-
earity against the suspected non-linearity. There are sev-
eral methods, one possible way of detection is to compare
the in-sample fit of the regime-switching model with that
of a linear model (which can be considered as 1-regime
model), when the linear model is taken as null and regime-
switching one as alternative hypothesis. In the case of 2
regimes it means equality against inequality of the regres-
sion parameters in the two regimes.

Tsay in [9] propose one that put threshold non-
linearity (abrupt transition between regimes) against lin-
earity, using a regression rearranged according to the in-
creasing order of threshold variable that effectively trans-
forms a threshold model into a changepoint problem. An-
other approach utilizes Lagrange Multipliers (LM) statis-
tics and is available for STAR model. Both tests are sim-
ple and performs well in finite samples, yet it does not
depend on the alternative model, nor does it encounter
the problem of unidentified nuisance parameters under
the null hypothesis (see discussion in [4], pp.100). As the
point of our interest here is the STAR family of models,
a reader interested in application of multivariate TAR is
referred to our earlier work [2].

Besides equality of the AR parameters in the two
regimes, H0 :φ1 = φ2 , the null hypothesis of linearity
can alternatively be expressed as H ′

0 :γ = 0. If γ = 0,
the logistic function (5) is equal to 0.5 for all zt and the
STAR model collapse to an AR model with parameters
(φ1 + φ2)/2.

Following [4], rewrite the STAR model (3) as

yt =
1
2
(φ1 +φ2)′Xt +(φ2−φ1)′XtG

∗(zt, γ, r)+ εt, (7)

where G∗(zt, γ, r) = G(zt, γ, r) − 1/2 and approximate
the shape function G∗(zt, γ, r) with a third-order Taylor
approximation around γ = 0, that is

T3(zt, γ, r) ≈ G∗(zt, 0, r) +
3∑

i=1

1
i!

γ

(
∂iG∗(zt, γ, r)

∂γi


γ=0

)

=
1
4
γ(zt − r) +

1
48

γ3(zt − r)3, (8)

where we have used the fact that G∗(zt, γ, r) and its
second derivative with respect to γ evaluated at γ = 0
equals zero. After substituting T3(·) for G(·) in (7) and
rearranging terms this yields the auxiliary regression

yt = β0,0 +β′0Xt +β′1Xtzt +β′2Xtz
2
t +β′3Xtz

3
t +ηt, (9)

where βj = (βj,0, . . . βj,p+q), j = 0, 1, 2, 3, are functions
of the parameters φ1 , φ2 , γ and r . Inspection of the
exact relationships shows that the null hypothesis H ′

0 :
γ = 0 corresponds to H ′′

0 : β1 = β2 = β3 = 0 (and
ηt = εt ), which can be tested by a standard LM-type
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test. Note that if zt is one of the variables included in
Xt , the terms βj,0z

j
t , j = 1, 2, 3, should be dropped from

auxiliary regression to avoid perfect multi-collinearity.
Under the null hypothesis of linearity, the test statis-

tic denoted as LM3 has an asymptotic χ2 distribution
with 3p , alternatively 3(pk+ql) degrees of freedom if ex-
ogenous variable is included and multivariate case (6,6a)
considered.

The LM3 test-statistic based on (9) for multivariate
system (6) can be computed as follows:
1. Estimate the model under the null hypothesis of lin-

earity by regressing yt on Xt . Compute the resid-
uals ε̂t and the variance-covariance matrix Σ0 =
n−1

∑n
t=h+1 ε̂tε̂

′
t , where h = max(p, q, d).

2. Estimate the auxiliary regression of ε̂t on Xt and
Xtz

j
t , j = 1, 2, 3. Denote the residuals as êt , then

Σ0 = n−1
∑n

t=h+1 êtê
′
t .

3. LM3 = n(ln |Σ0| − ln |Σ1|).
Under the null hypothesis of linearity, LM3 has an
asymptotic χ2 distribution with 3(pk + ql + 1) degrees
of freedom. In small samples it is recommended to use
F -version of the LM3 , as it has better size and power
properties.
The LM -type test can also be used to select appropriate

transition variable by minimizing p-value of the LM3

computed for several candidates.

4 IDENTIFICATION, ESTIMATION
AND EVALUATION

An empirical specification procedure for nonlinear model
basically follows these steps: (i) specify an appropriate
linear AR (ARX) model of order p (p, q ), (ii) test the null
hypothesis of linearity against the alternative of regime-
switching nonlinearity which includes selecting appropri-
ate variable that determines the regimes, (iii) estimate the
parameters in the selected model, (iv) evaluate the model
using diagnostic tests, (v) modify the model if necessary
and (vi) use the model for descriptive or forecasting pur-
poses.
When selecting orders of linear model (ideally by AIC,

BIC), an over-specification of dynamics may be preferred
to under-specification as the remaining autocorrelations
could affect the outcome linearity test. Transition variable
zt can be sufficiently chosen from the LM-type linearity
test minimizing the p-value or directly from estimation
of particular models minimizing the sum of squared resid-
uals. To choose the number of regimes, in some applica-
tions, past experience and substantial information may
help, in others, few procedural techniques are available.
One way is to divide the data into subgroups according
to the empirical percentiles of zt and use of linearity test
statistic (e.g. LM3 ) to detect any model change within
each subgroup. Another way is to use an modification of
LM-test described above to test a 2-regime STAR model
against the alternative of an additive 3-regime model (for
details see [4], pp.113).

An important question concerns detecting the appropri-
ate orders p1 , p2 and q1 , q2 in general 2-regime model
(6), where notation (6a) needs to be respecified to distin-
guish the regimes. The approach of setting p1 = p2 = p ,
q1 = q2 = q from linear model can easily be inappropri-
ate and the direct choice of pj , qj from nonlinear model
based upon information criterion need not be satisfac-
tory either. It seems fair to penalize the inclusion of the
additional parameters (pj , qj ) not for the whole sample
size but only for the number of regime-corresponding ob-
servations. Such an alternative AIC and BIC proposed
in [4] and [9] can be generalized as follows to suit (the
s-regimes version of) the model (6):

AIC(p, q) =
s∑

j=1

(
nj ln |Σ̂j |+ 2k(kpj + lqj + 1)

)
,

BIC(p, q) =
s∑

j=1

(
nj ln |Σ̂j |+ (ln nj)(kpj + lqj + 1)

)
,

where Σ̂j = 1
nj

∑n
t=h+1(yt−Φ̂jXj,t)(yt−Φ̂jXj,t)′∆Gj,t

is estimated covariance matrix with nj =
∑n

t=h+1 ∆Gj,t

and ∆Gj,t = Gj−1,t − Gj,t , where Gj,t = Gj(zt, γj , rj)
is the transition function corresponding to j -th regime,
G0,t = 1 and Gm,t = 0.
Estimation of the parameters θ = (Φ1,Φ2, γ, r)′ in

the STAR model (6), where we assign Φ = (Φ1,Φ2)
and Xt(γ, r) = (X ′

1,t[1 − G(zt, γ, r)], X ′
2,tG(zt, γ, r))′ ,

is the problem of minimizing the trace of Σ(Φ, γ, r) =∑n
t=h+1(yt − ΦXt(γ, r))(yt − φXt(γ, r))′ . This can be

performed directly by nonlinear least squares (NLS) rou-
tine θ̂ = argminθ Tr(Σ(Φ, γ, r)), for which several iter-
ative optimization algorithms are available in statistical
software. Alternatively, for fixed values of γ and r the
model is linear in the parameters Φ1,Φ2 , so that these
can be (conditionally upon γ, r ) estimated by Ordinary
Least Squares (OLS) as

Φ̂(γ, r) =

(
n∑

t=h+1

Xt(γ, r)Xt(γ, r)′
)−1(

n∑
t=h+1

Xt(γ, r)y′t

)

and (γ̂, r̂) = argmin(γ,r) Tr(Σ(Φ̂, γ, r)).
As the NLS need not always result in global minimum

immediately, the conditional OLS grid search can help to
define starting values for NLS. However, there is still a
notorious problem with parameter γ that converges too
slowly so that its estimate is rather imprecise (thus may
appears insignificant) unless a large amount of observa-
tions (zt ) is available in the neighbourhood of the thresh-
old r . Especially when γ is large, rescaling it becomes
important (see [8], pp.123). Also, for ensuring reliable es-
timates of Φ , each regime should contain at least about
15% of observations, which limits the choice of r .
After an STR model has been estimated, its properties

have to be evaluated. A first check is to ensure that the
parameter estimates seem reasonable in the light of appli-
cation (e.g. r outside the range). The next step is to ex-
amine residuals for remaining dynamics, that means the
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usual tests for autocorrelations, normality and linearity
tests as described in [1],[3],[4] or [8] in details. Further-
more, out-of-sample forecasting can also be considered as
a way to evaluate estimated regime-switching model, in
particular by comparison with forecasts from a bench-
mark linear model.

5 APPLICATION

Applications in geodesy can be many as the measur-
ing as such is its integral part and the analysis involved
plays important role in the interdisciplinary field (stat-
ics, geodynamics, geology, hydrology and the like). To try
out the above procedures, as input data we use combi-
nation of geometric and physical observables, specifically
the coordinate variation time series from permanent GPS
observations as endogenous (modelled) and meteorologic
observations (atmospheric pressure and temperature) as
exogenous (explaining) variables realization recorded ev-
ery 3 hours during 42 days. For any further motivation,
see [5].
Before applying to empirical data, the performance was

checked on simulations from simple two dimensional and
2-regimes stationary threshold AR model of order 1 with
endogenous threshold variable (delayed by 1). Although
there has appeared an overspecification of linear AR
model order, the linearity test and information criteria
gives correct value, and so does the linearity test in choos-
ing the threshold variable (including delay). Estimation
of logistic function slope parameter γ yields 100, which
in practice corresponds to abrupt transition.
Naturally, real data behaves in much more complicated

way and searching for the appropriate representation may
appear like looking for a needle in a haystack unless we
have good knowledge about the underlying processes and
solid experience with fighting the pitfalls of model specifi-
cation. Number of the variables involved and generality of
the model under consideration determines the number of
all possible combinations to be treated in the systematic
approach.
In our application, firstly the data were inspected in uni-

variate space (transition variable is the function of past
values of the data itself), secondly the exogenous vari-
ables were included into the regression setup (as transi-
tion variable too) and finally we tried to build a vector
model (LSTVARX) including all the variables we had at
disposal.
As long as only lagged values in transition variable were

taken into account, neither reasonable nor uniform re-
sult were achieved. The use of aggregation operators in
transition improved the models performance in a certain
amount, however, the best fit we got by reconsidering the
model (6a) and including present value of the exogenous
variable. The rationale behind is most probably that time
steps of the data is not sufficiently small to contain the
effects that are, e.g directly responsible for transition.

It is also essential to extract in advance, or to include
into the model, any deterministic component that is be-
lieved to be present as could affect the identification cor-
rectness significantly, for example forgotten seasonality
causes mis-specification of delay in zt where multiples of
season period are primarily preferred.
The best improvements comparing to corresponding lin-

ear model was achieved in the third coordinate with tem-
perature as exogenous variable.

6 CONCLUSIONS

The purpose of this paper was to give an overview of
one promising method of modelling nonlinear time series,
at present largely utilized in econometrics. Introducing
the concepts and mediating some empirical suggestions
was emphasized instead of detailed description of par-
ticular experiment. The next investigation could concern
an inspection of aggregation operators and out-of-sample
prediction performance.
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[5] IGONDOVÁ, M. : Využitie permanentných siet́ı GPS na mod-
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