Derived graphs come from an adjunction arXiv:2008.12055

Gejza Jenča
Slovak University of Technology Bratislava

August 31, 2020

Graphs

A graph is a quadruple $G=(V, D, s, t, \lambda)$, where

- D is the set of darts of G
- V is the set of vertices of G
- $s, t: D \rightarrow V$ are the source and target maps, respectively.
- $\lambda: D \rightarrow E$ is a mapping such that $\lambda \circ \lambda=\mathrm{id}_{D}$.
- $s \circ \lambda=t$.

The mapping λ is called the dart-reversing involution of G.

Graphs

All the data in a graph (V, D, s, t, λ) can be expressed graphically by a commutative diagram:

Morphisms of graphs

A morphism of graphs $f: G \rightarrow H$ is a pair of mappings $\left(f^{V}, f^{D}\right)$, where

- $f^{V}: V(G) \rightarrow V(H)$
- $f^{D}: D(G) \rightarrow D(H)$
- for every dart $d \in D(G)$

$$
\begin{aligned}
& s\left(f^{D}(d)\right)=f^{V}(s(d)) \\
& t\left(f^{D}(d)\right)=f^{V}(t(d)) \\
& \lambda\left(f^{D}(d)\right)=f^{D}(\lambda(d))
\end{aligned}
$$

Clearly, graphs equipped with morphisms form a category, denoted by Graph.

Voltage graphs

A voltage graph is a triple (G, Γ, α), where

- G is a graph
- Γ is a group
- $\alpha: D(G) \rightarrow \Gamma$ is a mapping such that

$$
\alpha(\lambda(d))=(\alpha(d))^{-1}
$$

The mapping α is called a Γ-voltage on G.

Derived graph

Definition

[Gro74] Let (G, Γ, α) be a voltage graph. There is a derived Γ-voltage graph of (G, Γ, α), denoted by $\left(G^{\alpha}, \Gamma, \alpha^{\prime}\right)$

- $V\left(G^{\alpha}\right)=V(G) \times \Gamma$
- $D\left(G^{\alpha}\right)=D(G) \times \Gamma$
- $s(d, x)=(s(d), x)$
- $t(d, x)=(t(d), x \cdot \alpha(d))$
- $\lambda(d, x)=(\lambda(d), x \cdot \alpha(d))$
- $\alpha(d, x)=\alpha(d)$

An example; the group is \mathbb{Z}_{3}

- There is always a projection map: $((a, x) \mapsto a): G^{\alpha} \rightarrow G$
- The projection map is a very nice surjection (a covering).

Morphisms of voltage graphs

A morphism of voltage graphs $(G, \Gamma, \alpha) \rightarrow\left(G^{\prime}, \Gamma^{\prime}, \alpha^{\prime}\right)$ is a pair (f, h), where

- $f: G \rightarrow G^{\prime}$ is a morphism of graphs
- $h: \Gamma \rightarrow \Gamma^{\prime}$ is a morphism of groups such that,
- for all $d \in D(G), h(\alpha(d))=\alpha^{\prime}\left(f^{D}(d)\right)$.

- The category of voltage graphs is denoted by Volt.

Group labeled graphs

A group labeled graph is a triple (G, Γ, β), where G is a graph, Γ is a group and $\beta: V(G) \rightarrow \Gamma$ is a mapping, called a Γ-labeling on G.

Morphisms of group labeled graphs

A morphism of group labeled graphs $(G, \Gamma, \beta) \rightarrow\left(G^{\prime}, \Gamma^{\prime}, \beta^{\prime}\right)$ is a pair (f, h), where

- $f: G \rightarrow G^{\prime}$ is a morphism of graphs
- $h: \Gamma \rightarrow \Gamma^{\prime}$ is a morphism of groups
- for all $v \in V(G), h(\beta(v))=\beta^{\prime}\left(f^{V}(v)\right)$.

- The category of group labeled graphs is denoted by Lab.

From group labeled graphs to voltage graphs

For every group labeled graph $L(G, \Gamma, \beta)$, there is a voltage graph $L(G, \Gamma, \beta)=(G, \Gamma, \alpha)$, with the voltage α given by the rule $\alpha(d)=\beta(s(d))^{-1} \beta(t(d))$.

L is a functor Lab \rightarrow Volt.

Main results

- There is an adjunction

between a category Volt of voltage graphs and a category Lab of group labeled graphs.
- For every voltage graph $(G, \Gamma, \alpha), L R(G, \Gamma, \alpha)$ is the derived voltage graph.
- The canonical projection $\operatorname{LR}(G, \Gamma, \alpha) \rightarrow(G, \Gamma, \alpha)$ is the counit of the $L \dashv R$ adjunction.

Where does the adjunction come from?

The ℓ functor

- For every group $\Gamma, \ell(\Gamma)$ is the graph that
- has a single vertex,
- the elements of Γ are the darts of $\ell(\Gamma)$,
- the λ map is the group inverse.
- $\ell: \mathbf{G r p} \rightarrow$ Graph is a functor from the category of group to the category of graphs.

Where does the adjunction come from?

Volt as a comma category

- A voltage graph is a morphism $\alpha: G \rightarrow \ell(\Gamma)$.

Where does the adjunction come from?

Volt as a comma category

- A voltage graph is a morphism $\alpha: G \rightarrow \ell(\Gamma)$.
- A morphism of voltage graphs is then a commutative square in Graph

Where does the adjunction come from?

Volt as a comma category

- A voltage graph is a morphism $\alpha: G \rightarrow \ell(\Gamma)$.
- A morphism of voltage graphs is then a commutative square in Graph

- So Volt is just the comma category Graph $\downarrow \ell$.

Where does the adjunction come from?

The K Kunctor

- For every group $\Gamma, \grave{K}(\Gamma)$ is the graph such that
- the elements of Γ are the vertices of $\grave{K}(\Gamma)$,
- there is exactly one dart between each pair of vertices (including loops).
- $\dot{K}: \mathbf{G r p} \rightarrow$ Graph is a functor from the category of group to the category of graphs.

Where does the adjunction come from?

Lab as a comma category

- A group-labeled graph is a morphism $\beta: G \rightarrow \dot{K}(\Gamma)$.

Where does the adjunction come from?

Lab as a comma category

- A group-labeled graph is a morphism $\beta: G \rightarrow \check{K}(\Gamma)$.
- A morphism of group-labeled graphs is then a commutative square in Graph

- So Lab is just the comma category Graph $\downarrow \dot{K}$.

Where does the adjunction come from?

The left adjoint as a post-composition

- For every group Γ, there is a morphism

$$
\dot{K}(\Gamma) \xrightarrow{q_{\Gamma}} \ell(\Gamma)
$$

given by the rule $q_{\Gamma}^{D}(x, y)=y^{-1} x$ on darts.

Where does the adjunction come from?

The left adjoint as a post-composition

- For every group Γ, there is a morphism

$$
\dot{K}(\Gamma) \xrightarrow{q_{\Gamma}} \ell(\Gamma)
$$

given by the rule $q_{\Gamma}^{D}(x, y)=y^{-1} x$ on darts.

- This is a natural transformation $q: \stackrel{\circ}{K} \rightarrow \ell$, because

commutes, for every morphism of groups $h: \Gamma \rightarrow \Gamma^{\prime}$.

Where does the adjunction come from?

The left adjoint as a post-composition with q_{Γ}

$$
\begin{align*}
& G \xrightarrow{f} G^{\prime} \tag{2}\\
& \beta \downarrow \quad \text { (2.1) } \beta^{\prime} \downarrow \\
& \grave{K}(\Gamma) \xrightarrow[K(h)]{ } \dot{K}\left(\Gamma^{\prime}\right) \\
& \downarrow q_{\Gamma} \quad(2.2) \quad q_{\Gamma^{\prime}} \\
& \ell(\Gamma) \xrightarrow[\ell(h)]{ } \ell\left(\Gamma^{\prime}\right)
\end{align*}
$$

Where does the adjunction come from?

The left adjoint as a post-composition with q_{Γ}

$$
\begin{align*}
& \begin{array}{c}
G \xrightarrow{f} G^{\prime} \\
\left.\beta \downarrow \begin{array}{ll}
(2.1) & \beta^{\prime} \\
\\
K(\Gamma) &
\end{array}\right)
\end{array} \tag{2}\\
& \dot{K}(\Gamma) \xrightarrow[K(h)]{\longrightarrow} \dot{K}\left(\Gamma^{\prime}\right) \\
& \downarrow q_{\Gamma} \quad(2.2) \quad q_{\Gamma^{\prime}} \\
& \ell(\Gamma) \xrightarrow[\ell(h)]{\longrightarrow} \ell\left(\Gamma^{\prime}\right) \\
& L(G, \Gamma, \beta) \simeq\left(G, \Gamma, q_{\Gamma} \circ \beta\right)
\end{align*}
$$

Where does the adjunction come from?

The right adjoint as a pullback
For every voltage graph (G, Γ, α), we have $R(G, \Gamma, \alpha) \simeq\left(G \times_{\ell(\Gamma)} \grave{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha)\right)$

$$
\begin{gather*}
G \times \ell(\Gamma) \tag{3}\\
q_{\Gamma}^{*}(\alpha) \downarrow \\
\downarrow \\
\left.\dot{K}(\Gamma) \xrightarrow{\alpha^{*}\left(q_{\Gamma}\right)} G\right) \xrightarrow[q_{\Gamma}]{ } G \ell(\Gamma)
\end{gather*}
$$

Where does the adjunction come from?

The right adjoint as a pullback
For every voltage graph (G, Γ, α), we have $R(G, \Gamma, \alpha) \simeq\left(G \times_{\ell(\Gamma)} \check{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha)\right)$

$$
\begin{gather*}
G \times_{\ell(\Gamma)} \dot{K}(\Gamma) \xrightarrow{\alpha^{*}\left(q_{\Gamma}\right)} G{ }_{q_{\Gamma}^{*}(\alpha)}^{\downarrow}{ }_{\downarrow} G \alpha \tag{3}\\
\dot{K}(\Gamma) \xrightarrow[q_{\Gamma}]{ } \ell(\Gamma)
\end{gather*}
$$

- Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ}.

Where does the adjunction come from?

The right adjoint as a pullback
For every voltage graph (G, Γ, α), we have $R(G, \Gamma, \alpha) \simeq\left(G \times_{\ell(\Gamma)} \check{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha)\right)$

$$
\begin{gather*}
G \times_{\ell(\Gamma)} \stackrel{O}{K}(\Gamma) \tag{3}\\
q_{\Gamma}^{*}(\alpha) \downarrow \\
\downarrow \\
\dot{K}(\Gamma) \xrightarrow[q_{\Gamma}]{\alpha^{*}\left(q_{\Gamma}\right)} G \ell(\Gamma)
\end{gather*}
$$

- Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ}.
- The top arrow is the canonical projection.

Where does the adjunction come from?

The right adjoint as a pullback

For every voltage graph (G, Γ, α), we have $R(G, \Gamma, \alpha) \simeq\left(G \times_{\ell(\Gamma)} \grave{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha)\right)$

$$
\begin{gather*}
G \times \ell(\Gamma) \stackrel{\circ}{K}(\Gamma) \xrightarrow{\alpha^{*}\left(q_{\Gamma}\right)} G \tag{3}\\
q_{\Gamma}^{*}(\alpha) \downarrow \\
\downarrow \\
\dot{K}(\Gamma) \xrightarrow[q_{\Gamma}]{ } G \ell(\Gamma)
\end{gather*}
$$

- Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ}.
- The top arrow is the canonical projection.
- The canonical projection is a fibration of graphs, because q_{Γ} is a fibration and the square is a pullback, see [BV02].

國 Paolo Boldi and Sebastiano Vigna.
Fibrations of graphs.
Discrete Mathematics, 243(1-3):21-66, 2002.
R Jonathan L Gross.
Voltage graphs.
Discrete mathematics, 9(3):239-246, 1974.

