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Abstrakt. Kopule sú funkcie, ktoré prepájajú jednorozmerné marginálne rozdele-
nia náhodných premenných s ich zdruzenými rozdeleńım, teda modelujú výhradne
ich vzájomný vzťah. V našej práci sa zameriavame na tri najznámejsie rodiny
Archimedovských kopúl a popisujeme spôsob ich odhadu, v ktorom sa využ́ıva
fakt, že Archimedovské kopule sú generované jednorozmernou funkciou. Na
pŕıklade modelovania dvojrozmerných časových radov pozorovańı polohy bodu de-
monštrujeme neparametrický a semi-parametrický pŕıstup k odhadu parametrov
kopule. Zauj́ımavoštou je odhad lineárnej kombinácie dvoch kopúl, ktorá je tiež
kopulou a dokáže výrazne lepšie aproximovat skutočné rozdelenie pravdepodobnosti.

Abstract. Copulas are functions, that link univariate marginals to their joint dis-
tribution function. Thus, applied to multivariate observations, copula captures
entirely the relationships among individual variables. In our paper we focus on
three Archimedean families and outline their estimation, which reflects the fact that
Archimedean copula is built from a single univariate function. Nonparametric and
semi-parametric procedures are considered and an application to modelling bivariate
point position time-series is given. Moreover, we show that linear convex combina-
tions of any two copulas (which is still a copula) can significantly improve their fit
to empirical data.

1 Preface

Geodesy and other technical disciplines have used in its history various mathematical
models to describe observed as well as mediate variables of inspected phenomenons.
Univariate behaviour first, then multivariate capturing mutual dependencies, the focus
was always put to understanding and predicting the values of individual concern. This
article skips the general introduction to copula theory, interested reader is referred to [9],
[3] and others. To briefly line out the concept of a copula function as a tool for relating
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different dimensions of an data output, define the bivariate joint distribution function H
of random variables X and Y , in terms of copula C and marginals F and G

H(X,Y ) = C
(
F (X), G(Y )

)
. (1)

Then copula C(U, V ), where U = F (X) and V = G(X) are random variables uniformly
distributed on [0,1], captures the dependency structure of H(X, Y ). Every copula is
bounded by Fréchet-Hoeffding lower W (u, v) = max(u + v − 1, 0) and upper M(u, v) =
min(u, v) bound, that represent perfect (negative and positive) dependence, while copula
Π(u, v) = uv means perfect independence.

2 Archimedean copulas

In this chapter we focus on an important class of copulas known as Archimedean. They
find a wide range of applications mainly because of (a) the ease with which they can be
constructed, (b) the great variety of families of copulas which belong to this class, and
(c) the many nice properties possessed by the members of this class.

The Archimedean representation allows us to reduce the study of a multivariate
copula to a single univariate function. For simplicity, we consider bivariate copulas.
Assume that φ is a convex, decreasing function with domain (0, 1] and range in [0,∞),
that is φ: (0, 1] → [0,∞), such that φ(1) = 0. Use φ−1 for the function which is inverse
of φ on the range of φ and 0 otherwise. Then the function

Cφ(u, v) = φ−1
(
φ(u) + φ(v)

)
for u, v ∈ (0, 1] (2)

is said to be an Archimedean copula. φ is called a generator of the copula Cφ. Archimedean
copula is symmetric, also associative, i.e. C(C(u, v), w) = C(u,C(v, w)) for all u, v, w ∈
[0, 1], and for any constant k > 0 the kφ is also a generator of Cφ. If the generator is
twice differentiable and the copula is absolutely continuous, the copula density (proba-
bility density function of random variables U and V ) is given by

cφ(u, v) =
∂2Cφ(u, v)

∂u∂v
=
−φ′′(Cφ(u, v))φ′(u)φ′(v)

[φ′(Cφ(u, v))]3
(3)

As a generator uniquely determines an Archimedean copula, different choices of gen-
erator yield many families of copulas, that consequently, besides the form of generator,
differ in the number and the range of dependence parameters. Table 1 summarizes the
most important one-parameter families of Archimedean class. For convenience the cop-
ula notation Cφ is replaced by Cθ in the last column, where θ assumes its limiting values.
Note, that Clayton and Gumbel copulas model only positive dependence, while Frank
covers the whole range.

The dependence parameters are tied with the measures of association, most used
being Kendal’s tau and Spearman’s rho, that capture more than a linear dependence
unlike the well known correlation coefficient. For the Archimedean copulas, Kendall’s
tau τ can be evaluated directly from the generator

τC = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt (4)
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Table 1: Archimedean copulas with their generators.

Family of Generator Prameter Bivariate copula Special cases

copulas φ(t) θ Cφ(u, v)

Independence − ln t uv C=Π

Gumbel (− ln t)θ θ ≥ 1 e−[(− ln u)θ+(− ln v)θ]−1/θ

C1=Π, C∞=M

Clayton t−θ − 1 θ > 0 (u−θ + v−θ − 1)−1/θ
C0=Π, C∞=M

Frank − ln
(

e−θt−1
e−θ−1

)
θ ∈ < − 1

θ ln
(
1 + (e−θu−1)(e−θv−1)

(e−θ−1)

)
C0=Π

C−∞=W, C∞=M

[5], instead of the more general evaluation from copula function through double integral.
Indeed, one of the reasons that Archimedean copulas are easy to work with is that
often expressions with one-place function (the generator) can be employed rather than
expressions with a two-place function (the copula). Table 2 shows particular closed forms
of (4).

Table 2: Measures of association related to Archimedean copulas

Family Independence Gumbel Clayton Frank

Kendall’s τ 0 θ−1
θ

θ
θ+2 1− 4

θ{1−D1(θ)}
Spearman’s ρ 0 no closed form complicated form 1− 12

θ {D1(θ)−D2(θ)}
Note: Dk(x) = k

xk

∫ x

0
tk

et−1dt is so called ”Debye” function.

3 Fitting a copula to bivariate data

For identifying the copula, we focus on the procedure of [6], that is also referred to as
nonparametric estimation of copula parameter. Then we use semi-parametric estimation
method developed in [7] and finally the experiment with bivariate geodetic data is given
to illustrate the proposed theory. The procedures are also discussed in [4], [8], [1]. In
our application, we consider the three most widely used Archimedean families of copula:
Clayton, Gumbel and Frank.

3.1 Nonparametric estimation
As [4] formulate, measures of association summarize information in the copula con-

cerning the dependence, or association, between random variables. Thus, following [6]
we can also use those measures to specify a copula form in empirical applications.

Assume that we have a random sample of bivariate observations (Xi, Yi) for i =
1, . . . , n available. Assume that the joint distribution function H has associated Archimedean
copula Cφ; we wish to identify the form of φ. First to begin with, define an inter-
mediate (unobserved) random variable Zi = H(Xi, Yi) that has distribution function
K(z) = Prob[Zi ≤ z]. This distribution function is related to the generator of an
Archimedean copula through the expression

K(z) = Kφ(z) = z − φ(z)

φ′(z)
. (5)

3



To identify φ, we:

1. Find Kendall’s tau using the usual (nonparametric or distribution-free) estimate

τn =
(

n
2

)−1 ∑n
i=2

∑i−1
j=1 Sign[(Xi −Xj)(Yi − Yj)] .

2. Construct a nonparametric estimate of K, as follows:

a) first, define the pseudo-observations
Zi = (n− 1)−1

∑n
j=1 If [Xj < Xi && Yj < Yi, 1, 0] ,for i = 1, . . . , n

b) second, construct the estimate of K
Kn(z) = n−1

∑n
i=1 If [Zi ≤ z, 1, 0] ,

where function If [condition, 1, 0] gives 1 if condition holds, and 0 otherwise.
”&&” stands for logic operator ”and”.

3. Now construct a parametric estimate Kφ using the relationship (5). Illustratively,
τn −→ θn −→ φn(t) −→ Kφn(z), where subscript n denotes estimate. For various
choices of generator, refer to Table 1, and for linking τ to θ, Table 2 is helpful.

The step 3 is to be repeated for every copula family we wish to compare. The best
choice of generator then corresponds to the parametric estimate Kφn(z), that most closely
resembles the nonparametric estimate Kn(z). Measuring ”closeness” can be done either

by a (L2-norm) distance such as
∫ 1

0
[Kφn(z)−Kn(z)]2dz or graphically by (a) plotting of

z − K(z) versus z or (b) corresponding quantile-quantile (Q-Q) plots (see [6], [4], [2]).
Q-Q plots are used to determine whether two data sets come from populations with a
common distribution. If the points of the plot, which are formed from the quantiles of
the data, are roughly on a line with a slope of 1, then the distributions are the same.

3.2 Semi-parametric estimation
To estimate dependence parameter θ, two strategies can be envisaged. First, the

straightforward one writes down a likelihood function, where the valid parametric models
of marginal distributions are involved. The resulting estimate θ̂ would then be margin-
dependent, just as the estimates of the parameters involved in the marginal distributions
would be indirectly affected by the copula. As the multivariate analysis focus on the de-
pendence structure, it requires the dependence parameter to be margin-free. That’s why
[7] proposed a semi-parametric procedure for the second strategy, when we don’t want
to specify any parametric model to describe the marginal distribution. This procedure
consist of (a) transforming the marginal observations into uniformly distributed vectors
using the it empirical distribution function, and (b) estimating the copula parameters
by maximizing a pseudo log-likelihood function.

So, given a random sample as previously, we look for θ̂ that maximizes the pseudo
log-likelihood

L(θ) =
n∑

i=1

log
(
c

θ
(Fn(x), Gn(y))

)
, (6)

in which Fn, Gn stands for re-scaled empirical marginal distributions functions, i.e.,

Fn(x) =
1

n + 1

n∑
i=1

If [Xi ≤ x, 1, 0] , (7)
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Gn(y) arise analogically. This re-scaling avoids difficulties from potential unboundedness
of log(c

θ
(u, v)) as u or v tend to one. Genest et al. in [7] examined the statistical prop-

erties of the proposed estimator and proved it to be consistent, asymptotically normal
and fully efficient at the independence case.

The copula density c
θ

for each Archimedean copula can be acquired from (3). To
examine a goodness of our estimation, there is the Akaike information criterion available
for comparison: AIC = −2(log-likelihood) + 2k, where k is the number of parameters
in the model (in our case, k = 1). The lowest AIC value determines the best estimator.

3.3 Application to point co-ordinate time-series analysis
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Figure 1: Two univariate time-series linked together to form bivariate random vector of
a point location

Finally we have come to an experiment, that is to illustrate the above procedures.
We employed bivariate time series - daily observations of plane co-ordinates of a point
gathered 2 years, (which gives 728 realizations). Observations were made by means
of NAVSTAR Global positioning system (GPS) on permanent station MOPI that takes
part in European Reference Network. Establishment of such a network serves for various
geodetic and geophysical purposes, e.g. for regular monitoring of recent kinematics of
the Earth’s crust (local, regional and global). The two random variables that make our
bivariate observations thus share common physical phenomenon through the geometry
and time reference. Indeed, as seen on Figure 1, we may expect some dependence.
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Figure 2: Graphical evaluation of nonparametric method:
a) Empirical function Kn fitted by Kφ of corresponding copula function
b) Quantile-quantile plots

The data was processed as follows. Firstly, we examined the two individual univariate
time-series. Interestingly, both of them follow logistic distribution rather than normal.
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The logistic distribution with mean and scale parameter is frequently used in place of
the normal distribution when a distribution with longer tails is desired. Nevertheless,
further on we worked solely with the empirical marginal distribution function (7) to avoid
any influence of a biased marginal model upon estimation of dependence structure. Next
we computed scalar representatives of this structure, that is, measures of dependence

Correlation coef. Spearman’s ρ Kendall’s τ

0.3670 0.3314 0.2343 .
Note that, if the data were nonstationary and required some variance stabilizing such as
logarithmic transformation (which is strictly increasing), the pre-processing would have
biased only the correlation coefficient, and none of the others.

Following nonparametric procedure described in section 3.1, we estimated Kn, and us-
ing Kendall’s τ also the three parametric estimates corresponding to each one-parameter
copula from Table 1. Then, Figure 2 shows their ”closeness” to Kn graphically, while
Table 3 numerically.

Table 3: Nonparametric and semi-parametric estimates of copula dependence parameters

a)
Family: Gumbel Clayton Frank

Nonparametric procedure

θ 1.3060 0.6120 2.2083

d(Kφ,Kn) 0.445 0.542 0.492

Log-Likelihood procedure (semi-parametric)

θ 1.3044 0.5638 2.3153

AIC -106.2 -109.0 -90.7

d(Cθ, Cn) 3.700 4.127 3.806

Nonlinear Fit procedure (semi-parametric)

θ 1.3031 0.5595 2.103

d(Cθ, Cn) 3.700 4.127 3.598

b)
Linear convex combination: Clayton-Gumbel Clayton-Frank Frank-Gumbel

Nonlinear Fit procedure (semi-parametric)

α 0.4507 0.3714 0.5548

d

(
α Cθ1 + (α− 1)Cθ2 , Cn

)
2.609 3.280 3.407

Within a semi-parametric procedure, (a) we firstly applied the procedure outlined
in section 3.2, (b) then as an alternative (and as a backup too) we utilized nonlinear
parametric least-square fit to empirical copula. For linking both (a) and (b) approaches,
we computed L2-norm distance between estimated and empirical copula. As seen from
Table 3, the differences are nonsignificant and in preferring Gumbel family to Frank
and Clayton both methods agree with the nonparametric one. However, there seems to
be a disharmony with AIC criterion of maximum likelihood estimate goodness, which
surprisingly promotes the Clayton. On that account we performed some computations
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under different input conditions and figured out, that log-likelihood function of Clayton
copula density (see Fig. 3) is pretty sensitive to lower tail dependencies, namely to
”perfect” extremes in data (notice the lower tail protruders in the very right-hand plot of
Figure 2). Even just one (the most extremal) outlier chopped off from the lower tail of the
data pushed the AIC of Clayton to between Frank and Gumbel. Dropping the other two
degraded Clayton into ”least appropriate” position among copulas under consideration.
Upper tail extremes have no evident impact to Clayton likelihood estimate.

This kinds of ”revelations” appears to be quite important when choosing the best
copula. Since nonlinear least-square fit demands a much more CPU time and memory,
discussion of the nonparametric and semi-parametric (pseudo log-likelihood) is surely in
order. As mentioned in [1], neither method is generally more convenient, but if there are
outliers or if the marginal distributions are heavy tailed, it seems reasonable to choose
the nonparametric approach. If we work with large data set, the likelihood estimator
may be more precise.

Copula density
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Figure 3: Copula density for three Archimedean families

There are many families of copula, that could be estimated by above procedures
and, if necessary, should be considered as the alternatives to the three above but mainly
to most used Gaussian distribution, which - by its nature - cannot be satisfactory in
numerous applications. In that of ours, the sum of squares of residuals unambiguously
refused the appropriateness of bi-normal distribution.

Finally, as we have estimated the copula parameters by particular method and chose
”the best” of them, we contemplated a possibility to improve the nonlinear fit of para-
metric copulas by simply fitting their linear convex combinations to empirical copula
and compare the L2 distances. It can be shown, that the linear convex combination
αC1 +(α−1)C2 of any two copulas C1 and C2 is also a copula with parameter α ∈ [0, 1].
Such a copula may posses benefits of both parents when fitting empirical copula. And
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indeed, Table 3 supports this assumption. The best combination is given by Clayton
and Gumbel, with a slight dominance of Gumbel.

4 Conclusion

From the very beginning of our paper we have outline an approach of multivariate sta-
tistical analysis, that contemplates entirely the dependence structure, keeping individual
variable properties isolated for optional concern. The approach is based on multivariate
distribution function named copula, and we have provided a quick survey of definitions,
properties, relation to dependence measures and a special class of copulas in order to
interest any researcher in seeking new applications for this promising tool. As the copula
functions are parametric families, an ordinary nonlinear least-squares fit can be applied
for estimation, though we have described here other two methods, nonparametric and
semi-parametric maximum likelihood, that dispose of rationality in computation. Also,
an application to a position dynamics of GPS permanent station MOPI drew our atten-
tion to some pitfalls of a particular copula and method selection, more specifically the
impact of tail dependencies in data. As a highlight of this all, we have improved the
copula model with linear convex combination of different pairs of copulas.
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