
Modelling dependence with copulas and

R package acopula ver. 0.9.2

Tomáš Bacigál ∗

Abstract: We introduce acopula package (run under R) that aims to support researchers as well as

practitioners in the field of modelling stochastic dependence. Description of tools with examples are

given, namely several probability related functions, estimation and testing procedures, and two utility

functions.

Keywords: Archimax copula, R, estimation, GOF test, copula quantile.

1 Introduction

Copula is a d-dimensional function C : [0, 1]d → [0, 1], d ≥ 2, that can combine any univariate cumula-

tive distribution functions to form a joint distribution function F of a random vector X = (X1, . . . , Xd),
such that

F (x1, . . . , xd) = C (FX1
(x1), . . . , FXd

(xd)) (1)

with FXi being distribution function associated with i-th random variable. Copula itself is a joint dis-

tribution function with uniform marginals, thus it is d-increasing, has 1 as neutral element and 0 as

annihilator (see [12] for an exhaustive introduction).

Since the turn of century when copulas began to attract attention of masses, several software tools

arose. The first public yet commercial to mention was EVANESCE library [7] included in FinMetrics

extension to S programming environment (predecessor of R), that provided a rich battery of copula

classes, though only bivariate. With emergence of R (free software environment for statistical computing

and graphics, [13]) there came open-source packages like copula [8] (recently incorporating nacopula)

and CDVine [3] with successor VineCopula, that are still under vivid development. For further reading

about recent copula software see, e.g., [1].

Here we introduce an R package that extends current offerings on the one hand by class of Archimax

copulas and on the other by several handy tools to test, modify, manipulate and inference from them and

arbitrary user-defined absolutely continuous copulas, thus making copulas ready for application. That

explains the initial letter of the package name.

In short, Archimax copula is a copula Cφ,A, that can be represented in the form

Cφ,A(u1, . . . , ud) = φ−1

[(

d
∑

i=1

φ(ui)

)

A

(

φ(u1)
∑d

i=1 φ(ui)
, . . . ,

φ(ud)
∑d

i=1 φ(ui)

)]

(2)

where φ : [0, 1] ց [0,∞], φ(1) = 0, is a so-called generator of strict Archimedean copula andA : ∆d−1 →
[0, 1] is a Pickands dependence function defined on unit simplex ∆d−1 = {(w1, . . . , wd) ∈ [0, 1]d|

∑d
i wi =

1} and fulfilling boundary constraint A(ei) = 1 where ei = (0, . . . , 1, . . . , 0) is the unit vector with

1 at position i. In bold we will denote a d-dimensional vector, e.g., w = (w1, . . . , wd). Whenever

φ(t) = − log(t), ∀t ∈ [0, 1], copula Cφ,A belongs also to the class of Extreme-Value (EV) copulas,

and equally, with A ≡ 1 the Archimax class degenerates to Archimedean class. The only additional

constraints put on both functions φ,A to generate a bivariate Archimax copula are that they need to be

convex and 1 ≥ A ≥ max, as proved by Capéraà et al. [4].

∗Slovak University of Technology in Bratislava, tomas.bacigal@stuba.sk

7

Uncertainty Modelling 2013

However, in more dimensions things get rather complicated. McNeil and Nešlehova [10] showed

that φ is a generator of an strict Archimedean copula1 iff its inverse is d-monotone, i.e., (I) ψ = φ−1

has continuous derivatives ψ(k) on [0,∞] and (II) (−1)kψ(k)(t) ≥ 0 for any k = 1, . . . , d − 2, and

also (III) (−1)d−2ψ(d−2) is non-negative, non-increasing and convex on [0,∞]. On the other hand,

as summarized in [6], a d-variate copula Cl is an EV copula iff there exists a finite Borel measure

H on ∆d−1, called spectral measure, such that Cl(u) = exp (−l(u1, . . . , ud)) with tail dependence

function l : [0,∞)d → [0,∞) given by l(x) =
∫

∆d−1

∨d
j=1(wjxj)dH(w) 2 and related to Pickands

dependence function (due to its homogeneity) via l(x) = (
∑d

i=1 xi)A(w), wj = xj/
∑d

i=1 xi, j =
1, . . . , d. The spectral measure H is arbitrary except for the d moment constraints

∫

∆d−1

wjdH(w) = 1,

j ∈ {1, . . . , d}, that stem from the requirement for the margins of copula to be standard uniform, the

constraints imply that H(∆d−1) = d. The function A is still convex and bounded by max(w) and 1,

however these properties do not characterize the class of Pickands dependence functions any more.

The question whether any φ can be combined with any l or A so that Cφ,A is a copula is still an open

problem whenever d > 2. In [2] several positive examples based on partitions and general convex sum

are given.

In the package, Pickands dependence function is implemented to accept d− 1 dimensional argument

since the last element is complementary, formally A′(w1, . . . , wd−1) = A(w1, . . . , wd−1, 1−
∑d−1

i=1 wi).
Structure of the R package acopula is relatively simple, does NOT use object-oriented S4 classes

and is comprehensible from the source code accompanied by explanation notes, so that even inexperi-

enced user can, e.g., track erroneous behaviour if any occurs. Also it does not depend on any additional

packages, though it suggest to use some. In the next sections particular functions are detailed and demon-

strated on examples.

2 Definition lists

Every parametric family of copulas is defined within a list, either by its generator (in case of Archimedean

copulas), Pickand’s dependence function (Extreme-Value copulas) or directly by cumulative distribution

function (CDF) with/or its density. Example of one such definition list follows3 for generator of Gumbel-

Hougaard family of Archimedean copulas

> genGumbel()

$parameters

[1] 4

$pcopula

function (t, pars) exp(-sum((-log(t))ˆpars[1])ˆ(1/pars[1]))

$gen

function (t, pars) (-log(t))ˆpars[1]

$gen.der

function (t, pars) -pars[1]*(-log(t))ˆ(pars[1]-1)/t

$gen.der2

function (t, pars) pars[1]*(-log(t))ˆ(pars[1]-2)*(pars[1]-1-log(t))/tˆ2

$gen.inv

function (t, pars) exp(-tˆ(1/pars[1]))

$gen.inv.der

function (t, pars) -exp(-tˆ(1/pars[1]))*tˆ(1/pars[1]-1)/pars[1]

$kendall$coef

function (t) 1 - 1/t

1In fact, they showed it also for non-strict Archimedean copula when a pseudo-inverse of the generator needs to be used.
2
∨

denotes maximum (join).
3Output printing is simplified here whenever contains irrelevant parts.

8

T. Bacigál: Modelling dependence with copulas and R package acopula

$kendall$icoef

function (t) 1/(1 - t)

$kendall$bounds

[1] 0 1

$spearman$coef

function (t) pPareto(t, c(1.41917, 2.14723, 1, 1))

$spearman$icoef

function (t) qPareto(t, c(1.41917, 2.14723, 1, 1))

$spearman$bounds

[1] 0 1

$lower

[1] 1

$upper

[1] Inf

$id

[1] "Gumbel"

where, although some items may be fully optional (here $pcopula, $kendall and $spearman), they

can contribute to better performance. The user is encouraged to define new parametric families of

Archimedean copula generator (similarly of Pickands dependence function or copula in general) accord-

ing to his/her needs, bounded only by this convention and allowed to add pcopula (stands for probability

distribution function or CDF), dcopula (density) and rcopula (random sample generator) items, how-

ever compatibility with desired dimension has to be kept in mind. Currently implemented generators can

be listed,

> ls("package:acopula",pattern="gen")

[1] "genAMH" "genClayton" "generator" "genFrank" "genGumbel" "genJoe" "genLog"

notice the generic function generator which points to specified definition lists.

Similarly, Pickands dependence functions are defined, namely Gumbel-Hougaard, Tawn, Galambos,

Hüsler-Reiss (last three form only bivariate EV), extremal dep. functions and generalized convex com-

bination of arbitrary valid dep. functions (see [11]). So are definition lists available for generic (i.e., not

necessarily Archimax) copula, e.g. normal, Farlie-Gumbel-Morgenstern, Plackett and Gumbel-Hougaard

parametric family. Their corresponding function names starts with dep and cop, respectively.

Since the class of Archimax copulas contains Archimedean and EV class as its special cases, the

setting depfu = dep1() and generator = genLog() can distinguish them, respectively.

There are not many known dependence function parametric families capable of producing more-

than-2-dimensional EV copula, much less Archimax copula, for that reason the (generalized) convex

combination may come useful, used for instance in partition-based approach introduced by [2]. More

specifically, having m dependence functions Aj , j = 1, . . . ,m, the function Agcc : ∆d−1 → [1
d
, 1] given

as

Agcc(w) =
m
∑

j=1

sjAj

(

αj1w1

sj
, . . . ,

αjdwd

sj

)

, with sj =

(

d
∑

i=1

αjiwi

)

and αji > 0. (3)

Note that
∑m

j=1 αji = 1, and if αji = λj for all i, j, then Agcc =
∑m

j=1 λjAj is standard convex

combination (thus symmetric). Furthermore consider a partition P = {B1, . . . , Bk} of {1, . . . , d}.

Then the function lP(x1, . . . , xd) =
∑k

j=1

(

∨

i∈Bj
xi

)

is a tail dependence function based on spectral

measure H(w) =
∑k

j=1(cardBj) δBj ((cardBj)w1, . . . , (cardBj)wd) where δBj : [0,∞)d → [0,∞)
is the generalized Dirac measure given by δBj (1Bj) = 1 and δBj (x) = 0 whenever x 6= 1Bj . For fixed

9

Uncertainty Modelling 2013

d = 3 there are 5 partitions of {1, 2, 3} with corresponding Pickands dependence functions 4

A∗(w1, w2, w3) = w1 + w2 + w3 when P∗ = {{1}, {2}, {3}}
A∗(w1, w2, w3) = w1 ∨ w2 ∨ w3 P∗ = {{1, 2, 3}}
A1(w1, w2, w3) = w1 + w2 ∨ w3 P1 = {{1}, {2, 3}}
A2(w1, w2, w3) = w2 + w1 ∨ w3 P2 = {{2}, {1, 3}}
A3(w1, w2, w3) = w3 + w1 ∨ w2 P3 = {{3}, {1, 2}}.

Thus we get special parametric class depGCC(ldepPartition3D(),dim=3) with 3×5 parameters leading

to 3-dimensional copula.

Any definition list item can be replaced already during the function call as shown in the next subsec-

tions. Thus one can set starting value of parameter(s) and their range in estimation routine, for instance.

3 Probability functions

First thing one would expect from a copula package is to obtain a value of desired copula in some specific

point. To show variability in typing commands, consider again Gumbel-Hougaard copula with parameter

equal to 3.5 in point (0.2,0.3). Then the following commands give the same result.

> pCopula(data=c(0.2,0.3),generator=genGumbel(),gpars=3.5)

> pCopula(data=c(0.2,0.3),generator=genGumbel(parameters=3.5))

> pCopula(data=c(0.2,0.3),generator=generator("Gumbel"),gpars=3.5)

> pCopula(data=c(0.2,0.3),generator=generator("Gumbel",parameters=3.5))

> pCopula(data=c(0.2,0.3),copula=copGumbel(),pars=3.5)

> pCopula(data=c(0.2,0.3),copula=copGumbel(parameters=3.5))

> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(),dpars=3.5)

> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(parameters=3.5))

[1] 0.1723903

If we need probabilities that a random vector would not exceed several points, those can be supplied to

data in rows of matrix or data frame.

Conversely, given an incomplete point and a probability, the corresponding quantile emerge.

> pCopula(c(0.1723903,0.3),gen=genGumbel(),gpar=3.5,quantile=1)

> pCopula(c(NA,0.3),gen=genGumbel(),gpar=3.5,quan=1,prob=0.1723903)

> qCopula(c(0.3),quan=1,prob=0.1723903,gen=genGumbel(),gpar=3.5)

[1] 0.1999985

Conditional probability P (X < x|Y = y) of a random vector (X,Y) has similar syntax.

> cCopula(c(0.2,0.3),conditional.on=2,gen=genGumbel(),gpar=3.5)

[1] 0.2230437

> qCopula(c(0.3),quan=1,prob=0.2230437,cond=c(2),gen=genGumbel(),gpar=3.5)

[1] 0.200005

Sometimes the density of a copula is of interest, perhaps for visualisation purposes, such as in the

following example

x <- seq(0,1,length.out=30)

y <- seq(0,1,length.out=30)

z <- dCopula(expand.grid(x,y),generator=genGumbel(),gpars=3.5)

dim(z) <- c(30,30)

persp(x,y,z)

4For computational convenience, the maximum operator ∨ is approximated to have smooth edges, so that w1 ∨ . . . wd =

∨d
i=1

wi ≈

(

∑d
i=1

w
λ
i

)

1/λ

, where power λ defaults to 8 and can be changed by passing the argument power.

10

T. Bacigál: Modelling dependence with copulas and R package acopula

x

y

z

where instead of persp from package graphics a more impressive output is given by package rgl with

function persp3D.

If definition lists do not contain explicit formulas for (constructing) density, the partial derivatives

are approximated linearly. This is mostly the case with 3- and more-dimensional copulas.

Sampling from the copula is, unsurprisingly, also provided.

sample <- rCopula(n=100,dim=2, generator=genGumbel(), gpars=3.5)

plot(sample)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

Sometimes no assumption about parametric family of copula is made, instead an empirical distribu-

tion is of more interest. Then for a given data, say, the previous random sample, one may ask for value

of empirical copula in specific point(s) and more easily in the points of its discontinuity.

> pCopulaEmpirical(c(0.2,0.3),base=sample)

[1] 0.14

> empcop <- pCopulaEmpirical(sample)

> scatterplot3d::scatterplot3d(cbind(sample,empcop),type="h",angle=70)

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

u

v

e
m

p
c
o

p

4 Estimation

Currently, there are two universal methods for parameters estimation implemented in the package (named

technique): ”ML”, maximum (pseudo)likelihood method employing copula density, and ”LS”, least

squares method minimizing distance to empirical copula. In short, given a random sample Uj , j =
1, . . . , n, from a continuous distribution with uniform (1-dimensional) margins, joint distribution func-

tion Cθ and density cθ, define the maximum likelihood estimator as

θ̂ = argmax
θ∈Q

n
∑

j=1

log[cθ(Uj1, . . . , Ujd)] (4)

11

Uncertainty Modelling 2013

and least-squares estimator as

θ̂ = argmin
θ∈Q

n
∑

j=1

(Cn(Uj1, . . . , Ujd)− Cθ(Uj1, . . . , Ujd))
2 , (5)

where Q is parameter space of copula Cθ parameters set, Cn(u) =
1
n

∑n
j=1 1(Uj1 ≤ u1, . . . , Ujd ≤ ud),

u ∈ [0, 1]d, is the so-called empirical copula and 1(·) is the indicator function which yields 1 whenever

· is true and 0 otherwise. Both ’techniques’ supplies function to perform optimization procedure over,

thus finding those parameters that correspond to an optimum. The ’procedures’ are three: ”optim”,

”nlminb” and ”grid”. First two are system native, based on well-documented smart optimization meth-

ods, the third one uses brute force to get approximate global maximum/minimum and can be useful with

multi-parameter copulas, at least to provide starting values for the other two ’procedures’.

For one-parameter bivariate copula families we also provide estimation method based on relation

between copula parameter and rank-based measures of dependence (technique="icorr"), currently

Kendall’s tau (corrtype="kendall"),

τ = 4

∫∫

[0,1]2
Cθ(u, v)dCθ(u, v)− 1, (6)

and Spearman’s rho (corrtype="spearman"),

ρ = 12

∫∫

[0,1]2
Cθ(u, v)duv − 3. (7)

Some of them have no closed form and need to be approximated, mostly by cumulative distribution

function of the Pareto type IV distribution defined by

FPareto(x) =











1−
(

1 +
(

x−p4
p1

)
1

p2

)−p3

x ≥ µ

0 otherwise

(8)

with parameters pi > 0, i = 1, 2, 3, and p4 ∈ R. Since FPareto is easily invertible, the estimation is fast

and still acceptably precise keeping the approximation error in between -0.01 and +0.01 for dependence

strength up to ρ = 0.96. For instance, relation between τ and Frank copula parameter (for positive

dependence) is approximated by FPareto with parameters p ≈ (7.5, 1.3, 0.9, 0) and error τ(θ)− F̂Pareto(θ)
plotted bellow.

0 5 10 15

−
0

.0
0

2
0

.0
0

2
0

.0
0

6

theta

ta
u

 −
 F

(t
h

e
ta

)

The next few examples sketch various options one has got for copula fitting.

> eCopula(sample,gen=genClayton(),dep=depGumbel(),

+ technique="ML",procedure="optim",method="L-BFGS-B")

generator parameters: 0.09357958

depfun parameters: 3.52958

ML function value: 82.63223

convergence code: 0

> eCopula(sample,gen=genClayton(),dep=depGumbel(),tech="ML",proc="nlminb")

12

T. Bacigál: Modelling dependence with copulas and R package acopula

generator parameters: 0.09183014

depfun parameters: 3.533706

ML function value: 82.63228

convergence code: 0

> eCopula(sample,gen=genClayton(),dep=depGumbel(), tech="ML",proc="grid",

+ glimits=list(c(0),c(5)),dlimits=list(c(1),c(10)),pgrid=10)

generator parameters: 0.5555556

depfun parameters: 3

ML function value: 80.63322

convergence code:

> eCopula(sample,gen=genGumbel(),technique="icorr",corrtype="kendall")

generator parameters: 3.442281

depfun parameters:

icorr function value:

convergence code:

In addition, ”optim” procedure has several methods to choose from: ”L-BFGS-B”, ”Nelder-Mead”,

”BFGS”, ”CG”, ”SANN”, ”Brent”.

So far, no precision for copula parameters is provided.

5 Testing

Having set of observations, it is often of great interest to test whether the estimated copula suffices to

describe dependence structure in the data. For this purpose many goodness-of-fit tests were proposed,

yet the principle remains to use different criterion than that employed with estimation of the copula

parameters. Here we implement one of the ’blanket’ tests described in [5] that is based on Kendall’s

transform of joint distribution function, Kθ(t) = P (Cθ(u) ≤ t), which reduces multivariate problem

to one dimension. Its empirical version can be computed by Kn(t) = 1
n

∑n
j=1 1(Cn(Uj) ≤ t), t ∈

[0, 1]. To test whether theoretical K matches the empirical one, the Cramér von-Mises test statistic

Sn =
∫ 1
0

√
n(Kθ(t)−Kn(t))

2dt is available. As the asymptotic distributions of Sn depend on unknown

copula Cθ and on θ in particular, approximate p-values must be found via simulation. The specific

parametric bootstrap procedure is minutely described in [5].

In the example below normal copula is tested on the Gumbel copula sample data.

> gCopula(sample,cop=copNormal(),

+ etechnique="ML",eprocedure="optim",ncores=1,N=100)

Loading required package: mvtnorm

|===| 100%

Blanket GOF test based on Kendall’s transform

statistic q95 p.value

0.1195500 0.1658125 0.1800000

data: sample

copula: normal

estimates:

pars fvalue

0.9155766 80.3420886

Although the p-value does not lead to rejection of the copula adequacy, its low value and small data

length arouse suspicion. As for the other arguments, N sets number of bootstrap cycles and their parallel

execution can be enabled by setting number of processor cores in ncores (not available under Windows

OS). Package mvtnorm has been loaded to assist with simulation from normal copula, and when missing,

internal but slower routine would be run instead.

The traditional parametric bootstrap-based procedure to approximate p-value, when theoretical prob-

ability distribution of the test statistic is unknown, is reliable yet computationally very exhaustive, there-

fore recently a method based on multiplier central limit theorem and proposed by [9] becomes popular

with large-sample testing. Its implementation to testing goodness of parametric copula fit is scheduled

13

Uncertainty Modelling 2013

for future package updates. Nevertheless, the multiplier method takes part here in another test comparing

two empirical copulas, i.e. dependence structure of two data sets, see [14] and package TwoCop. In the

following example, random sample of the above Gumbel-Hougaard copula is tested for sharing common

dependence structure with sample simulated from Clayton copula, parameter of which corresponds to

the same Kendall’s rank correlation (τ = 0.714).

> sampleCl <- rCopula(n=100,dim=2,generator=genClayton(),gpars=5)

> gCopula(list(sample,sampleCl),ncores=1,N=100)

|==| 100%

Test of equality between 2 empirical copulas

statistic q95 p.value

0.09791672 0.52893392 0.66000000

data: sample sampleCl

copula:

estimates:

NULL

Obviously, the test fails to distinguish copulas with differing tail dependence, at least having small and

moderate number of observations, however it is sensitive enough to a difference in rank correlation.

The last procedure to mention checks the properties of a d-dimensional copula (d ≥ 2), that is, being

d-increasing as well as having 1 as neutral element and 0 as annihilator. The purpose is to assist approval

of new copula constructs when theoretical proof is too complicated. The procedure examines every

combination of discrete sets of copula parameters, in the very same fashion as within ”grid” procedure

of eCopula, by computing a) first differences recursively over all dimensions of an even grid of data

points,i.e., C-volumes of subcopulas, b) values on the margin where one argument equals zero and c)

where all arguments but one equals unity. Then whenever the result is a) negative, b) non-zero or c) other

than the one particular argument, respectively, a record is made and first 5 are printed as shown below.

In the example we examine validity of an assumed Archimedean copula generated by Gumbel-Hougaard

generator family, only with a parameter being out of bounds.

> isCopula(generator=genGumbel(lower=0),dim=3,glimits=list(0.5,2),

+ dagrid=10,pgrid=4,tolerance=1e-15)

Does the object appears to be a copula(?): FALSE

Showing 2 of 2 issues:

dim property value gpar

1 2 monot -0.1534827 0.5

2 3 monot -0.1402209 0.5

Three parameter values (0.5, 1, 1.5, 2) were used, each supposed copula were evaluated in 103 grid

nodes, and every violation of copula properties (the most extremal value per dimension and exceeding

tolerance) were reported. Thus it is seen, that parameter value 0.5 does not result in copula because 3-

monotonicity is not fulfilled (negative difference already in the second-dimension run). Note that without

redefinition of lower bound the parameter value 0.5 would be excluded from the set of Gumbel-Hougaard

copula parameters.

6 Utilities

For the acopula package to work many utility functions were created during development that were

neither available in the basic R libraries nor they were found in contributed package under CRAN. Most

of them are hidden within the procedures described above, however the two following are accessible on

demand. The first to mention is a linear approximation of partial derivative of any-dimensional function

and of any order with specification of increment (theoretically fading to zero) and area (to allow semi-

differentiability)

14

T. Bacigál: Modelling dependence with copulas and R package acopula

> fun <- function(x,y,z) xˆ2*y*exp(z)

> nderive(fun,point=c(0.2,1.3,0),order=c(2,0,1),difference=1e-04,area=0)

[1] 2.600004

whereas the second utility function numerically approximates integration (by trapezoidal rule) such as

demonstrated on example of joint standard normal density with zero correlation parameter

> nintegrate(function(x,y) mvtnorm::dmvnorm(c(x,y)),

+ lower=c(-5.,-5.),upper=c(0.5,1),subdivisions=30)

[1] 0.5807843

> pnorm(0.5)*pnorm(1)

[1] 0.5817583

fine-tuned by number of subdivisions. However, it must be admitted that numerical integration performs

better with package cubature.

7 Conclusion

All the introduced and exemplified procedures are (a) extendible to arbitrary dimension, which is one of

the significant contributions of the package. If explicit formulas are unavailable (through definition lists)

then numerical approximation does the job. Another significant benefit is brought by (b) conditional

probability and quantile function of the copula, as well as estimation methods based on least squares and

grid complementing the usual maximum-likelihood method. Together with implementing (c) generaliza-

tion of Archimedean and Extreme-Value by Archimax class with a (d) construction method of Pickands

dependence function, (e) fast non-parametric estimation of one-parameter copulas , (f) numerical check

of copula properties useful in new parametric families development, and (g) parallelized goodness-of-fit

test based on Kendall’s transform, these all (and under one roof) make the package competitive among

both proprietary and open-source software tools for copula based analysis, to the date.

Yet because the routines are written solely in R language and rely on no non-standard packages

(optionally), some tasks may take longer to perform. Nevertheless the source code is easy to access,

understand and modify if necessary.

Future improvement is seen mainly in providing additional methods for parameters estimation (for

multi-parameter copulas based on various dependence measures) and GoF tests, as well as connecting

with other copula packages to simplify practical analysis.

Author appreciates any comments, bug reports or suggestions.

Acknowledgement

The work on this contribution was supported by grants APVV-0074-10 and APVV-0496-10.

References

[1] Bacigál, T.: Recent tools for modelling dependence with copulas and R. Forum Statisticum Slo-

vacum 8(1), 62–67 (2012)

[2] Bacigál, T., Mesiar, R.: 3-dimensional Archimax copulas and their fitting to real data. In: COMP-

STAT 2012, 20th International conference on computational statistics. Limassol,Cyprus,27.-

31.8.2012. The International Statistical Institute, 81–88 (2012).

[3] Brechmann, E.C., Schepsmeier, U.: Modeling Dependence with C- and D-Vine Copulas: The R

Package CDVine. Journal of Statistical Software 52(3), 1–27 (2013).

[4] Capéraà, P., Fougères, A.-L., Genest, C.: Bivariate distributions with given extreme value attractor.

J.Multivariate Anal. 72(1) 30–49 (2000).

15

Uncertainty Modelling 2013

[5] Genest, C., Rémillard, B. and Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a

power study. Insurance: Mathematics and Economics 44, 199–213 (2009).

[6] Gudendorf, G. and Segers, J.: Extreme-value copulas. In Copula Theory and Its Applications.

Springer Berlin Heidelberg, 127–145 (2010).

[7] Insightful Corp.: EVANESCE Implementation in S-PLUS FinMetrics Module (2002). faculty.

washington.edu/ezivot/book/QuanCopula.pdf Cited 15 Feb 2013.

[8] Kojadinovic, I. and Yan, J.: Modeling Multivariate Distributions with Continuous Margins Using

the copula R Package. Journal of Statistical Software 34(9), 1–20 (2010).

[9] Kojadinovic, I., Yan, J., Holmes, M.: Fast large-sample goodness-of-fit for copulas. Statistica

Sinica 21(2), 841–871 (2011).

[10] McNeil, A.J., Nešlehová, J.: Multivariate Archimedean copulas, d-monotone functions and l1-

norm symmetric distributions, Annals of Statistics 37(5B), 3059–3097 (2009).

[11] Mesiar, R., Jágr, V.: d-Dimensional dependence functions and Archimax copulas. Fuzzy Sets and

Systems 228, 78–87 (2012).

[12] Nelsen, R. B.: An introduction to copulas. Springer (2006).

[13] R Development Core Team. R: A language and environment for statistical computing. R Founda-

tion for Statistical Computing, Vienna, Austria (2012). http://www.R-project.org/Cited

15 Feb 2013.

[14] Rémillard, B., Scaillet, O.: Testing for equality between two copulas. Journal of Multivariate

Analysis 100(3), 377386 (2009).

16

