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1. Introduction

Finite volume method is one of modern discretization method. Since this
favourable numerical technique is well suited for the numerical simulation of conser-
vation laws, it has been applied in a large number of scientific fields. One of them
is just image processing.

This paper consists of three basic parts. First we present tensor anisotropic
diffusion and derive a diffusion tensor for this nonlinear model. We also provide
some information on this type diffusion. In the second part we derive a semi-implicit
finite volume scheme for nonlinear tensor diffusion with the help of co-volume mesh.
Finally in the last part we prove existence and uniqueness of a discrete solution for
this numerical scheme.

2. Derivation of the diffusion tensor

Effort to gain precessed image more quickly and not so computionally ex-
pensive leads to inventions of new diffusion models and also to their improvements.
One of them was introduced by Weickert (see [9], [10], [11] and [12]) in the following
form

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω, (1)

u(x, 0) = u0(x), in Ω, (2)

< D∇u, n > = 0, on I × ∂Ω, (3)

where D is a matrix depending on the eigenvalues and on the eigenvectors of the so-
called (regularized) structure tensor J = ∇u(∇u)T (for details see next subsections).
This modification is useful in any situation, where is diserable strong smoothing
in one direction and low smoothing in the perpendicular direction. Owing to this
property, tensor anisotropic diffusion has applied mainly for images with interrupted
coherence of structures.

2.1. Analysing coherent structures

In order to enhance a coherence of structures, we need a reliable tool for
analysing coherent structures.

A very simple structure descriptor is given e.g., by the properties of ∇ut̃,
where

ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0). (4)

We can use e.g., absolute value of ∇ut̃ for detecting edges in some images (see [1])
but for images with line structures this descriptor is unuseful. We know that for
small t̃ high fluctuations remain, while larger t̃ leads to entirely useless results. This
is due to the fact that for larger t̃ neighbouring gradients with same orientation, but
opposite sign cancel each other. We need the structure descriptor invariant under
sign changes, so we replace ∇ut̃ by its tensor product

J0(∇ut̃) = ∇ut̃ ⊗∇ut̃ = ∇ut̃∇ut̃T . (5)
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The matrix J0 is symmetric and positive semidefinite and its eigenvectors are
parallel and orthogonal to ∇ut̃, respectively. We can average J by applying other
convolution with Gaussian Gρ

Jρ(∇ut̃) = Gρ ∗ (∇ut̃ ⊗∇ut̃), (ρ ≥ 0). (6)

In computer vision community the matrix

Jρ =

(
a b
b c

)

is well-known as structure tensor or interest operator or second moment matrix. Its
exploitation is possible to find in many tasks, for example in analysis of flow-like
textures (see [8]), corners and T-junctions (see [4] and [7]), shape cues (see [6]) and
also spatio-temporal image sequences (see [5]).

This matrix Jρ is symmetric and positive semidefinite and its eigenvalues are
given as follows

µ1,2 =
1
2

(
(a+ c±

√
(a− c)2 + 4b2)

)
, µ1 ≥ µ2. (7)

Since the eigenvalues integrate the variation of the grey values within a neighbour-
hood of size O(ρ), they describe the average contrast in the eigendirections v and
w. The integration scale ρ reflects the characteristic size of the texture and in the
most cases, it is large in comparison to the noise scale t̃.

With the help of the eigenvalues of Jρ we can obtain useful information on the
coherence of a structure. The expression (µ1−µ2)2 is large for anisotropic structures
and tends to zero for isotropic structures. We can also identify kind of the image
structures. Constant areas are characterized by µ1 = µ2 = 0, straight edges by
µ1 � µ2 = 0 and corners by µ1 ≥ µ2 � 0.

The corresponding orthonormal set of eigenvectors (v, w) to eigenvalues (µ1, µ2)
is given by

v = (v1, v2), w = (w1, w2), (8)

v1 = 2b, v2 = c− a+
√

(a− c)2 + 4b2,

w ⊥ v, w1 = −v2, w2 = v1.

The orientation of the eigenvector w, which corresponds to the smaller eigenvalue
µ2 is called coherence orientation. This orientation has the lowest fluctuations.

2.2. Coherence-enhancing anisotropic diffusion

Since we have a tool for analysing coherence, we draw our goals to enhance
of image coherence. One of possibilities, how to do it, can be done by embedding
the structure tensor analysis into a nonlinear diffusion filter.

The idea of nonlinear diffusion filtering is as follows. We get a processed
version u(x, t) of an original image u0(x) with a scale parameter t ≥ 0 as the solution
of mathematical model (1)-(3), where u denotes an unknown function u(x, t), n is
the outer normal unit vector and < ·, · > the usual Euclidean scalar product. In our
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application the matrix D depends on solution u and satisfies the following properties:
smoothness, symmetry and uniform positive definiteness. It is called diffusion tensor
because it steers the diffusion process and its eigenvalues determine the diffusivities
in the directions of the eigenvectors. For enhancing coherence, D must steers a
filtering process such that diffusion is strong mainly along the coherence direction
w and it increases with the coherence (µ1 − µ2)2. To obtain it, we require that D
must possess the same eigenvectors v and w as the structure tensor Jρ(∇ut̃) and we
choose the eigenvalues of D as

κ1 = α, α ∈ (0, 1), α� 1,

κ2 =

{
α, ifµ1 = µ2,

α + (1− α) exp
(

−C
(µ1−µ2)2

)
, C > 0 else.

The matrix D has a form

D = ABA−1, (9)

where

A =

(
v1 −v2

v2 v1

)

and

B =

(
κ1 0
0 κ2

)
.

We use the exponential function in choice of κ2 because it ensures that the smooth-
ness of the structure tensor carries over to the diffusion tensor and that κ2 does not
exceed 1. The positive parameter α guarantees that the process never stops. Even if
(µ1−µ2)2 tends to zero so the structure becomes isotropic, there still remains some
small linear diffusion with diffusivity α > 0. Such α is a regularization parameter,
which keeps the diffusion tensor uniformly positive definite. C has a role of a tresh-
old parameter. Since if (µ1 − µ2)2 � C then κ2 ≈ 1 and if (µ1 − µ2)2 � C then
κ2 ≈ α. Due to the convolutions in (4) and (6), the elements of matrix D are C1

functions.

3. Finite Volume Scheme for Tensor Anisotropic Diffusion in Image Pro-
cessing

The aim of this section is to prove existence of unique discrete solution for
the model (1)-(3) which satisfies to semi-implicit finite volume scheme obtained
with the help of co-volume mesh. Let us consider a rectangular image domain
Ω = (0, n1) × (0, n2) and let an image u(x) be represented by a bounded mapping
u : Ω→ R. Our image is represented by n1 × n2 pixels (finite volumes) such that it
looks as mesh with n1 rows and n2 columns (see Fig.1).
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K

Fig.1 A mesh consists of pixels (finite volumes) K.

Let τh be a mesh of Ω (see Fig.2).
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Fig.2 A detail of an image mesh - a finite volume K, its boundary σ = ∪σi, i = 1, 2, 3, 4
and the fluxes outward to a finite volume K.

We consider it in a scaling(time) interval I = [0, T ]. Let 0 = t0 ≤ t1 ≤
· · · ≤ tNmax = T denote the time discretization with tn = tn−1 + k, where k is
the time(scale) step. For n = 0, . . . , Nmax we will look for un an approximation of
solution at time tn.

The value of grey level intensity of each pixel at n− th discrete time level is
given by un[i][j], where i is a number of the row and j is a number of the column,
in which this pixel is situated in the image. In our numerical scheme we need to
compute the diffusion tensor D for each pixel at each discrete time step for uniform

mesh with spatial step h. We calculate elements of ∇ut̃[i][j] =

(
ux[i][j]
uy[i][j]

)
as

ux[i][j] =
un−1[i][j + 1]− un−1[i][j − 1]

2h
,
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uy[i][j] =
un−1[i+ 1][j]− un−1[i− 1][j]

2h
.

Then we continue in a computation of Dn−1[i][j] by (5)-(9). Because of the convo-
lutions in (4) and (6), the elements of matrix Dn−1 are C1 functions. By integrating
equation (1) over finite volume K, we obtain∫

K

∂u

∂t
dx−

∫
K
∇ · (D∇u)dx = 0. (10)

We provide a semi-implicit in time discretization and use a divergence theorem to
get

unK − un−1
K

k
m(K)−

∑
σ∈EK

∫
σ
Dn−1
K ∇un · nK,σds = 0, (11)

where unK , K ∈ τh represents the mean value of un on K, m(K) is the measure of
the finite volume K with boundary ∂K, σ is an edge of the control volume K, EK is
a subset of E such that ∂K =

⋃
σ∈EK σ, E =

⋃
K∈τh EK , where τh is admissible finite

volume mesh (see [3]), Dn−1
K is a mean value of Dn−1 ≡ D(un−1) on K, that is

Dn−1
K = 1

m(K)

∫
K D

n−1dx and nK,σ is the normal unit vector to σ outward to K. Let
us define the discrete solution by

uh,k(x, t) =
Nmax∑
n=0

∑
K∈τh

unKχ{x ∈ K}χ{tn−1 < t ≤ tn}, (12)

where the function χ(A) is defined as

χ{A} =

{
1, if A is true,
0, elsewhere.

(13)

Equation (11) can also be written as

unK − un−1
K

k
− 1
m(K)

∑
σ∈EK

φnσ(unh,k)m(σ) = 0, (14)

with

φnσ(unh,k) ≈
1

m(σ)

∫
σ
Dn−1
K ∇un · nK,σds (15)

and

unh,k(x) =
∑
K∈τh

unKχ{x ∈ K}, (16)

where m(σ) is the measure of edge σ.
One possibility how to get an approximation of the flux (i.e. φnσ(unh,k)) is

obtained with the help of co-volume mesh. The specific name (diamond-cell) of this
method (see [2]) is due to the choice of co-volume as a diamond-shaped polygon.
The co-volume χσ associated to σ is constructed around each edge by joining all
four co-volume vertices (i.e. endpoints of this edge and midpoints of finite volumes
which are common to this edge) (see Fig.3).
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Fig.3 A detail of mesh. A co-volume associated to edge σ.

We denote the endpoints of an edge σ̄ ⊂ ∂χσ by N1(σ̄) and N2(σ̄) and nχσ ,σ̄
is the normal unit vector to σ̄ outward to χσ. In order to have an approximation
of the diffusion flux, we first derive, using divergence theorem, an approximation of
the averaged gradient on σ

1
m(χσ)

∫
χσ
∇undx =

1
m(χσ)

∫
∂χσ

unnχσ ,σ̄ds, (17)

and then we denote it

pnσ =
1

m(χσ)

∑
σ̄∈∂χσ

1
2

(
unN1(σ̄) + unN2(σ̄)

)
m(σ̄)nχσ ,σ̄. (18)

The value at the centres xE and xW are uE and uW while the values at the vertices
xN and xS are computed as the arithmetic mean of values on finite volumes which
are common to this vertex (for general nonuniform meshes see [2]).

Since our mesh is uniform squared, for simplification, we can use the following
relations: m(χσ) = h2

2 , m(σ̄) =
√

2
2 h and after a short calculation we are ready to

write

pnσ =

( unE−u
n
W

h
unN−u

n
S

h

)
. (19)

The relation (19) can be written as

pnσ =
unE − unW

h
nK,σ +

unN − unS
h

tK,σ, (20)

where tK,σ is a unit vector parallel to σ such that (xN − xS) · tK,σ > 0. Although
such unN , u

n
W , u

n
E and unS correspond to particular edge σ, we should denote them by

unNσ , u
n
Wσ
, unEσ and unSσ , we use those simpler notations. Replacing the exact gradient

∇un by the numerical gradient pnσ in approximation uh,k we get the numerical flux
in the form

φnσ(uh,k) =
1

m(σ)

∫
σ
Dn−1
K pnσ · nK,σds = Dσp

n
σ · nK,σ, (21)
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where Dσ = 1
m(σ)

∫
σD

n−1
K ds =

(
λ̄σ β̄σ
β̄σ ν̄σ

)
in the basis (nK,σ, tK,σ).

If D =

(
λ β
β ν

)
then Dσ2 = Dσ3 =

(
λσ βσ
βσ νσ

)
, i.e. λ̄σ = λσ, β̄σ = βσ, ν̄σ = νσ

and

Dσ1 = Dσ4 =

(
νσ −βσ
−βσ λσ

)
, i.e. λ̄σ = νσ, β̄σ = −βσ, ν̄σ = λσ,

where λσ = 1
m(σ)

∫
σ λ

n−1ds and βσ and νσ correspondingly. And it in turn implies

φnσ(uh,k) =

(
λ̄σ β̄σ
β̄σ ν̄σ

)( unE−u
n
W

h
unN−u

n
S

h

)
n̄K,σ = λ̄σ

unE − unW
h

+ β̄σ
unN − unS

h
, (22)

where n̄K,σ is a normal unit vector to σ outward to K in the basis (nK,σ, tK,σ), i.e.

n̄K,σ =

(
1
0

)
for all σ.

In order to prove of existence and uniqueness of unK , K ∈ τh, we estimate the
expressions unN − unS by means of unE − unW for all edges σ. Let us note that due to
simpler notation, we will use in the sequel uN , uS, uW and uE instead of unN , unS,
unW and unE.

Let Pσ be the set of all edges δ perpendicular to σ. Since we use uniform
squared mesh, we compute values uN and uS as arithmetic mean of the values of
solution in the neighbouring finite volumes and therefore we can write uN − uS in
the following way (see Fig.4)

uN − uS =
1
2

(1
2

[
(u1

E − u1
W ) + (u3

W − u3
E)
]

+
1
2

[
(u2

E − u2
W ) + (u4

W − u4
E)
])

=
1
4

[
u1
E − u1

W ) + (u3
W − u3

E) + (u2
E − u2

W ) + (u4
W − u4

E)
]
, (23)

where u1
E and u1

W correspond to edge δ1 and similarly u2
E, u2

W , u3
E, u3

W , u4
E and u4

W

correspond to edges δ2, δ3 and δ4.

N

S

σ3

δ1 δ2

δ3 δ4

Fig.4 An edge σ and edges δ1, δ2, δ3 and δ4 perpendicular to σ.

Applying the inequality (a− b)2 ≤ 2a2 + 2b2 in (23) we get

(uN − uS)2 ≤ 1
8

[
(u1

E − u1
W ) + (u3

W − u3
E)
]2

+
1
8

[
(u2

E − u2
W ) + (u4

W − u4
E)
]2

≤ 1
4

(u1
E − u1

W )2 +
1
4

(u3
W − u3

E)2 +
1
4

(u2
E − u2

W )2 +
1
4

(u4
W − u4

E)2. (24)
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It can be written as

(uNσ − uSσ)2 ≤
∑
δ∈Pσ

1
4

(uEδ − uWδ
)2, (25)

where for clarity we put subindexes σ and δ.

Multiplying (25) by
(
β̄σ
λ̄σ

)2
λ̄σ
h2 and summing over for all σ ∈ Eint we obtain

∑
σ∈Eint

(
β̄σ
λ̄σ

)2 (
uNσ − uSσ

h

)2

λ̄σ ≤
∑

σ∈Eint

(
β̄σ
λ̄σ

)2 ∑
δ∈Pσ

1
4

(
(uEδ − uWδ

)
h

)2

λ̄σ. (26)

The next step is achieved by swapping the two sums

∑
σ∈Eint

(
β̄σ
λ̄σ

)2 (
uNσ − uSσ

h

)2

λ̄σ ≤
∑
δ∈E

γδ

(
(uEδ − uWδ

)
h

)2

λ̄δ (27)

with

γδ =
∑

σ∈Pδ∩Eint

1
4

(
β̄σ
λ̄σ

)2
λ̄σ
λ̄δ
. (28)

Let us consider the matrix

(
λσ⊥ βσ⊥
βσ⊥ νσ⊥

)
, which is the matrix D in the basis

(tK,δ,−nK,δ) on edge σ. Due to smoothness of D we get

λ̄σ = ν̄σ⊥ = ν̄δ(1 +O(h)) = λ̄δ⊥(1 +O(h)), δ ∈ Pσ, (29)

β̄σ = −β̄σ⊥ = −β̄δ(1 +O(h)) = β̄δ⊥(1 +O(h)), δ ∈ Pσ, (30)

ν̄σ = λ̄σ⊥ = λ̄δ(1 +O(h)) = ν̄δ⊥(1 +O(h)), δ ∈ Pσ. (31)

Applying (29)-(31) in (28) we have

γδ =
∑

σ∈Pδ∩Eint

1
4

(
β̄δ⊥

λ̄δ⊥

)2
λ̄δ⊥

λ̄δ
(1 +O(h)) =

(
β̄δ⊥

λ̄δ⊥

)2
λ̄δ⊥

λ̄δ
(1 +O(h)) . (32)

Using the positive definiteness of the diffusion tensor

(
λδ βδ
βδ νδ

)
we obtain

|D| = λδνδ − β2
δ > 0. (33)

We have two possibilities for γδ. Let δ is arbitrary edge parallel to σ3. Then

γδ =

(
−βδ
νδ

)2
νδ
λδ

(1 +O(h)) =
(βδ)2

λδνδ
(1 +O(h)) < 1 (34)

for h sufficiently small. If δ ⊥ σ3 then we have

γδ =

(
βδ
λδ

)2
λδ
νδ

(1 +O(h)) =
(βδ)2

λδνδ
(1 +O(h)) < 1 (35)
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for h sufficiently small. Thus, due to fact that λσ ≥ C > 0 and νσ ≥ C > 0, we
obtain 0 ≤ γδ for h sufficiently small. Since this condition is fulfiled for each edge δ
we can rewrite (27) as

∑
σ∈Eint

(
β̄σ
λ̄σ

)2 (
uN − uS

h

)2

λ̄σ ≤ γ
∑
σ∈E

(
uE − uW

h

)2

λ̄σ, (36)

where

0 ≤ γ < 1, γ = max
σ∈E

γσ. (37)

Let us now introduce the space of piecewise constant functions associated to
our mesh and discrete H1

0 norm for this space. This discrete norm will be used to
obtain some estimates on the approximate solution given by a finite volume scheme.
Definition 3.1. Let Ω be an open bounded polygonal subset of R2. We define
P0(τh) as the set of functions from Ω to R which are constant over each finite
volume of the mesh.
Definition 3.2. Let Ω be an open bounded polygonal subset of R2. For u ∈ P0(τh)
we define

||unh,k||1,T =

(∑
σ∈E

(
uE − uW

h

)2

m(χσ)

) 1
2

. (38)

We can define discrete operator for (1)-(3) by

Lh(unh,k) = unKm(K)− k
∑
σ∈EK

φnσ(unh,k)m(σ), (39)

such that unh,k is the solution in P0(τh) of

Lh(unh,k) = fh,k(u
n−1
h,k ), (40)

where fh,k(u
n−1
h,k ) = un−1

K m(K) and un−1
K is a value of the piecewise constant function

un−1
h,k in K. This equality is a linear system of N equations with N unknowns, namely
uK , K ∈ τh, where N = card(K).

Multiplying Lh(uh,k) by unK , summing over K and splitting into a part A and
B leads to ∑

K∈τh
Lh(unh,k)unK = A+B, (41)

with

A =
∑
K∈τh

(unK)2m(K) = ||unh,k||2L2(Ω) (42)

and

B = k
∑
K∈τh

unK
∑
σ∈EK

−φnσ(unh,k)m(σ)

= k
∑
σ∈E

φnσ(unh,k)
uE − uW

h
2m(χσ) = Q(unh,k) (43)
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and we know due to Neumann boundary condition that φσ(unh,k) = 0 if σ ∈ ∂Ω. B
can be written as

Q(unh,k) = k
∑

σ∈Eint
(Dσp

?
σ) · pσ2m(χσ) = 2k(Dhp

?
h, ph)L2(Ω), (44)

where

p?σ =
uE − uW

h
nK,σ (45)

and Dh is the piecewise constant function of value Dσ on χσ for each σ ∈ Eint.
Further, we use the following inequality

(Dhp
?
h, ph)L2(Ω) ≥ (Dhp

?
h, p

?
h)L2(Ω) − |(Dhp

?
h, ph − p?h)L2(Ω)|. (46)

It is clear that

(Dhp
?
h, p

?
h)L2(Ω) =

∑
σ∈ε

λ̄σ

(
uE − uW

h

)2

m(χσ). (47)

Using Young’s inequality for second term on right side in (46) leads to

|(Dhp
?
h, ph − p?h)L2(Ω)| =

∣∣∣∣∣∑
σ∈E

β̄σ
uE − uW

h

uN − uS
h

m(χσ)

∣∣∣∣∣
≤

∑
σ∈Eint

1
2

(uE − uW
h

)2

+

(
β̄σ
λ̄σ

)2 (
uN − uS

h

)2
 λ̄σm(χσ), (48)

since φnσ(unh,k) = 0, if σ ∈ ∂Ω.
Using inequalities (36) we get

|(Dhp
?
h, ph − p?h)L2(Ω)| ≤

1 + γ

2

∑
σ∈E

λ̄σ

(
uE − uW

h

)2

m(χσ) =
1 + γ

2
(Dhp

?
h, p

?
h)L2(Ω).(49)

It in turn implies

1
2
Q(unh,k) ≥

(
1− 1 + γ

2

)
k(Dp?h, p

?
h)L2(Ω) ≥ λ̄min

1− γ
2

k||unh,k||21,T , (50)

where λ̄min = inf
σ∈E

λ̄σ ≥ C > 0.

Applying (42), (43) and (50) in (41) we get

∀h > 0, ∀unh,k ∈ P0(τh),
∑
K∈τh

Lh(unh,k)unK ≥ α
(
||unh,k||21,T + ||unh,k||2L2(Ω)

)
(51)

with α = max (λ̄min(1− γ)k, 1).
Theorem 3.1. For h sufficiently small, there exists unique solution uh,k given

by scheme (14) with (22).
Proof of Theorem 3.1. Assume that uK , K ∈ τh satisfies linear system (40) and
f = 0. Using (51) and (40) we get

α
(
||unh,k||21,T + ||unh,k||2L2(Ω)

)
≤

∑
K∈τh

Lh(unh,k)unK =
∑
K∈τh

funK = 0. (52)
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Due to relation (52), we know that unK = 0, ∀K ∈ τh. And it in turn implies that
for each right side f exist unique solution.

6. Conclusion

The paper introduces the semi-implicit finite volume scheme for tensor anisotropic
diffusion. This nine-point scheme was derived with the help of co-volume mesh. We
also prove existence and uniqueness of its discrete solution. The main idea in this
proof is a bounding of a gradient in tangential direction by using of a gradient in
normal direction.
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11, 813 68 Bratislava,
e-mail: drblikov@math.sk

18


