Derived graphs come from an adjunction arXiv:2008.12055

Gejza Jenča

Slovak University of Technology Bratislava

August 31, 2020

Gejza Jenča

크

(E) (E)

Graphs

A graph is a quadruple $G = (V, D, s, t, \lambda)$, where

- *D* is the set of darts of *G*
- V is the set of vertices of G
- $s, t: D \rightarrow V$ are the source and target maps, respectively.
- $\lambda: D \to E$ is a mapping such that $\lambda \circ \lambda = id_D$.
- $s \circ \lambda = t$.

The mapping λ is called the *dart-reversing involution* of *G*.

Graphs

All the data in a graph (V, D, s, t, λ) can be expressed graphically by a commutative diagram:

Morphisms of graphs

A morphism of graphs $f: G \to H$ is a pair of mappings (f^V, f^D) , where

•
$$f^V \colon V(G) \to V(H)$$

- $f^D \colon D(G) \to D(H)$
- for every dart $d \in D(G)$

$$s(f^{D}(d)) = f^{V}(s(d))$$
$$t(f^{D}(d)) = f^{V}(t(d))$$
$$\lambda(f^{D}(d)) = f^{D}(\lambda(d))$$

Clearly, graphs equipped with morphisms form a category, denoted by **Graph**.

Voltage graphs

A voltage graph is a triple (G, Γ, α) , where

- G is a graph
- Γ is a group
- $\alpha: D(G) \to \Gamma$ is a mapping such that

$$\alpha(\lambda(d)) = (\alpha(d))^{-1}$$

The mapping α is called a Γ -voltage on G.

→

Derived graph

Definition

[Gro74] Let (G, Γ, α) be a voltage graph. There is a *derived* Γ -voltage graph of (G, Γ, α) , denoted by $(G^{\alpha}, \Gamma, \alpha')$

•
$$V(G^{\alpha}) = V(G) \times \Gamma$$

•
$$D(G^{\alpha}) = D(G) \times \Gamma$$

•
$$s(d, x) = (s(d), x)$$

•
$$t(d, x) = (t(d), x.\alpha(d))$$

•
$$\lambda(d, x) = (\lambda(d), x.\alpha(d))$$

•
$$\alpha(d, x) = \alpha(d)$$

イロト イヨト イヨト イヨト 二日

An example; the group is \mathbb{Z}_3

- There is always a projection map: $((a, x) \mapsto a): G^{\alpha} \to G$
- The projection map is a very nice surjection (a *covering*).

Morphisms of voltage graphs

A morphism of voltage graphs $(G, \Gamma, \alpha) \rightarrow (G', \Gamma', \alpha')$ is a pair (f, h), where

- $f: G \to G'$ is a morphism of graphs
- $h: \Gamma \to \Gamma'$ is a morphism of groups such that,
- for all $d \in D(G)$, $h(\alpha(d)) = \alpha'(f^D(d))$.

• The category of voltage graphs is denoted by Volt.

(70	173	- 16	۶n.	ca.
		5	_ ! !	Ca.

イロト イヨト イヨト イヨト 二日

Group labeled graphs

A group labeled graph is a triple (G, Γ, β) , where G is a graph, Γ is a group and $\beta \colon V(G) \to \Gamma$ is a mapping, called a Γ -labeling on G.

イロト イヨト イヨト イヨト 二日

Morphisms of group labeled graphs

A morphism of group labeled graphs $(G, \Gamma, \beta) \rightarrow (G', \Gamma', \beta')$ is a pair (f, h), where

- $f: G \to G'$ is a morphism of graphs
- $h: \Gamma \to \Gamma'$ is a morphism of groups
- for all $v \in V(G)$, $h(\beta(v)) = \beta'(f^V(v))$.

• The category of group labeled graphs is denoted by Lab.

(- 61	173	- 16	en،	¢α.
ပပ၂	24	5		сu

From group labeled graphs to voltage graphs

For every group labeled graph $L(G, \Gamma, \beta)$, there is a voltage graph $L(G, \Gamma, \beta) = (G, \Gamma, \alpha)$, with the voltage α given by the rule $\alpha(d) = \beta(s(d))^{-1}\beta(t(d))$.

L is a functor **Lab** \rightarrow **Volt**.

Main results

• There is an adjunction

between a category **Volt** of voltage graphs and a category **Lab** of group labeled graphs.

- For every voltage graph (G, Γ, α), LR(G, Γ, α) is the derived voltage graph.
- The canonical projection LR(G, Γ, α) → (G, Γ, α) is the counit of the L ⊢ R adjunction.

Where does the adjunction come from? The *l* functor

- For every group Γ , $\ell(\Gamma)$ is the graph that
 - has a single vertex,
 - the elements of Γ are the darts of $\ell(\Gamma)$,
 - the λ map is the group inverse.
- ℓ : **Grp** \rightarrow **Graph** is a functor from the category of group to the category of graphs.

Volt as a comma category

• A voltage graph is a morphism $\alpha \colon G \to \ell(\Gamma)$.

크

ヨト・イヨト

Volt as a comma category

• A voltage graph is a morphism $\alpha \colon G \to \ell(\Gamma)$.

• A morphism of voltage graphs is then a commutative square in **Graph**

(- e	173	≏n.	ca.
ပပ၂	24	~	cu

Volt as a comma category

• A voltage graph is a morphism $\alpha \colon G \to \ell(\Gamma)$.

• A morphism of voltage graphs is then a commutative square in **Graph**

• So Volt is just the comma category $Graph \downarrow \ell$.

Where does the adjunction come from? The \mathring{K} functor

- For every group Γ , $\mathring{K}(\Gamma)$ is the graph such that
 - the elements of Γ are the vertices of $\mathring{K}(\Gamma)$,
 - there is exactly one dart between each pair of vertices (including loops).
- \mathring{K} : **Grp** \rightarrow **Graph** is a functor from the category of group to the category of graphs.

Lab as a comma category

• A group-labeled graph is a morphism $\beta \colon G \to \mathring{K}(\Gamma)$.

크

Image: A image: A

Lab as a comma category

- A group-labeled graph is a morphism $\beta \colon G \to \mathring{K}(\Gamma)$.
- A morphism of group-labeled graphs is then a commutative square in Graph

• So **Lab** is just the *comma category* **Graph** $\downarrow \mathring{K}$.

The left adjoint as a post-composition

• For every group Γ , there is a morphism

$$\mathring{K}(\Gamma) \xrightarrow{q_{\Gamma}} \ell(\Gamma)$$

given by the rule $q_{\Gamma}^{D}(x, y) = y^{-1}x$ on darts.

3

3 N K 3 N

The left adjoint as a post-composition

• For every group Γ , there is a morphism

$$\mathring{K}(\Gamma) \xrightarrow{q_{\Gamma}} \ell(\Gamma)$$

given by the rule $q_{\Gamma}^{D}(x, y) = y^{-1}x$ on darts.

• This is a natural transformation $q: \mathring{K} \to \ell$, because

$$\overset{\mathring{\mathcal{K}}(\Gamma)}{\underset{q_{\Gamma}}{\longrightarrow}} \overset{\mathring{\mathcal{K}}(\Gamma')}{\underset{\ell(\Gamma)}{\longrightarrow}} \overset{\mathring{\mathcal{K}}(\Gamma')}{\underset{\ell(\Gamma)}{\longrightarrow}} \overset{q_{\Gamma'}}{\underset{\ell(\Gamma')}{\longrightarrow}}$$

commutes, for every morphism of groups $h\colon \Gamma \to \Gamma'$.

(- 6	173	6	enc:	а.
UC_	12 U	5		

The left adjoint as a post-composition with q_{Γ}

$$G \xrightarrow{f} G'$$

$$\beta \downarrow (2.1) \beta' \downarrow$$

$$\mathring{K}(\Gamma) \xrightarrow{K(h)} \mathring{K}(\Gamma')$$

$$\downarrow q_{\Gamma} (2.2) \qquad \qquad \downarrow q_{\Gamma'}$$

$$\ell(\Gamma) \xrightarrow{\ell(h)} \ell(\Gamma')$$

Gejza Jenča

크

イロト イヨト イヨト イヨト

(2)

The left adjoint as a post-composition with q_{Γ}

$$G \xrightarrow{f} G'$$

$$\beta \downarrow (2.1) \beta' \downarrow$$

$$\mathring{K}(\Gamma) \xrightarrow{K(h)} \mathring{K}(\Gamma')$$

$$\downarrow q_{\Gamma} (2.2) \qquad \downarrow q_{\Gamma'}$$

$$\ell(\Gamma) \xrightarrow{\ell(h)} \ell(\Gamma')$$

 $L(G, \Gamma, \beta) \simeq (G, \Gamma, q_{\Gamma} \circ \beta)$

~			
1-0	170	lon.	
VIC.	Zd.	1011	

크

ヨト・イヨト

< (T) >

(2)

The right adjoint as a pullback

For every voltage graph (G, Γ, α) , we have $R(G, \Gamma, \alpha) \simeq (G \times_{\ell(\Gamma)} \mathring{K}(\Gamma), \Gamma, q_{\Gamma}^*(\alpha))$

日本 ・日本 - 日

(3)

The right adjoint as a pullback

For every voltage graph (G, Γ, α) , we have $R(G, \Gamma, \alpha) \simeq (G \times_{\ell(\Gamma)} \mathring{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha))$

• Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ} .

글 제 제 글 제

The right adjoint as a pullback

For every voltage graph (G, Γ, α) , we have $R(G, \Gamma, \alpha) \simeq (G \times_{\ell(\Gamma)} \mathring{K}(\Gamma), \Gamma, q_{\Gamma}^{*}(\alpha))$

- Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ} .
- The top arrow is the canonical projection.

글 제 제 글 제

The right adjoint as a pullback

For every voltage graph (G, Γ, α) , we have $R(G, \Gamma, \alpha) \simeq (G \times_{\ell(\Gamma)} \mathring{K}(\Gamma), \Gamma, q_{\Gamma}^*(\alpha))$

- Derived graph of (G, Γ, α) arises as a pullback of α along q_{Γ} .
- The top arrow is the canonical projection.
- The canonical projection is a fibration of graphs, because q_Γ is a fibration and the square is a pullback, see [BV02].

Paolo Boldi and Sebastiano Vigna. Fibrations of graphs. Discrete Mathematics, 243(1-3):21–66, 2002.

Jonathan L Gross.

Voltage graphs.

Discrete mathematics, 9(3):239–246, 1974.

크