
A survey of homogeneous effect algebras

Gejza Jenča

June 23, 2014



Effect algebras
(Foulis and Bennett 1994, Chovanec and Kôpka 1994, Giuntini and Greuling 1989)

An effect algebra is a partial algebra (E ;⊕, 0, 1) with a binary
partial operation ⊕ and two nullary operations 0, 1 satisfying the
following conditions.
(E1) If a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a.
(E2) If a⊕ b and (a⊕ b)⊕ c are defined, then b ⊕ c and

a⊕ (b ⊕ c) are defined and (a⊕ b)⊕ c = a⊕ (b ⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a⊕ a′ = 1.
(E4) If a⊕ 1 exists, then a = 0



Basic Relationships

Let E be an effect algebra.
I Cancellativity: a⊕ b = a⊕ c ⇒ b = c .
I Partial difference: If a⊕ b = c then we write a = c 	 b. 	 is

well defined and a′ = 1	 a.
I Poset: Write b ≤ c iff ∃a : a⊕ b = c ; (E ,≤) is then a

bounded poset.
I Domain of ⊕: a⊕ b is defined iff a ≤ b′ iff b ≤ a′.



Morphisms

Definition
Let E ,F be effect algebras, let φ : E → F . We say that φ is a
morphism of effect algebras iff

I φ(1) = 1 and
I for all a, b ∈ E such that a⊕ b exists in E , φ(a)⊕ φ(b) exists

in F and φ(a⊕ b) = φ(a)⊕ φ(b)



Motivation

I In 1990s, effect algebras were introduced.

I Soon it was discovered that effect algebras generalize both
orthoalgebras (quantum logics) and MV-algebras (fuzzy
logics).

I People started to wonder how to generalize various parts of
the theory of quantum logics to effect algebras, with varying
success.

I The notion of compatibility is very important in quantum
logics, so it was natural to try to extend the theory of
compatible sets from quantum logics.

I However, the general case appears to be very difficult.
I Next idea: try to find some conditions under which compatible

sets behave sanely.
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Compatibility
definition

Definition
I A finite subset A of an effect algebra E is compatible if and

only if there is a finite Boolean algebra B and a morphism of
effect algebras such that A ⊆ φ(B).

I An subset of A an effect algebra is compatible if and only if
every finite subset of A is compatible.



Compatibility
definition

Definition
I A finite subset A of an effect algebra E is compatible if and

only if there is a finite Boolean algebra B and a morphism of
effect algebras such that A ⊆ φ(B).

I An subset of A an effect algebra is compatible if and only if
every finite subset of A is compatible.



Orthogonality, covers

Definition
I A finite sequence of elements b = (b1, . . . , bn) of an effect

algebra is called an orthogonal word if b1 ⊕ · · · ⊕ bn exists.

I An orthogonal word b of elements of an effect algebra is called
a decomposition of unit if b1 ⊕ · · · ⊕ bn = 1.

I An element a is covered by b if and only if a is a sum of a
subsequence of b.

I There is an obvious preorder relation, called refinement on the
set of all decomposition of unit: “replace every bi by an
orthogonal word with sum equal to bi .”
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Compatibility
characterization

Proposition
A finite subset A of an effect algebra E is compatible if and only of
there is a decomposition of unit b, such that b covers every
element of A.



Lattice effect algebras are nice

I In [Rie00], Zdenka Riečanová proved a surprising theorem.

Theorem
Every maximal compatible subset (a block) of a lattice effect
algebra E is an MV-algebra that is both a sublattice and a
subeffect algebra of E .

I That means that lattice effect algebras look like orthomodular
lattices, but their blocks are MV-algebras instead of Boolean
algebras.



The problem

I There are two important types of quantum logics that were
studied long before effect algebras and allowed for a notion of
a block: orthomodular posets and orthoalgebras.

I These are, in general, not lattice ordered.
I Is there a class of effect algebras that

I includes lattice effect algebras,
I includes orthoalgebras and
I allows for a meaningful theory of compatibility and a notion of

block?
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The solution

I In general, it may happen that the elements covered by a
decomposition of unit are not closed with respect to ⊕, 	.

I It may happen even in a lattice effect algebra.
I But we do not need that.
I What we need is the following:

I if we have a finite compatible set, covered by a decomposition
of unit and

I we have some x , y in the compatible set with x ≤ y , then
I we want to refine the decomposition of unit so that the finer

decomposition of unit will cover y 	 x .
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The idea behind the definition



Definition
[Jen01]

I An effect algebra is homogeneous iff u ≤ v1 ⊕ . . .⊕ vn ≤ u′

implies that there exist u1, . . . , un ∈ E such that ui ≤ vi and
u = u1 ⊕ . . .⊕ un.

I It is easy to prove that an effect algebra is homogeneous if and
only if it satisfies the above condition with fixed n = 2.



An example of a “genuine” homogeneous effect algebra

Example
Let µ be the Lebesgue measure on [0, 1]. Let E ⊆ [0, 1][0,1] be such
that, for all f ∈ E ,
(a) f is measurable
(b) µ(supp(f )) ∈ Q
(c) µ({x ∈ [0, 1] : f (x) 6∈ {0, 1}}) = 0,
where supp(f ) denotes the support of f . Then E is a homogeneous
effect algebra which is not lattice ordered, not an orthoalgebra and
does not satisfy the Riesz decomposition property.



Where does the name come from?
The characterization of finite homogeneous effect algebras

[Jen03]: a finite effect algebra E is homogeneous if and only if it
satisfies the following condition.

I For every pair of decompositions of unit b, c,

I such both b and c consist solely of atoms of E ,
I and every atom d occurring at least once in both b and c,
I the number of occurrences of d in b is equal to the number of

occurrence of d in c.

This characterization was recently extended to orthocomplete
atomic case in [Ji14].
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Compatibility and blocks in HEAs

I There is a slightly stronger notion of internal compatibility
needed.

I Maximal internally compatible subsets of homogeneous effect
algebras are subalgebras, so we have a notion of a block.

I In general, the blocks of homogeneous effect algebras are not
MV-algebras.

I However, they satisfy Riesz decomposition property:

u ≤ v1 ⊕ v2 =⇒ u = u1 ⊕ u2, where ui ≤ vi

I If φ is a morphism from a Boolean algebra into a homogeneous
effect algebra, then the range of φ is a subset of a block.
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The finite case

Theorem
[Jen03] For every finite homogeneous effect algebra E there is an
orthoalgebra O(E ) and a surjective morphism of effect algebras
φ : O(E )→ E such that

I for every block B of O(E ), φ(B) is a block of E and
I for every block M of E , φ−1(M) is a block of O(E ).

Moreover, if E is a lattice then O(E ) is a lattice.
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The infinite case
MV-algebras

Theorem
[Jen04a] For every MV-algebra M there is a Boolean algebra B(M)
and a surjective morphism of effect algebras φM : B(M)→ M.

Side note: the maps φM are a components of a natural
transformation between two functors from the category of
MV-algebras to the category of MV-effect algebras.
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The orthocomplete case

I I do not know how to construct O(E ) for a general HEA E .

I In the finite case, the proof is based on an interplay between
atoms and sharp elements.

I After taking appropriate generalizations, it turns out that the
core problem is to describe the interaction between sharp
elements, compatibility and blocks.
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x↓ ≤ y ≤ x we have y ∈ B .
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1Like EA, but without the unit



Triple representation for complete LEAs

Theorem
[Jen04b] Every complete lattice effect algebra is completely
characterized by the following data

I The orthomodular lattice S(E ) of sharp elements.
I The generalized effect algebra1 M(E ) of meager elements.

I The mapping s from S(E ) to the ideal lattice of M(E ):

s(x) = {y ∈ M(E ) : y ≤ x}

1Like EA, but without the unit



Triple representation for complete LEAs

Theorem
[Jen04b] Every complete lattice effect algebra is completely
characterized by the following data

I The orthomodular lattice S(E ) of sharp elements.
I The generalized effect algebra1 M(E ) of meager elements.
I The mapping s from S(E ) to the ideal lattice of M(E ):

s(x) = {y ∈ M(E ) : y ≤ x}

1Like EA, but without the unit



Triple representation for orthocomplete HEAs

I In my paper, I failed to prove a triple representation theorem
for orthocomplete HEAs.

I The proof was recently found by Paseka and Niederle in
[NP12].



Triple representation for orthocomplete HEAs

I In my paper, I failed to prove a triple representation theorem
for orthocomplete HEAs.

I The proof was recently found by Paseka and Niederle in
[NP12].



More nice things proved by Paseka and Niederle

[NP12, NP13a, NP13b]
I The blocks of orthocomplete HEAs are lattice ordered (hence

they are MV-algebras).

I Some of the results can be extended to more general classes,
like

I meager-orthocomplete and sharply dominating (this includes
all orthoalgebras)

I TRT-effect algebras



More nice things proved by Paseka and Niederle

[NP12, NP13a, NP13b]
I The blocks of orthocomplete HEAs are lattice ordered (hence

they are MV-algebras).
I Some of the results can be extended to more general classes,

like
I meager-orthocomplete and sharply dominating (this includes

all orthoalgebras)

I TRT-effect algebras



More nice things proved by Paseka and Niederle

[NP12, NP13a, NP13b]
I The blocks of orthocomplete HEAs are lattice ordered (hence

they are MV-algebras).
I Some of the results can be extended to more general classes,

like
I meager-orthocomplete and sharply dominating (this includes

all orthoalgebras)
I TRT-effect algebras



More nice things proved by Paseka and Niederle

[NP12, NP13a, NP13b]
I The blocks of orthocomplete HEAs are lattice ordered (hence

they are MV-algebras).
I Some of the results can be extended to more general classes,

like
I meager-orthocomplete and sharply dominating (this includes

all orthoalgebras)
I TRT-effect algebras



The complete LEA case

Theorem
[Jen07] For every complete lattice effect algebra E there is an
orthomodular lattice O(E ) and a surjective morphism of effect
algebras φ : O(E )→ E such that

I for every block B of O(E ), φ(B) is a block of E and
I for every block M of E , φ−1(M) is a block of O(E ).



The complete LEA case

Theorem
[Jen07] For every complete lattice effect algebra E there is an
orthomodular lattice O(E ) and a surjective morphism of effect
algebras φ : O(E )→ E such that

I for every block B of O(E ), φ(B) is a block of E and

I for every block M of E , φ−1(M) is a block of O(E ).



The complete LEA case

Theorem
[Jen07] For every complete lattice effect algebra E there is an
orthomodular lattice O(E ) and a surjective morphism of effect
algebras φ : O(E )→ E such that

I for every block B of O(E ), φ(B) is a block of E and
I for every block M of E , φ−1(M) is a block of O(E ).



Open problem

Problem
Is the following statement true?
For every orthocomplete homogeneous effect algebra E there is an
orthoalgebra O(E ) and a surjective morphism of effect algebras
φ : O(E )→ E such that

I for every block B of O(E ), φ(B) is a block of E and
I for every block M of E , φ−1(M) is a block of O(E ).

Moreover, if E is a lattice then O(E ) is a lattice.
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