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MULTIVARIATE THRESHOLD
AUTOREGRESSIVE MODELS IN GEODESY

Tomas Bacigal

Recently, the research in time series analysis has changed turning from linear to nonlinear modeling. In this article we are
trying to show how a special case of such a large family of models (as threshold autoregressive ones are) may be applied within
processing of continual GPS observations. Two components (north and east) of point position in a horizontal coordinate
system are taken to obtain bivariate time series, which consequently are tested for nonlinearity and modeled using bivariate
threshold autoregressive model. The whole procedure, of course, can easily be generalized to more than two-variate series.
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Fig. 1. Two vectors of GPS observations, a) north [mm] and b)
east component [mm)] of length n = 730 days

1 INTRODUCTION

Let us consider time series y of n time-points (Fig. 1).
There are several ways to model it. One large family of
models, that are strongly suitable for modelling stochas-
tic processes, are those arising from Box-Jenkins method-
ology such as ARMA etc. [1]. We will be interested in

autoregressive (AR) models, defined as
Y=+ @1y + -+ Ppys_p + et (1)

This is a linear model and it may fit only linear dependen-
cies. But what if we know our time series are nonlinear
(excluding common trend and seasonality) but piecewise
linear, changing their behaviour by activation of some
factor.

We get a threshold autoregressive model (TAR), e.g.

@&1)%‘/71 4+ -+ @;nytfp + Egl) if Zt—d S r,
A ) (2 Y
Syt Oyt ifza>y

where z is a threshold variable, r is a threshold and their
relation delimits constituent regimes of the model. Let-
ter d denotes the time lag (delay). Because there is often
a need to process more than a single vector of measure-
ments at once (sometimes given with some explanatory
time series), we will speak about multivariate TAR model

p
Yy = (I>(()]) 4 Z (}gj)yt—i + 65/])

i=1

if ri—1 < Zt—d S Tj, (3)

cee Ykt), <I>((]]) is a constant term for
regime j, and yi; denotes kP univariate time series

nested in y; .

where y; = (yus

For y we use GPS observations at permanent station
Pecny which are given as point coordinates in horizon-
tal coordinate system (n, e, v — north, east and verti-
cal component). Usually the components have been pro-
cessed separately. However, this means a risk of some in-
formation loss, as they are obviously somehow correlated.
That is why we have focused on multivariate modelling.
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Fig. 2. Determinants of covariance matrices vs. order p

Now, as we have data, the type of model and assume
that the threshold variable z is known, but the delay d,
the order p of AR model and threshold r are not (for
simplicity we restrict the case to 2 regimes).

The goal is threefold:

1. To find proper order p of AR model.

2. To make sure that time series are not linear using

test developed by prof. Tsay.

3. To choose the best delay and threshold values, and

consequently to build up the final shape of multi-
variate model.

2 FINDING ORDER OF AUTOREGRESSION

For now, we handle the data as being linear and follow
two ways:

a) Using a Levinson-Durbin estimation procedure (pmax),
especially its outcome — covariance matrices (Fig. 2).
Order p is chosen according to plot steepness.

b) Employing three information criteria AIC, BIC, HQIC
which are to be minimized by the most appropriate or-
der (Fig. 3).

Order p is chosen as an dominating argument of min-
imal criteria values.

From the plots in Figs. 2 and 3 seems to be

the most adequate.

3 TESTING

Null hypothesis Hg:
Alternative hyp. Hy:

y; is linear.
y; follows a threshold model.

Following [4], we utilize standard least square regres-
sion framework:
yt:Xt(P-f—Et, t:h+1,n (4)
where h = max(p,d), X, = (1 Y1 Yi—2...Yi—p) I8
regressor and ® denotes parameter matrix. If Hqg holds,
then the least square estimates are useful, otherwise the
estimates are biased under H; .

Now, let the ordering of the threshold variable z be re-
arranged increasingly so that z(;) is the smallest element
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Fig. 3. Information criteria vs. order p

of S = {2zht1-d,..-2n—a} and t(i) is the time index of
2(j) - Therefore z(;; = zy; and the autoregression is

Ye(iy+d = Xi(iy+a® + €1y4a, 1=1,...,n=h. (5)

It is important to see that the dynamics of the vy, series
has not changed (i.e., the independent variable of y; is
X; for all ¢). What has changed is the ordering by which
the data enter the regression setup. This means an effec-
tive transformation of threshold model into a changepoint
problem.

To detect model change consider the idea:
If y; is linear, then recursive least squares estimates of
the arranged regression is consistent so that the predictive
residuals approach white noise (consequently, predictive
residuals are uncorrelated with the regressor Xy(;4.q)-
Let

A

. Ye(mr1)+d — Xe(m+1)+dPm
M(m+1)+d = (s ) ) 1/2 (6)
[1 + Xt(m+1)+deXtT( }

m+1)+d

be the standardized predictive residual of regression (5),

where
—1

m
Vi = {Z XtT(i)+dXt(i>+d

i=1
and ®,, is the estimate of arranged regression (5) using

data points associated with the m smallest values of z;_g4.
Next, there comes a regression

Nety+d = Xe@)+dC+wey4a, L =mo+l,...,n=h. (7)

where mg denotes the starting point of recursive least
squares estimation (mg & 3y/n). The problem of interest
is to test the hypothesis Hy: ¥ = 0 versus Hy: ¥ # 0
in (7). Tsay [4] designed a test statistic

C(d) =[n—h—mg—(kp+1)]x[In(det So) —In(det S1)] (8)

where
1 n—h
_ T
So = R A—— Z Ne(1)+aMt (1) +d>
l=mp+1
1 n—h
_ T
Sy = P — Z Wy ()4 qWe(l)+d>
l=mp+1
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Fig. 6. AIC vs. threshold grid index for d = 3

Fig. 5. AIC mapped over grid r x d, r € (—2.6, 3.0) [mm], d € {1,2,...,10} [day]

Table 1. Results of testing for nonlinearity

7 d C{d) ¥ p-value
(df) =005 | a=001
1 29.4 0.0010
2 15.1 0.128
3 23.2 0.010
4 8.4 0.406
2 5 11.9 0.290
(10 & 15.8 18.3 232 0.104
7 253 0.005
8 21.9 0.034
9 13.2 0.213
10 18.9 0.041
1 41.4 0.0014
4 2 21.1 0.273
(1%) 3 30.2 289 248  [0.035
4 14.2 0.281
5 15.6 0.383

Table 2. Results of conditional estimation

[mm] | [day] | & [pnn?]
1.8% 8 60139
- 0.36 1 61365
- 1.0& 1 61579
-0.35 3 61354

and w; is the least square residual of regression (7).
Under the null that y; is linear (and some regularity
conditions), C'(d) is asymptotically a x? random variable
with k(pk 4 1) degrees of freedom. If C'(d) < x7;, we do

not reject the null hypothesis.

Note.

specified.

The test is most powerful, if d is correctly

3 BUILDING UP THE MODEL

First we aim at choosing the best values of delay and
threshold.

a) One way is to apply conditional least squares
estimation.
Assume that p and s (number of regimes) are known,
then parameters of model (for now a bit simplified)

|

where a; = (a1 ... ar) ~N(0, I),
are (®;,3;,r,d). Putting the possible values of r and d
into grid {1,2,...do} X {Tmin; "'min + St€P, . . . "max } model
(9) reduces to two separated multivariate linear regres-
sions from which the least squares estimates of ®; and
3 (i =1,2) are readily available:

Xt§1 + 21/2 a if Zt—d S r,

Xt@Q + 22 a if Zt—q>T,

(i) L)

&ird) = (X7 X)) (D XTwe). (10)
(l) 2\ T T

$i(r,d) = > (g — X ®7) (v — X, @) ’ (11)

ﬂi—k’

where Zgl) denotes summing over observations on regime
7, @; = &;(r,d), n; is the number of data points in
regime 7 and k (k < n;) the dimension of X;. It becomes
clear that conditional least squares estimates of r and d
should minimize the sum of squares of residuals

(#,d) = arg ril’idn S(r,d) (12)
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Table 3. Results of AIC model selection

7 » [mun] | & [day] AIC
1.91 8 2100
5 -0.30 3 2110
.25 1 2120
-0.35 1 2121

Table 4. Model variables and characteristics

|p=2 | d=1day | r=—0.35mm| 5= 2 regimes

Zr = ¥t

Table 5. Parameter and covariance matrices

D Dq
-0.010237 - 0274496 0.152080 0166899
0412028 00171475 0226559 0033515
0.005351 0359622 - 0108756 0492913
-0.017014 - 0.027737 0.185507 0.041789
0.053311 0417337 0.001387 0.236399
L1 [mmd] Ly [mmd]
4736 - 0287 4.399 - 0898
- 0.287 3.1%4 -0.898 4652

where S(r,d) = (ny—k)Te[31 (r, d)]+ (na —k) Te[Es(r, d)] .

b) Besides this, we may apply Akaike information cri-
terion AIC to the same grid r x d.
In fact, it comes along with and supplement the least
squares estimation procedure and, of course, there are
other parameters defining the multivariate threshold
model that could be selected by the criterion

s

AIC(p,s,d,r) = Y _ [njIn(det 3;) + 2k(kp + 1)] (13)

with

where n; is the number of data points in regime j, ZEJ)
denotes summing over observations in regime j and é,g])
are residuals.

Pretty good agreement between these two methods is
easily seen. However, they shall be the subject of further
study. Basically, we prefer values confirmed by the ma-
jority of demonstrated procedures, rather smaller than
higher values,etc. But, of course, the choice of a method
should depend also on practical expectations, see [2] [3].

4 FINAL RESULTS

Respecting all previous results, the final shape of
model has been selected, built up and is shown in Tabs. 4
and 5 and visually compared with original data in Fig. 7.
However, decision is not so easy and some comparisons to
other methods and confrontation with practical purposes
are needed.

Fig. 7. Visualized fit of the built model. Original data are rep-
resented by dotted, model by joined plot of a) north and b) east
component of horizontal coordinate system vs. time. [mm vs. days]

Here we have shown one possible way of processing of
geodetic data that may be extended to three-or-more-
regimes models and models including some exogenous
variables. Our major contribution to the application of
time series analysis in geodesy is treating the data as set
of mutually depending variables effectively describable
by multivariate modelling approach rather than by the
univariate one.

Acknowledgement

The author gratefully acknowledges many helpful sug-
gestions of Professor Magda Komornikova.

REFERENCES

[1] ARLT, J— ARLTOVA, M.: Fiantial Time Series (Finan¢ni
casové fady), Grada publishing, Praha, 2003. (in Czech)

[2] BRUYNINX, C.— KENYERES, A.,— TAKACS, B.: EPN
Data and Product Analysis for Improved Velocity Estimation:
First Results, International Association of Geodesy Symposia,
vol. 125, 2001.

[3] HEFTY, J.: The Permanent Modra-Piesok GPS Station and
its Long-Term and Short-Term Stability, Slovak Journal of Civil
Engineering (2001), 31-37.

[4] TSAY, R.S.: Testing and Modeling Multivariate Threshold
Models, Journal of the American Statistical Association 93
(1998), 1188-1202.

Received 3 June 2004
Tomas Bacigdl (Ing) is a PhD student. His PhD-thesis

supervisor (in applied mathematics) is Professor Magda Ko-
mornikova.



