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SUMMARY  
 
Advancements and automation on the field of measuring instruments provide  us with 
quantum of more and more precise data to be further processed in an appropriate way. In our 
paper we deal with such a set of data arranged in time – time series –   taken from continuous 
GPS observations on permanent station Borowiec which takes part in EUREF network for 
monitoring Earth's crust kinematics. The outcome is a set of point's coordinates in local 
horizontal system (n,e,v) of which we took those two making horizontal plane, i.e. (n,v), and 
compare three methods of statistical processing. First, we model two univariate time series as 
if they are independent, another way is to accept the interrelationship and model it as one 
bivariate time series. The third one incorporates geometrical nature of both variables and 
makes use of a common trend presence. As a criterion of model's suitability we used mean 
square error and mean percentage error of predicted values. 
Whole one subsection dwells on testing for the presence of  stochastic trend and subsequently 
for a cointegration, which is essential when investigating the series for common stochastic 
trend. This is represented by augmented Dickey-Fuller test and Johansen’s test, respectively. 
Having affirmed cointegration, we transform the (n,e) system to obtain a new one, (y,x), 
oriented according to the common deterministic (linear) trend.  This is processed on as 
usually and transformed back, finally. The usual procedure consists of trend and seasonality 
decomposition and applying the autoregressive models to still correlated residuals.  
Mean square and mean percentage errors computed for 5 predicted values per variable speak 
very clearly for the model supporting cointegration. 
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Tomáš BACIGÁL, Slovakia 
Magda KOMORNÍKOVÁ, Slovakia 

 
1. INTRODUCTION 
 
Many technical disciplines involved in civil engineering, such as geology, geodesy, statics of 
structures and others deal with position of particular points in time-space to figure out 
processes that influence our environment (both original and man-made). Supported by 
advancements and automation on the field of measuring instruments, monitoring becomes 
robust and effective, yet demanding more appropriate methods of processing. In this paper 
we'll focus on modelling time-series arisen from observations by NAVSTAR Global 
positioning system (GPS), which is satellite based navigational system developed and 
provided by the American Department of Defence. Observations had been performed daily in 
years 2001-2002 on GPS permanent station Borowiec (BOR1, Poland) which takes part in 
EUREF Permanent Network representing a regional densification of global IGS net in Europe 
which is used, among other purposes, for regular monitoring of recent kinematics of the 
Earth's crust (see Hefty and Husár 2003). The standard outcome, being in the form of three 
coordinates (X,Y,Z) in geocentric coord.system, was transformed into local topocentric 
horizontal coordinate system (n,e,v - north, east, vertical component) - with the origin in the 
mean position of the two year period - to be further processed. 
Because of significantly lower precision and negligible linear trend in vertical direction, we 
only deal here with the two time series n and e each containing 730 data points. Figure 1 
shows two dimensional representation of point variation on Earth's surface and Figure 2 time 
plot for each coordinate. 

Figure 1: Daily record of point's position in a ground plane. 

Figure 2: Time plot of point's position variation. 
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There's easily seen the data following linear trend with a high level of fit. It's a consequence 
of the long-term drift of the Eurasian tectonic plate, anyway, this overt drift is pretty suitable 
for applying several approaches of data processing mostly used in mathematical statistics and 
for showing a plus of the proposed key procedure. 
 
2. DATA PROCESSING 
 
Basically, we may treat our data as (a) two independent time series or (b) use the fact that 
both series just reject the same systematic and random disturbing effects, in other words, they 
are significantly interconnected. 
The first approach has been and still is the most preferred way of time series modelling in 
general, which provides solid results in fitting. However, there is a slightly higher danger 
here of modelling spurious processes and, consequently, coming to misleading 
interpretations. The standard procedure includes modelling polynomial (linear) and periodic 
(seasonal) trends, and then applying Box-Jenkins methodology to cover some residual 
autocorrelations. This is well described in Reference and user’s guide to Time series pack for 
Mathematica (1995)  and we'll reenter it later in more details. 
As for the (b)-group, it's a reasonable tendency of evolution in data processing to look for 
further relations and to develop more effective techniques (gratefully using computers), such 
as turning from single equations to vector representation of mathematical relations, etc. 
Vector regression analysis gives additional information about modelled processes and the 
way they are linked together (in the form of cross-correlation matrices, basically). We chose 
this modern approach as the second alternative to be compared in conclusion. 
Still staying in the last group, we should introduce a theory largely elaborated by 
econometricians and given a name "cointegration". For brief explanation, two non-stationary 
I(1) time series (means integrated of the order 1, having the first differences stationary) are 
cointegrated, if one of their linear combinations is I(0) and hence stationary. There are several 
tests for cointegration, for details and references see Bognár (2005) and Franses(1998). The 
most used ones was employed for proving our series to be cointegrated, the procedures are 
briefly described in section 3.1. 
 
3. COINTEGRATION 
 
In this section, we perform some tests at first to find out what kind of trend is present in the 
data and to prove cointegration relation between our two time series. This is essential for 
applying common trend methodology in the later subsection. 
If speaking about trend, it must be understood there are deterministic and stochastic trend 
being dealt with in time series theory and are often defined in the context of autoregressive 
models. Time series generated by deterministic trend (DT) model display mean or trend–
reverting behaviour, while those generated by stochastic trend (ST) model lack the reverting 
forces. An illustrative example of DT model can be tt tX εδ +=  and ST model 

∑ =− ++=++=
t

i ittt tXXX
101 εδεδ , where tε  is N(0, 2σ ) random process and the model 

of ST is called random walk (i.e., AR parameter by Xt-1 equals unity) with drift δ. The term 

∑ =

t

i i1
ε  is now called the stochastic trend, but we can see it may be accompanied by (any) 
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deterministic trend component. The key difference is that ST series can deviate from this 
trend for lengthy period of time. 
In our geometrical application, we have good reason to believe the trend in n, e has 
deterministic nature, however many times it is not the case. 
 
3.1 Testing 
 
For identifying the stochastic trend, there are two groups of methods 
- tests for unit roots 
- stationarity tests 
An example of the second set of methods may be KPSS test or LM test. However, here we 
focus on widely used augmented Dickey-Fuller (ADF) tests from the first group (for details 
see Franses (1998, p.80). Procedure starts with choosing the order p of AR(p) model 
standardly from AIC, BIC information criteria, and continues by performing auxiliary 
regression 

tptpttt XXXtX εφφρδµ +∆++∆+++=∆ +−−−− 11111 K   (1)  
where Xt represents a variable, t is time, µ, δ, ρ, φ are parameters and ε residuals. ρ is the 
parameter of interest, for which we need to compute test statistic t( ρ̂ ) = ρ̂ /SE( ρ̂ ), SE 
denotes standard error. The relevant null hypothesis is that ρ = 0 against alternative ρ < 0 
(one-sided test), that means if t( ρ̂ ) > tcritical  then we do not reject H0 of unit root and hence, 
series contain stochastic trend. Otherwise there is no ST and we may solely think of eventual 
deterministic trend. Note, that test statistic does not follow standard asymptotic distribution, 
some critical values are provided, for example, in Franses (1998, p.82). The procedure was 
executed three times, firstly omitting both deterministic components (constant µ and trend 
δt), then including only constant and finally both of them. Table 1 shows the results, that 
speak clearly for the primacy of deterministic trend in both time series. 
 

    Table 1: Augmented Dickey-Fuller test 
 

time 
series 

deterministic 
component 

t(ρ) tcrit 
(α =0.05) 

consequence 
 

n 
none 
constant 
constant & trend 

-1.70 
-1.69 
-7.59 

-1.95 
-2.86 
-3.41 

ρ = 0 indicates ST 
ρ = 0 indicates ST 
ρ < 0, DT accepted 

e 
none 
constant 
constant & trend 

-0.95 
-0.96 
-7.19 

-1.95 
-2.86 
-3.41 

ρ = 0 indicates ST 
ρ = 0 indicates ST 
ρ < 0, DT accepted 

 
Having found trending behaviour of both our time series (within the framework of AR(p) 
model), it is natural to investigate whether these I(1) processes are "commonly integrated", 
i.e., there exists a common trend pattern.  
There has been devised several methods of testing for cointegration. The first, Engle-Granger 
two steps method comes from single-equation model of two variables X1,t,X1,t  and works as 
follows. Residuals ut from static regression  

ttt uXX ++= ,110,2 ββ     (2) 
are used in auxiliary regression 
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tptpttt uuuu εγγργ +∆++∆++=∆ −−− ˆˆˆˆ 1110 K ,  (3) 
and the t-test for the significance of ρ is evaluated. When ρ = 0 (that is H0, t( ρ̂ ) > tcrit), ut has 
a unit root and thus (2) does not reflect a stationary cointegration relationship. Otherwise, 
when ρ < 0, that is, when t( ρ̂ ) is significantly negative, X1,t and X2,t are cointegrated. Some 
critical values are given in Franses (1998, p.217), test results in Table 2 shows indisputable 
presence of cointegration. By the way, R2 (index of determination) by the regression of nt on 
et is slightly higher, therefore this regression is to be more preferred here. 
Engle-Granger is useful when we analyze two time series, but it may become less useful for 
increasing number of time series. This occurs, e.g. if we decide to include the third coordinate 
observations. Hence, multivariate methods appear to be more helpful. 
 

      Table 2: Engle-Granger testing for cointegration 
 

regression 
of 

deterministic 
component 

t( ρ̂ ) tcrit 

(α =0.05) 
conclusion 
 

et on nt 
constant 
constant & trend 

-8.69 
-9.56 

-3.37 
-3.80 cointegration 

nt on et 
constant 
constant & trend 

-9.71 
-9.90 

-3.37 
-3.80 cointegration 

 
To better understand cointegration and all associate terms, let's describe two time series by 
following VAR(1) model 
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where δ ≠ η, *
1µ , *

2µ  are intercept terms and *
,1 tε , *

,2 tε  are assumed to be mutually 
independent white noise error processes. Multiplying both sides with the inverse of the left-
hand side matrix and subtracting the one period lagged Xt-1 from both sides gives  

ttt XX εµ +Π+=∆ −1 ,    (5) 
where µ and εt are functions of *µ  and *ε  , respectively. Interesting matrix is Π, because 
when 0 ≤ ρi < 1 for i = 1,2, Π has full rank 2, on the other hand, when ρ1 = ρ2 = 1, the rank of 
Π is equal 0. Now interesting is the cointegration case, when (for example) ρ1 = 1 and 0 ≤ ρ2 
< 1, the matrix Π can be written as 

Tαβ=Π      (6) 
where β = [1 η]T is the cointegration parameters vector. βXt is an equilibrium (or long-run) 
relation between X1,t, X2,t, and the parameter matrix α reflects the speed of adjustment toward 
equilibrium. Equation (5) incorporating (6) is called a vector error correction model. 
 
Multivariate method of testing for cointegration, proposed above, comes by considering again 
the VAR(p) model, more convenient if written in error correction format 

tptptptt XXXX εµ +Π+Γ++∆Γ+=∆ −+−−− 1111 K ,  (7) 
where Π contains the information on possible cointegrating relations between the m (in our 
case m = 2) elements of Xt. If Π is close to rank deficiency, there may be cointegration. The 
Johansen's method is such a statistical method to investigate the rank of Π (which, 
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essentially, amounts to a multivariate extension of the univariate ADF method). The 
procedure goes like this. First, we perform regressions 

tptptpt

tptptt

rXbXbbX
rXaXaaX

111110

011110

+∆++∆+=

+∆++∆+=∆

+−−−−

+−−−

L

K
  (8) 

then construct the matrices S00, S10, S11, S01 of (m × m) from  

1,0,for       , 1
1

T == ∑
=

jirr
n

S
n

t
jtitij .   (9) 

The next step is to solve the eigenvalue problem 001
1

001011 =− − SSSSλ  which gives the 

eigenvalues mλλ ˆ
1̂ ≥≥ K  and the corresponding eigenvectors 1β̂  through mβ̂ . Now, a test for 

the rank of Π can be performed by testing how many eigenvalues λι equal zero. The first test 
statistic (which is a likelihood ratio test) ∑ +=

−−=
m

ri itrace n
1

)ˆ1ln( λλ  tests the null hypothesis 
of at most r cointegration relations against the alternative there are more of them, while the 
second test statistic )ˆ1ln( rmax n λλ −−=  can be used to test the null of r – 1 against r 
cointegration relations (vectors). H0 shall not be rejected if test statistic is smaller than critical 
value. Table of critical values can be found, e.g. in Franses (1998, p.224), our case evaluation 
is summarized in Table 3. 
 

        Table 3: Johansen's tests for cointegration (m = 2) 
 

r test 
statistic 

λcrit(m-r) 
(α = 0.05) 

conclusion 
 

0 
1 

λtrace 

λtrace 

127.36 
1.08 

17.95 
8.18 

H0 rejected 
H1 rejected, r =1 cointegr.vector 

1 
2 

λmax 

λmax 
126.28 
1.08 

14.90 
8.18 

H0 rejected 
H1 rejected, r =1 cointegr.vector 

 
Having found 1 cointegration relation [nt et] 1β̂ , it's not a bad idea to plot it (see Figure 3a) for 
later comparison. Anyway, when there are r cointegration relations among m variables, there 
has to be (m - r) independent common stochastic trends in the system. Gonzalo and Granger 
proposed a method to estimate the stochastic trends, procedure that use the Johansen's but 
differs in eigenvalue problem 010

1
110100 =− − SSSSλ , solution of which has the same 

eigenvalues iλ̂  but different eigenvectors mww ˆ,,ˆ1 K . Because in our case r = 1, only one 
common stochastic trend variable can be constructed (using eigenvector 1ˆ +rw ), that is [nt 

et] 2ŵ , plotted in Figure 3b. 

Figure 3: a) cointegration relation between n, e and b) common stochastic trend. 
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3.2 Common trend 
 
Once having found cointegration, it's naturally leading us to investigate a common trend (see 
Komorníková a Komorník 2002). We look for linear combination 

enx
eny

22

11

δγ
δγ

+=
+=

    (10) 

such that y represents a common trend direction and x is a stationary trend-free variable, 
orthogonal to y. In the light of our geometrical application, it's easy to rewrite a general 
common trend problem into familiar transformation (in 2D cartesian system) 

αα
αα

cossin
sincos
enx

eny
+−=

+=     (11) 

as shown in Figure 4.  

Figure 4: Transformation into common trend direction 

 
The angle α can be determined either from analysis of stochastic trend 

000 tan       , bnbaet =+= α    (12) 
or analysis of deterministic trend starting at linear regression 

tttt tbaetban ,222,111         , εε ++=++=   (13) 
where t denotes time and a, b regression parameters. If we place (13) into (11) and focus on 
series x, which is supposed to be trend-free, then 

            )sincos(
0

)sincos()sincos(
, cos)(sin)(

,1,21212

,222,111

αεαεαααα

αεαε

ttt

ttt

tbbaax
tbatbax

−+−+−=

+++++−=

444 3444 21
 (14) 

(linear trend term in x is eliminated), so  
12tan bb=α .    (15) 

All right, we have got a new couple of time series y, x. At this point it is more than interesting 
to realize that Figures 3 and 5 show the same variables.  

Figure 5: New series y and x fitted by linear and/or cyclical trend. 
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The next step is to model it the same way as two univariate series ((a) approach), at first by 
subtracting linear trend and seasonal component, then by testing it for residual auto-
correlations and applying Box-Jenkins methodology. For comparing purposes we decided to 
include only annual seasonality and exclude any cyclical component. Figure 5 shows both 
series fitted by corresponding deterministic model. Correlogram of residuals confirmed the 
presence of significant correlations. This small residual dependencies may further be 
modelled by ARMA, ARCH, GARCH or some kind of TAR models, however here we 
simply employ the more standard autoregressive model of order p, which is chosen either 
from plot of residuals' variances (watching the relative steepness) or information criteria 
(finding a minimum), where Akaike’s AIC and Schwarz’s BIC are most used. 
So the model of y, x is ready, schematically ym, xm = trend + seasonality + AR(p), however, 
this is not a final point we are supposed to come to. The new, model series must be 
transformed back to (n,e) system. If (11) is written in matrix notation, transformation matrix 
Mn,e→y,x is clearly orthogonal and therefore a backward transformation can easily be 
performed 
















 −
=









m

m

m

m

x
y

e
n

αα
αα

cossin
sincos

   (16) 

(because T
,,

1
,,,, xyenxyenenxy MMM →

−
→→ == ). For visual review Figure 7 joins original data with 

the model. 

Figure 6: Original time series (black) and model (grey). 
 
One of the two cardinal purposes of data processing (that's: to understand and be able to 
forecast) is the next values prediction (Fig. 8).  

Figure 7: Prediction. 
 

It can be utilized well for comparing the methods. We did it. Having computed model values 
for next 5 days and got the corresponding GPS measurements, we decided to quantify 
prediction efficiency by these measures: 

- mean square error  ∑
=

−=
k

t
tt modelreal

k
mse

1

2)(1 ,  (17) 
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- mean percentage error  ∑
=

−
=

k

t t

tt

real
modelreal

k
mpe

1

%1001 ,  (18) 

where k is a number of predicted time points. 
 
4. RESULTS 
 
First to mention are the parameters of deterministic model, i.e trend and seasonality, shown in 
Table 4. These results are approximately the same for all three methods (excepting those 
relating to y, x, of course), and serve for data description. There's pretty seen the quantity of 
Eurasian tectonic plate long-term drift (25.2mm per year) and the effect of seasonal forces in 
particular direction, too. 

 
          Table 4: Deterministic model parameters. 
 

seasonality variable trend 
[mm/year] amplitude [mm] period [days] 

n 
e 

13.2 
21.5 

2.2 
1.6 

y 
x 

25.2 
0 

2.5 
1.1 

365 

 
What is more interesting is certainly in Table 5, which contains results from each method in 
separate line, namely mean square and mean percentage error of predicted values per 
variable. This is accompanied by the order of autoregressive model, properly chosen 
according to information criteria. Mse and mpe speak positively for the method that respects 
the presence of common trend. However, if outliers are removed using criterion of triple 
standard deviation (1% confidence level), better accuracy is attained (Table 6). 
 
            Table 5:  Mean square and mean percentage error of predicted values 
              

method variable order 
p 

mse 
[mm2] 

mpe 
[%] 

n 1 7.40 5.08 1.) 
independent univariate time series e 4 3.70 2.88 

n 2 8.13 5.44 2.) 
multivariate time series e 2 5.06 5.13 

n 5.90 4.04 3.) 
respecting common trend e 

2 (y) 
4 (x) 4.10 2.49 

 
          Table 6: mse and mpe of predicted values after removing outliers 
 

method variable order 
p 

mse 
[mm2] 

mpe 
[%] 

n 1 7.37 4.94 1.) 
independent univariate time series e 4 3.34 1.85 

n 4 7.52 5.01 2.) 
multivariate time series e 4 4.23 4.20 

n 5.59 0.50 3.) 
respecting common trend e 

4 (y) 
4 (x) 3.33 1.97 
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