Quantum logics as algebras for monads

Gejza Jenča

June 23, 2022

Effect algebras and other quantum logics

- Effect algebras and other quantum logics
- Effect algebras are algebras for the Kalmbach monad on BPos

- Effect algebras and other quantum logics
- Effect algebras are algebras for the Kalmbach monad on BPos
- Other monadic adjunctions:
 - Pseudo-effect algebras over BPos

- Effect algebras and other quantum logics
- Effect algebras are algebras for the Kalmbach monad on BPos
- Other monadic adjunctions:
 - Pseudo-effect algebras over BPos
 - ω -effect algebras over **BPos**

- Effect algebras and other quantum logics
- Effect algebras are algebras for the Kalmbach monad on BPos
- Other monadic adjunctions:
 - Pseudo-effect algebras over BPos
 - ω-effect algebras over BPos
 - Orthomodular posets over BPosinv

- Effect algebras and other quantum logics
- Effect algebras are algebras for the Kalmbach monad on BPos
- Other monadic adjunctions:
 - Pseudo-effect algebras over BPos
 - ω-effect algebras over BPos
 - Orthomodular posets over BPosinv
- Future research

Effect Algebras

Foulis and Bennett 1994; Kôpka and Chovanec 1994; Giuntini and Greuling 1989

An <u>effect algebra</u> is a partial algebra (E; +, 0, 1) satisfying the following conditions.

- (E1) If a + b is defined, then b + a is defined and a + b = b + a.
- (E2) If a + b and (a + b) + c are defined, then b + c and a + (b + c) are defined and (a + b) + c = a + (b + c).
- (E3) For every $a \in E$ there is a unique $a' \in E$ such that a + a' = 1.
- (E4) If a + 1 exists, then a = 0

Basic Relationships

Let *E* be an effect algebra.

- Cancellativity: $a + b = a + c \Rightarrow b = c$.
- Partial difference: If a + b = c then we write a = c b. The operation is well defined and a' = 1 a.
- Poset: Write $b \le c$ iff $\exists a : a + b = c$; (E, \le) is then a bounded poset.

Classes of Effect Algebras

The class of effect algebras includes

- modular ortholattices (Birkhoff and Von Neumann, 1936)
- orthomodular lattices (Husimi, 1937)
- orthomodular posets (Finch, 1970)
- orthoalgebras (Foulis and Randall, 1981)
- MV-algebras (Chang, 1959)
- Any interval [0, u] in the positive cone of an abelian po-group.
- Boolean algebras.

D-posets

A <u>D-poset</u> is a system $(P; \leq, -, 0, 1)$ consisting of a partially ordered set P bounded by 0 and 1 with a partial binary operation – satisfying the following conditions.

- (D1) b a is defined if and only if $a \le b$.
- (D2) If $a \le b$, then $b a \le b$ and b (b a) = a.
- (D3) If $a \le b \le c$, then $c b \le c a$ and (c a) (c b) = b a.

D-posets

A <u>D-poset</u> is a system $(P; \leq, -, 0, 1)$ consisting of a partially ordered set P bounded by 0 and 1 with a partial binary operation – satisfying the following conditions.

- (D1) b a is defined if and only if $a \le b$.
- (D2) If $a \le b$, then $b a \le b$ and b (b a) = a.
- (D3) If $a \le b \le c$, then $c b \le c a$ and (c a) (c b) = b a.

Every D-poset is an effect algebra and vice versa.

$$a+b=1-\big((1-a)-b\big)$$

Orthomodular posets

(Finch, 1970)

An <u>orthomodular poset</u> is a bounded poset with involution $(A, \leq, ', 0, 1)$ satisfying the following conditions, for all $x, y \in A$.

- $x \wedge x' = 0$.
- If $x \le y'$, then $x \lor y$ exists.
- If $x \le y$, then $x \lor (x \lor y')' = y$.

An <u>orthomodular lattice</u> is an orthomodular poset that is a lattice.

(Kalmbach, 1977; Mayet and Navara, 1995)

• Let A be a bounded poset.

(Kalmbach, 1977; Mayet and Navara, 1995)

Let A be a bounded poset.Let K(A) be the set of all finite chains in A
with even number of elements.

(Kalmbach, 1977; Mayet and Navara, 1995)

- Let A be a bounded poset.Let K(A) be the set of all finite chains in A
 with even number of elements.
- Introduce a partial order on the set K(A) by the following rule:

$$[a_1 < a_2 < \dots < a_{2n-1} < a_{2n}] \le [b_1 < b_2 < \dots < b_{2n-1} < b_{2k}]$$

if and only if for every $i \in \{1, ..., n\}$ there exists $j \in \{1, ..., n\}$ such that $b_{2j-1} \le a_{2i-1} < a_{2i} \le b_{2j}$.

(Kalmbach, 1977; Mayet and Navara, 1995)

- Let A be a bounded poset.Let K(A) be the set of all finite chains in A
 with even number of elements.
- Introduce a partial order on the set K(A) by the following rule:

$$[a_1 < a_2 < \dots < a_{2n-1} < a_{2n}] \le [b_1 < b_2 < \dots < b_{2n-1} < b_{2k}]$$

if and only if for every $i \in \{1, ..., n\}$ there exists $j \in \{1, ..., n\}$ such that $b_{2j-1} \le a_{2j-1} < a_{2j} \le b_{2j}$.

• Equip K(A) with the unary operation $C \mapsto C'$ given by the rule

$$C'=C\Delta\{0,1\}$$

where Δ is the symmetric difference.

(Kalmbach, 1977; Mayet and Navara, 1995)

Then $(K(A), \leq, ')$ is an orthomodular poset

(Kalmbach, 1977; Mayet and Navara, 1995)

Then $(K(A), \leq, ')$ is an orthomodular poset and $\eta_A : A \to K(A)$ given by

$$\eta_A(a) = \begin{cases} [0 < a] & \text{if } 0 < a \\ \emptyset & \text{if } a = 0 \end{cases}$$

is an embedding of A into K(A).

(Kalmbach, 1977; Mayet and Navara, 1995)

Then $(K(A), \leq, ')$ is an orthomodular poset and $\eta_A : A \to K(A)$ given by

$$\eta_A(a) = \begin{cases} [0 < a] & \text{if } 0 < a \\ \emptyset & \text{if } a = 0 \end{cases}$$

is an embedding of A into K(A).

Moreover, if A is a lattice, then K(A) is an orthomodular lattice and η_A is a bounded lattice homomorphism. (This is the original Kalmbach's result).

(Kalmbach, 1977; Mayet and Navara, 1995)

Then $(K(A), \leq, ')$ is an orthomodular poset and $\eta_A : A \to K(A)$ given by

$$\eta_A(a) = \begin{cases} [0 < a] & \text{if } 0 < a \\ \emptyset & \text{if } a = 0 \end{cases}$$

is an embedding of A into K(A).

Moreover, if A is a lattice, then K(A) is an orthomodular lattice and η_A is a bounded lattice homomorphism. (This is the original Kalmbach's result).

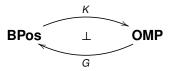
Corollary

Every bounded lattice is a bounded sublattice of an orthomodular lattice.

Where does the Kalmbach construction come from

Theorem

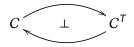
Harding (2004) K is a functor left adjoint to the forgetful functor G from the category of orthomodular posets to the category of bounded posets.



However, K does not restrict to a functor from bounded lattices (with lattice homomorphisms) to orthomodular lattices.

Adjunctions and monads

- Every adjunction induces a monad on the domain category of the left adjoint functor.
- Every monad T on a category C gives rise to a category of algebras C^T and an adjunction

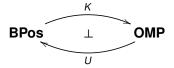


For every adjunction

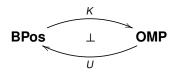
that induces T there is a canonical comparison functor $\mathcal{D} \to \mathcal{C}^T$.

 An adjunction is <u>monadic</u> if the comparison functor is an equivalence of categories.

Is this adjunction monadic?



Is this adjunction monadic?



Answer

No.

The category of algebras for the Kalmbach monad

We say that the monad on **BPos** induced by the adjunction between **BPos** and **OMP** is the Kalmbach monad

Theorem

(Jenča, 2015) The category of algebras for the Kalmbach monad is equivalent to the category of effect algebras **EA**.

Pseudo effect algebras

Definition

Dvurečenskij and Vetterlein (2001) A <u>pseudo effect algebra</u> is an algebra A with a partial binary operation + and two constants 0, 1 such that, for all $a, b, c \in A$.

- If a + (b + c) exists, then (a + b) + c exists and a + (b + c) = (a + b) + c.
- There is exactly one d and exactly one e such that a + d = e + a = 1.
- If a + b exists, there are d, e such that d + a = b + e = a + b.
- If a + 1 exists or 1 + a exists, then a = 0.

Pseudo effect algebras are algebras for a monad on **BPos**

Theorem

(Jenča, 2020) The forgetful functor from the category of pseudo effect algebras to the category of bounded posets is a right adjoint functor of a monadic adjunction.

ω -effect algebras

Definition

We say that an effect algebra E is $\underline{\omega}$ -effect algebra when every increasing sequence $a_1 \le a_2 \le \cdots$ in E has a supremum. A morphism of ω -effect algebras is a morphism of effect algebras that preserves suprema of increasing sequences.

ω -effect algebras are algebras for a monad on **BPos**

Theorem

(van de Wetering, 2021) The forgetful functor from the category ω -effect algebras to the category of bounded posets is a right adjoint functor of a monadic adjunction.

What about orthomodular posets?

- Recall, that there is an adjunction between BPos and OMP.
- However, this adjunction is non-monadic.
- Can we represent orthomodular posets as algebras for a monad?

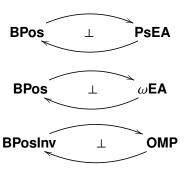
Orthomodular posets are algebras for a monad on **BPosInv**

Theorem

(Jenča, 2022) The forgetful functor from the category **OMP** to the category of bounded posets with involution is a right adjoint functor of a monadic adjunction.

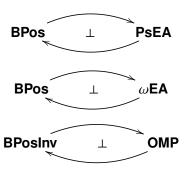
Conclusion, future research

There are monadic adjunctions



Conclusion, future research

There are monadic adjunctions

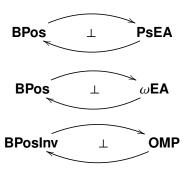


The proof of all these uses

- General adjoint functor theorem
- Beck's monadicity theorem

Conclusion, future research

There are monadic adjunctions



The proof of all these uses

- General adjoint functor theorem
- Beck's monadicity theorem

Problem

Give an explicit description of the left adjoint functor in these adjunctions.

- G. Birkhoff and J. Von Neumann. The logic of quantum mechanics. Annals of mathematics, pages 823–843, 1936.
- C. Chang. Algebraic analysis of many-valued logics. <u>Trans. Amer. Math. Soc.</u>, 88:467–490, 1959.
- A. Dvurečenskij and T. Vetterlein. Pseudoeffect algebras. I. Basic properties. <u>International Journal of Theoretical Physics</u>, 40(3):685–701, 2001. ISSN 1572-9575. doi: 10.1023/A:1004192715509. URL http://dx.doi.org/10.1023/A:1004192715509.
- P. Finch. On orthomodular posets. <u>Journal of the Australian Mathematical Society</u>, 11(1):57–62, 1970.
- D. J. Foulis and C. H. Randall. Empirical logic and tensor products. In <u>Interpretations and foundations of quantum theory</u>. 1981.
- J. Harding. Remarks on concrete orthomodular lattices. <u>International</u> <u>Journal of Theoretical Physics</u>, 43(10):2149–2168, 2004.
- K. Husimi. Studies on the foundation of quantum mechanics. i. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 19:766–789, 1937.
- G. Jenča. Orthomodular posets are algebras over bounded posets with involution. Soft Computing, 26(2):491–498, 2022.