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Abstract

We illustrate a construction method for obtaining additive generators of Archimedean copulas

proposed by McNeil and Nešlehová [7], the so-called Williamson n-transform. Then we use weighted

sum of Dirac functions to approximate generators of two-dimensional Archimedean copulas by linear

splines to circumvent the problem with the non-existence of explicit inverse.
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1 Introduction

Copulas form an important class of multivariate dependence models. They have a lot of practical appli-

cations, including multivariate survival modelling. Recall that copulas aggregate 1-dimensional marginal

distribution functions into n-dimensional (n ≥ 2) joint distribution functions. For more details we rec-

ommend [12].

We first define a copula. A function C : [0, 1]n → [0, 1] is called a (n-dimensional) copula whenever

it satisfies the boundary conditions (C1) and it is an n-increasing function, see (C2), where:

(C1) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn}, i.e., 0 is an annihilator of C, and C(x1, . . . , xn) =
xi whenever xj = 1 for each j 6= i (i.e., 1 is a neutral element of C),

(C2) For any x,y ∈ [0, 1]n, x ≤ y, it holds

VC([x,y]) =
∑

ε∈{−1,1}n

(

C(zε)

n
∏

i=1

εi

)

≥ 0,

where zε = (zε11 , . . . , zεnn ), z1i = yi, z
−1
i = xi.

Note that VC([x,y]) is called the C-volume of the n-dimensional interval (n-box) [x,y].
Due to Sklar’s theorem [15] for a random vector Z = (X1, . . . , Xn), a function FZ : Rn → [0, 1] is

a joint distribution function of Z if and only if there is a copula C : [0, 1]n → [0, 1] so that

FZ(x1, . . . , xn) = C (FX1
(x1), . . . , FXn

(xn)) , (1)

where FXi
: R → [0, 1] is a distribution function related to the random variable Xi, i = 1, . . . , n. The

copula C in (1) is unique whenever random variables X1, . . . , Xn are continuous. For some other details

on copulas see [4] and [12].

Hereafter we will consider a class of copulas named Archimedean copulas. In the simplest case,

Archimedean 2-copulas are characterized by the associativity of C and the diagonal inequality C(x, x) <
x for all x ∈]0, 1[. They are necessarily symmetric, i.e., they can model the stochastic dependence of

exchangeable random variables (X,Y ) only, yet their popularity in practice (hydrology, financial, and

other applied areas) is indisputable, mainly due to the representation using one-dimensional functions

called generators as shown in the next result, attributed to Moynihan [11].
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Theorem 1 A function C : [0, 1]2 → [0, 1] is an Archimedean copula if and only if there is a convex (i.e.

a 2-monotone) continuous strictly decreasing function f : [0, 1] → [0,∞], f(1) = 0, so that

C(x, y) = f (−1)(f(x) + f(y)), (2)

where the pseudo-inverse f (−1) : [0,∞] → [0, 1] is given by

f (−1)(u) = f−1
(

min(u, f(0))
)

.

The function f is called an additive generator of the copula C, and it is unique up to a positive multi-

plicative constant.

Let F2 be the class of all additive generators of binary copulas characterized in the above theorem.

More details about the generators can be found in [4, 5, 12] and about construction methods for additive

generators in [1, 2, 3, 6, 10].

Before we review several known facts for additive generators of copulas, let us briefly recall a link

between copula C and Spearman’s correlation coefficient ρ,

ρ = 12E[UV ]− 3 = 12

∫∫

[0,1]2
uvdC(u, v)− 3 = 12

∫∫

[0,1]2
C(u, v)dudv − 3 (3)

as well as Kendall’s correlation coefficient τ ,

τ = 4E[C(U, V )]− 1 = 4

∫∫

[0,1]2
C(u, v)dC(u, v)− 1 (4)

where U = FX(X) and V = FY (Y ) are uniformly distributed random variables, that are connected

by the same copula as are X and Y . Alternatively, Kendall’s tau can be computed directly from copula

generator,

τ = 1 + 4

∫ 1

0

f(t)

f ′(t)
dt = 1− 4

∫ ∞

0
t
(

f (−1)′(t)
)2

dt

which is far more convenient.

Any binary Archimedean copula C : [0, 1]2 → [0, 1] generated by an additive generator f : [0, 1] →
[0,∞], is also a triangular norm [5, 14] and thus, it can be univocally extended to an n-ary function (we

keep the original notation also for this extension) C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)

(

n
∑

i=1

f(xi)

)

. (5)

Obviously, for any n ≥ 2, C satisfies the boundary conditions (C1). However, for n > 2, (C2) may fail.

For example, the smallest binary copula W : [0, 1]2 → [0, 1] given by W (x, y) = max(0, x + y − 1) is

generated by the additive generator fW : [0, 1] → [0,∞], fW (x) = 1 − x. Its n-ary extension is given

by

W (x1, . . . , xn) = 1−min

(

1,

n
∑

i=1

(1− xi)

)

= max

(

0,

n
∑

i=1

xi − (n− 1)

)

.

Consider x,y ∈ [0, 1]n, x = (12 , . . . ,
1
2), y = (1, . . . , 1). Then VW ([x,y]) = 1 − n

2 , i.e., this volume

is negative whenever n > 2, which shows that W is a copula only for n = 2. A complete description

of additive generators of binary copulas such that the corresponding generated n-ary function is also an

n-ary copula, n > 2, was given by McNeil and Nešlehová in [7] and is recalled in the next theorem.

Theorem 2 Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function such that f(1) = 0
(i.e., f is an additive generator of a continuous Archimedean t-norm, see [5]). Then the n-ary function

C : [0, 1]n → [0, 1] given by (5) is an n-ary copula if and only if the function g : [−∞, 0] → [0, 1] given

by g(u) = f (−1)(−u) is (n − 2)-times differentiable with non-negative derivatives g′, . . . , g(n−2) on

]−∞, 0[ (or equivalently, (−1)n(f (−1))(n)(u) ≥ 0), and g(n−2) is a convex function.
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We denote by Fn the class of all additive generators that generate n-ary copulas as characterized in

Theorem 2.

Additive generators, which generate an n-ary copula for any n ≥ 2, are called universal generators.

The class of all universal additive generators will be denoted by F∞. It is not difficult to check that

F2 ⊃ F3 ⊃ . . . ⊃ F∞.

The n-monotone Archimedean copula generators may be characterized using a little known integral

transform introduced by Williamson in 1956, see [17]. In McNeil and Nešlehová [7] there is a description

of this transform, which, for a fixed n ≥ 2, will be called the Williamson n-transform. In what follows,

we discuss the Williamson n-transform and illustrate it by examples.

2 The Williamson n-transform

An interesting link between additive generators of copulas and positive distance functions [8], i.e.,

distribution functions with support in ]0,∞[, was described in details in [7]. Based on the results of

Williamson [17], we recall the next important result.

Theorem 3 (McNeil & Nešlehová [7], Corollary 3.1.) The following claims are equivalent for an ar-

bitrary n ∈ {2, 3, . . .}:

(i) f ∈ Fn

(ii) Under the notation of Theorem 2, the function F : ]−∞,∞[→ [0, 1] given by F (x) = 0 if x ≤ 0,

and for x > 0,

F (x) = 1−
n−2
∑

k=0

(−1)kxk(f (−1))(k)(x)

k!
− (−1)n−1xn−1(f (−1))

(n−1)
+ (x)

(n− 1)!
(6)

is a distribution function of a positive random variable X (i.e., P (X ≤ 0) = 0), where ·(n−1)
+ denotes

the right-derivative of order n− 1.

Note that due to [17], if F is a positive distance function, i.e., a distribution function of a positive

random variable X , then for a fixed n ∈ {2, 3, . . .} the Williamson n-transform provides an inverse

transformation to (6),

f (−1)(x) =

∫ ∞

x

(

1− x

t

)n−1
dF (t) =

{

max
(

0, E
[

1− x
X

]n−1
)

, x > 0

1− F (0), x = 0,
(7)

where x ∈ [0,∞[ and f (−1)(∞) = 0.

Note that a similar relationship can be shown between additive generators from F∞ and positive

distance functions, based on the Laplace transform, i.e

f (−1)(x) =

∫ ∞

0
e−xtdF (t). (8)

For more and interesting details we recommend [7].

Let F be a distance function related to a positive random variable X . For any c > 0, the random

variable c.X possesses the distance function Fc given by Fc(x) = F
(

x
c

)

. Then, for any n ∈ {2, 3, . . .},

f (−1)
c (x) =

∫ ∞

x

(

1− x

t

)n−1
dFc(t) =

∫ ∞

x

(

1− x

t

)n−1
dF

(

t

c

)

=

∫ ∞

x

c

(

1− x

cu

)n−1
dF (u) = f (−1)

(x

c

)

.

Obviously, for the related additive generators it holds that fc = c.f , i.e., they generate the same copula.

Vice versa, clearly from (6) it follows that if two generators generate the same (n-ary) Archimedean

copula, the corresponding positive random variables differ only in a positive multiplicative constant. The

next result follows.
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Theorem 4 For each n ∈ {2, 3, . . .}, there is an one-to-one correspondence between the class Fn and

the class H of all factor classes of positive distance functions related to the equivalence F ∼ G if and

only if G(x) = F
(

x
c

)

for some c > 0.

In the following, we illustrate the construction method by few examples.

Example 1 Let F be equal to a Dirac function1 focused at point x0 = 1,

F (x) = δ1(x) =

{

0 x < 1

1 1 ≤ x
,

then, as is also shown in [7], by the Williamson n-transform we get generator fn(x) = 1− x
1

n−1 of the

weakest n-dimensional Archimedean copula, i.e., the non-strict Clayton copula with parameter λ = −1
n−1 ,

see Figure 1. By rescaling generator to f̃n(x) = f(x)
f(1/2) , x ∈ [0, 1], the copula would not change, yet

such a generator is fixed to the value f̃n(
1
2) = 1, which we will use later to show convergence.

Figure 1: Dirac function F , the corresponding generators fn for different n and rescaled generators f̃n.

Example 2 Let F be a uniform probability distribution function

F (x) =











0 x < a
x−a
b−a a ≤ x < b

1 b ≤ x

with 0 ≤ a < b.

Then for dimension n = 2 we get

f
(−1)
2 (x) =

∫ ∞

x

(

1− x

t

)2−1
F ′(t)dt =











∫ b
a

(

1− x
t

)

1
b−adt x < a

∫ b
x

(

1− x
t

)

1
b−adt a ≤ x < b

∫∞
x

(

1− x
t

)

0dt b ≤ x

=

=















1
b−a [t− x log t]ba = 1

b−a(b− x log b− a+ x log a) = 1− x log( b

a
)

b−a x < a

1
b−a [t− x log t]bx = 1

b−a(b− x log b− x+ x log x) = b
b−a − x+x log( b

x
)

b−a a ≤ x < b

0 b ≤ x

1Dirac function is defined as δx0
(x) =

{

0 x < x0

1 x ≥ x0
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(where F ′ denotes a first derivative of F ) from which the corresponding generator can be obtained only

numerically, and so is the case also with the higher dimensions, e.g.,

f
(−1)
3 (x) =















1− 2x log( b

a
)

b−a + x2

ab x < a
b

b−a − 2x log
(

b
x

)

− x2

(b−a)b a ≤ x < b

0 b ≤ x

,

displayed in Figure 2.

Figure 2: Uniform U(a,b) probability distribution function F and pseudo-inverses of the corresponding

generators fn.

Example 3 Consider a positive distance function F (x) = min(1, x2) and the corresponding density

F ′(x) = 2x on [0, 1]. Then

f
(−1)
2 (x) =

∫ ∞

x

(

1− x

t

)2−1
dF (t) =

{

∫ 1
x (t− x)2tt dt =

[

(t− x)2
]1

x
= (1− x)2 0 ≤ x ≤ 1

0 1 < x
= max(1−x, 0)2.

Then the generator f2(x) = 1 − √
x, x ∈ [0, 1], is the generator of Clayton copula for parameter

λ = −1
2 . Nevertheless, in higher dimensions, n ≥ 3, the generator has no closed form, e.g., f

(−1)
3 (x) =

1− 4x+ x2(3− 2 log x) for x ∈ [0, 1] and 0 otherwise.

Figure 3: Illustration of Example 3 with non-invertible case n = 3.

It is interesting to illustrate also the inverse Williamson n-transform.

Example 4 Take a generator of

• the Ali-Mikhail-Haq copula f(x) = 1
x − 1 corresponding to the parameter λ = 1 and denote by

Fn, n = 2, 3, . . ., a positive distance function related to f through (6). Then Fn(x) = 1− 1
1+x −

x
(1+x)2

− . . . − xn−1

(1+x)n =
(

x
1+x

)n
which can be viewed as a parametric subfamily of all positive

valued distribution functions Fp with any positive parameter p.

11
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• the product copula f(x) = −1
p log x with constant p > 0 and inverse f−1(x) = exp(−px).

From (6) for n = 2 we get F (x) = 1 − exp(−px)(1 − px). By comparing the density
∂F (x)
∂x =

p2x exp(−px) and the convolution of two exponential distribution Dλ densities with parameter

λ > 0,
∫ x
0 λ exp(−λt)λ exp(−λ(x − t))dt = λ2x exp(−λx) it becomes clear that the resulting

distribution is a distribution of the random variable Y = X1 + X2, where X1, X2 ∼ Dλ are

independent (and identically distributed) random variables. The relation holds for any n ≥ 2, thus

(6) yields a cumulative distribution function of the sum of i.i.d. random variables X1, . . . , Xn ∼
Dp, FX1+...+Xn

(x) = 1− exp(−px)
∑n

i=1
(px)i−1

(i−1)! with p > 0.

To complete the examples, let us illustrate also the Laplace transform.

Example 5 Starting with positive distance function of

• discrete random variable with probability mass concentrated in λ > 0, i.e. Dirac function F (x) =
0 for x < λ and 1 otherwise, then the Laplace transform leads through g(x) = exp(λx) to the

product copula Π.

• exponential distribution F (x) = 1 − exp(−λx), λ > 0, we get f−1(x) = ( λ
x+λ) and f(x) =

λ( 1x − 1) which generates the same copula (Clayton copula with parameter equal to 1) regardless

of the choice of λ.

Now we focus on the Dirac function since it can be viewed as a building block for distribution

functions of a random variable with probability mass concentrated in l discrete points.

3 Approximation

In this section we are interested mainly in (n = 2)-dimensional case, since it is of most benefit in

practice. Therefore hereafter the subscript with generator f gains a different meaning: the number of

pieces f is approximated by.

Example 6 Let F (x) = min(1, x2) be the positive distance function from the Example 3 and function

F2(x) = F

(

1

2

)

δ 1

2

(x) +

(

F (1)− F

(

1

2

))

δ1(x) =











0 x < 1
2

1
4

1
2 ≤ x < 1

1 1 ≤ x

approximates F by means of a sum of m = 2 Dirac functions concentrated in respective points
(

1
2 ,

1
4

)

,
(

1, 34
)

. Then the Williamson transform with n = 2 yields

f
(−1)
2 (x) =

1

4
max

(

0, 1− x
1
2

)

+
3

4
max

(

0, 1− x

1

)

=











1− 5
4x x < 1

2
3
4 − 3

4x
1
2 ≤ x < 1

0 1 ≤ x

From Example 6 illustrated on Figure 4 we see that for n = 2 the additive generator inverse f
(−1)
2 is

piecewise linear and does not coincide with f (−1) in the interval ]0, 1[.
Dividing an interval [a0, am] by points {ai}i=1,...m, a0 < a1 < . . . am, with concentration of proba-

bility given by some probability mass function p(x), the approximate positive distance function

Fm(x) =
m
∑

i=1

p(ai)δai(x)

is then transformed by (7) to the generator inverse (related to some n-dimensional Archimedean copula)

f (−1)
m (x) =

∑

x<ai

p(ai)

(

1− x

ai

)n−1

=
m
∑

i=1

p(ai)max

(

0, 1− x

ai

)n−1

. (9)
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Figure 4: Approximation by the sum of m = 2 Dirac functions

Observe that the function f
(−1)
m (9) is a (n − 1)-dimensional spline. For n = 2, both f

(−1)
m and

the corresponding additive generator fm are linear splines, and the related Archimedean copula Cm

is piece-wise linear, as shown in Example 8. In the opposite direction, denote bi = f
(−1)
m (ai) and

pi = p(ai) for i = 1, 2 . . .m with b0 = 1 corresponding to a0 = 0 and, clearly, bm = 0. Having

points {(ai, bi)}i=1,...m, their corresponding probabilities can be found by solving exquations (9) with

x = a1, . . . , am−1 written in the form (for n = 2)











1− a1
a2

1− a1
a3

· · · 1− a1
am

0 1− a2
a3

· · · 1− a2
am

...
...

. . .
...

0 0 · · · 1− am−1

am





















p2
p3
...

pm











=











b1
b2
...

bm−1











.

The solution is p1 = 1− (p2 + . . .+ pm) and

pi =
ai [bi−1(ai+1 − ai)− bi(ai+1 − ai−1 + bi+1(ai − ai−1))]

(ai+1 − ai)(ai − ai−1)
for i = 2, . . .m,

with auxiliary point (am+1, bm+1), where am+1 ≥ am and thus bm+1 = 0.

In the following examples we exercise pointwise convergence and show a piecewise linear copula

corresponding to the simplest non-trivial case n = m = 2.

Example 7 For the simplest case, n = 2, ai = i
m and p(ai) = 1

m , i = 1, . . .m (evenly spaced and

uniformly distributed), we get f
(−1)
m (x) =

∑m
i=1

1
m max

(

0, 1− mx
i

)

. If f
(−1)
m (x) is to converge to

f (−1)(x) = 1 − x + x log x for x < 1 and 0 elsewhere, it needs to converge in any point x ∈]0, 1[. Let

us examine the convergence, say, in x = 1
2 , where

f (−1)
m

(

1

2

)

=
1

m

m
∑

i=1

max

(

0, 1− m1
2

i

)

=
1

m

m
∑

i=⌊m

2
⌋+1

(

1− m

2i

)

=
1

m

m

2
∑

i=1

i

i+ m
2

=

1

m

m

2
∑

i=1

(

1−
m
2

i+ m
2

)

=
1

2
− 1

2

m
∑

i=⌊m

2
⌋+1

1

i
.

Then indeed

lim
m→∞

f (−1)
m

(

1

2

)

=
1

2
− 1

2

∫ m

m

2

1

x
dx =

1

2
− 1

2
[lnx]mm

2

=
1

2
− 1

2
ln 2 = f (−1)

(

1

2

)

.

Example 8 Following Example 7, it might help to picture the approximation copula on a simple setting.

Due to Example 1 we already know that the trivial case m = 1 leads to the weakest copula W . With

m = 2 we get

F2(x) =











0 x < 1
2

1
2

1
2 ≤ x < 1

1 1 ≤ x

, thus f
(−1)
2 (x) =











1− 3
2x x < 1

2
1
2 − 1

2x
1
2 ≤ x < 1

0 1 ≤ x

and f2(x) =

{

1− 2x 0 ≤ x ≤ 1
4

2
3(1− x) 1

4 < x ≤ 1
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