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Fig. 1. Two vetors of GPS observations, a) north [mm℄ and b)east omponent [mm℄ of length n = 730 days1 INTRODUCTIONLet us onsider time series y of n time-points (Fig. 1).There are several ways to model it. One large family ofmodels, that are strongly suitable for modelling stohas-ti proesses, are those arising from Box-Jenkins method-ology suh as ARMA et. [1℄. We will be interested in

autoregressive (AR) models, de�ned asyt = �0 +�1 yt�1 + � � �+�p yt�p + "t : (1)This is a linear model and it may �t only linear dependen-ies. But what if we know our time series are nonlinear(exluding ommon trend and seasonality) but pieewiselinear, hanging their behaviour by ativation of somefator.We get a threshold autoregressive model (TAR), e.g.yt=( �(1)1 yt�1 + � � �+ �(1)p yt�p + "(1)t if zt�d � r;�(2)1 yt�1 + � � �+ �(2)p yt�p + "(2)t if zt�d > r; (2)where z is a threshold variable, r is a threshold and theirrelation delimits onstituent regimes of the model. Let-ter d denotes the time lag (delay). Beause there is oftena need to proess more than a single vetor of measure-ments at one (sometimes given with some explanatorytime series), we will speak about multivariate TAR modelyt = �(j)0 + pXi=1 �(j)i yt�i + "(j)t if rj�1 < zt�d � rj ; (3)where yt = (y1t : : : ykt) , �(j)0 is a onstant term forregime j , and ykt denotes kth univariate time seriesnested in yt .For y we use GPS observations at permanent stationPeny whih are given as point oordinates in horizon-tal oordinate system (n, e, v | north, east and verti-al omponent). Usually the omponents have been pro-essed separately. However, this means a risk of some in-formation loss, as they are obviously somehow orrelated.That is why we have foused on multivariate modelling.� Department of Mathematis and Desriptive Geometry, Faulty of Civil Engineering, Slovak University of Tehnology, Radlinsk�eho 11,813 68 Bratislava, Slovak Republi, E-mail: baigal�math.skResearh supported by VEGA-grant 1/1033/04.ISSN 1335-3632  2004 FEI STU
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Fig. 2. Determinants of ovariane matries vs. order p Fig. 3. Information riteria vs. order pNow, as we have data, the type of model and assumethat the threshold variable z is known, but the delay d ,the order p of AR model and threshold r are not (forsimpliity we restrit the ase to 2 regimes).The goal is threefold:1. To �nd proper order p of AR model.2. To make sure that time series are not linear usingtest developed by prof. Tsay.3. To hoose the best delay and threshold values, andonsequently to build up the �nal shape of multi-variate model.2 FINDING ORDER OF AUTOREGRESSIONFor now, we handle the data as being linear and followtwo ways:a) Using a Levinson-Durbin estimation proedure (pmax),espeially its outome | ovariane matries (Fig. 2).Order p is hosen aording to plot steepness.b) Employing three information riteria AIC, BIC, HQICwhih are to be minimized by the most appropriate or-der (Fig. 3).Order p is hosen as an dominating argument of min-imal riteria values.From the plots in Figs. 2 and 3 p = 2 seems to bethe most adequate. 3 TESTINGNull hypothesis H0 : yt is linear.Alternative hyp. H1 : yt follows a threshold model.Following [4℄, we utilize standard least square regres-sion framework:yt =Xt�+ "t; t = h+ 1; : : : ; n (4)where h = max(p; d), Xt = (1 yt�1 yt�2 : : :yt�p) isregressor and � denotes parameter matrix. If H0 holds,then the least square estimates are useful, otherwise theestimates are biased under H1 .Now, let the ordering of the threshold variable z be re-arranged inreasingly so that z(i) is the smallest element

of S = fzh+1�d; : : : zn�dg and t(i) is the time index ofz(i) . Therefore z(i) = zt(i) and the autoregression isyt(i)+d =Xt(i)+d�+ "t(i)+d ; i = 1; : : : ; n� h : (5)It is important to see that the dynamis of the yt serieshas not hanged (i.e., the independent variable of yt isXt for all t). What has hanged is the ordering by whihthe data enter the regression setup. This means an e�e-tive transformation of threshold model into a hangepointproblem.To detet model hange onsider the idea:If yt is linear, then reursive least squares estimates ofthe arranged regression is onsistent so that the preditiveresiduals approah white noise (onsequently, preditiveresiduals are unorrelated with the regressor Xt(i)+d ).Let�̂t(m+1)+d = yt(m+1)+d �Xt(m+1)+d�̂mh1 +Xt(m+1)+dVmX>t(m+1)+di1=2 (6)be the standardized preditive residual of regression (5),where Vm = � mXi=1X>t(i)+dXt(i)+d��1and �̂m is the estimate of arranged regression (5) usingdata points assoiated with the m smallest values of zt�d .Next, there omes a regression�̂t(l)+d=Xt(l)+d	+wt(l)+d ; l = m0+1; : : : ; n�h : (7)where m0 denotes the starting point of reursive leastsquares estimation (m0 u 3pn). The problem of interestis to test the hypothesis H0 : 	 = 0 versus H1 : 	 6= 0in (7). Tsay [4℄ designed a test statistiC(d) = [n�h�m0�(kp+1)℄�[ln(detS0)�ln(detS1)℄ (8)where S0 = 1n� h�m0 n�hXl=m0+1 �̂>t(l)+d�̂t(l)+d;S1 = 1n� h�m0 n�hXl=m0+1 ŵ>t(l)+dŵt(l)+d;
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Fig. 4. Density, ontour and 3D plot of S(r; d) ; lower axis represents delay d indays, r 2 h�2:6; 3:0i [mm℄ Fig. 6. AIC vs. threshold grid index for d = 3

Fig. 5. AIC mapped over grid r � d , r 2 h�2:6; 3:0i [mm℄, d 2 f1; 2; : : : ; 10g [day℄Table 1. Results of testing for nonlinearity

Table 2. Results of onditional estimation
and ŵt is the least square residual of regression (7).Under the null that yt is linear (and some regularityonditions), C(d) is asymptotially a �2 random variablewith k(pk + 1) degrees of freedom. If C(d) < �2df , we donot rejet the null hypothesis.N o t e . The test is most powerful, if d is orretlyspei�ed.

3 BUILDING UP THE MODELFirst we aim at hoosing the best values of delay andthreshold.a) One way is to apply onditional least squaresestimation.Assume that p and s (number of regimes) are known,then parameters of model (for now a bit simpli�ed)yt = ( Xt�1 +�1=21 at if zt�d � r ;Xt�2 +�1=22 at if zt�d > r ; (9)where at = (a1t : : : akt) �N(0, I),are (�i;�i; r; d). Putting the possible values of r and dinto grid f1; 2; : : : d0g�frmin; rmin+step; : : : rmaxg model(9) redues to two separated multivariate linear regres-sions from whih the least squares estimates of �i and�i (i = 1; 2) are readily available:�̂i(r; d) = � (i)Xt X>t Xt��1� (i)Xt X>t yt�; (10)�̂i(r; d) = P(i)t �yt �Xt�̂�i �>�yt �Xt�̂�i �ni � k ; (11)where P(i)t denotes summing over observations on regimei , �̂�i = �̂i(r; d), ni is the number of data points inregime i and k (k < ni) the dimension of Xt . It beomeslear that onditional least squares estimates of r and dshould minimize the sum of squares of residuals(r̂; d̂) = argminr;d S(r; d) (12)
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Table 4. Model variables and harateristis
Table 5. Parameter and ovariane matries

where S(r; d) = (n1�k)Tr[�̂1(r; d)℄+(n2�k)Tr[�̂2(r; d)℄ .b) Besides this, we may apply Akaike information ri-terion AIC to the same grid r � d .In fat, it omes along with and supplement the leastsquares estimation proedure and, of ourse, there areother parameters de�ning the multivariate thresholdmodel that ould be seleted by the riterionAIC(p; s; d; r) = sX(j=1)[nj ln(det �̂j) + 2k(kp+ 1)℄ (13)with �̂j = 1nj (j)Xt "̂(j)>t "̂(j)t ;where nj is the number of data points in regime j , P(j)tdenotes summing over observations in regime j and "̂(j)tare residuals.Pretty good agreement between these two methods iseasily seen. However, they shall be the subjet of furtherstudy. Basially, we prefer values on�rmed by the ma-jority of demonstrated proedures, rather smaller thanhigher values,et. But, of ourse, the hoie of a methodshould depend also on pratial expetations, see [2℄ [3℄.4 FINAL RESULTSRespeting all previous results, the �nal shape ofmodel has been seleted, built up and is shown in Tabs. 4and 5 and visually ompared with original data in Fig. 7.However, deision is not so easy and some omparisons toother methods and onfrontation with pratial purposesare needed.

a)
b)

Fig. 7. Visualized �t of the built model. Original data are rep-resented by dotted, model by joined plot of a) north and b) eastomponent of horizontal oordinate system vs. time. [mm vs. days℄Here we have shown one possible way of proessing ofgeodeti data that may be extended to three-or-more-regimes models and models inluding some exogenousvariables. Our major ontribution to the appliation oftime series analysis in geodesy is treating the data as setof mutually depending variables e�etively desribableby multivariate modelling approah rather than by theunivariate one.AknowledgementThe author gratefully aknowledges many helpful sug-gestions of Professor Magda Komorn��kova.Referenes[1℄ ARLT, J.| ARLTOV�A, M. : Fiantial Time Series (Finan�n���asov�e �rady), Grada publishing, Praha, 2003. (in Czeh)[2℄ BRUYNINX, C.| KENYERES, A.,| TAKACS, B. : EPNData and Produt Analysis for Improved Veloity Estimation:First Results, International Assoiation of Geodesy Symposia,vol. 125, 2001.[3℄ HEFTY, J. : The Permanent Modra-Piesok GPS Station andits Long-Term and Short-Term Stability, Slovak Journal of CivilEngineering (2001), 31{37.[4℄ TSAY, R.S. : Testing and Modeling Multivariate ThresholdModels, Journal of the Amerian Statistial Assoiation 93(1998), 1188{1202. Reeived 3 June 2004Tom�a�s Baig�al (Ing) is a PhD student. His PhD-thesissupervisor (in applied mathematis) is Professor Magda Ko-morn��kov�a.


