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1. Introduction

One kind of meaningful information is given by images. We obtain them by
converting continuos signals into digital format. Image processing is an interesting
topic of study because of the diversity of applications and used mathematical meth-
ods. The most important of them are radar, seismology, meterology, astronomy,
ultrasonicimaging, microscopy, and many others.

Moreover, due to acquisition, storage, transmission and display, the images
can degrade with respect to completness of information. Mathematicians and com-
puter scientists try to find mathematical models and numerical schemes to produce
images of higher quality, with enhanced sharpness, filtered out noise and recon-
structed edges.

This paper consists of three basic parts. First we present important models
used for image processing. It provides basic information on properties and devel-
opment of models like the linear heat equation, anisotropic Perona-Malik diffusion
and modified Perona-Malik model in the sense of Catté et al. and Weickert model.
In the second part we derive semi-implicit and explicit finite volume schemes for
Weickert and both Perona-Malik models. Finally in last part we present the results
of few numerical experiments.

2. Review of some diffusion models in image processing

Image processing involves operations like image filtration, edge detection,
deblurring, image enhancement, restoration, shape analysis, etc. In the last decades
mathematicians tried to find well understandable models and relialable numerical
schemes for image processing and to improve schemes of their forerunners to get a
processed image more quickly and not so computionally expensive.

The goal of this section is to present some partial differential equation, based
methods for image restoration. The important examples of numerical schemes based
on partial differential equations for image filtering and enhancement are: the linear
heat equation, original Perona-Malik scheme and modified Perona-Malik schemes.
The image processing consists of two opposite requirements — filtering (smoothing,
diffusion), where the noise has been removed and enhancement, where the structures
like edges, corners and T-junctions have been preserved. The mathematicians try to
determine constant regions of an image and regions which contain edges and then
make filtering dependent on this observation.

The oldest and most investigated equation in image processing is probably
the parabolic linear heat equation (see [10] and [24]). The most simple way to
improve image by smoothing was made by convolution with Gaussian of increasing
variance (corresponding to scale). It is well-known that convolution of the signal
with Gaussians at each scale is equivalent to solving of the linear heat (diffusion)
equation with the signal as initial datum (see [10] and [29]). If we embed the original
data ug into a family of gradually simplified versions of 1, which depend on scale
(or time parameter ¢,¢ > 0), then the linear multiscale analysis associated with w
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consists in solving the system

u(z,t) = Au(z,t) (1)
u(z,0) = up(x). (2)

This equation has the solution for the initial datum with bounded quadratic norm

N uO(‘T)7 t:()a
u(@t) = { (Gr % uo)(z) £ 0, ()

where

Gilz) = (4;)%%;3 (‘Z'Q) (W

is the Gauss function and the convolution of the functions f(z) and g(z) is defined
by

f@)r9@) = [ fe)g(—s)ds (5)

Though the heat equation has been (and is) successfully applied in image
processing, it has some drawbacks. It is too smoothing (see [2]). Due to this diffusion
model is not convenient for images, where we require good visual impression or
where a precise location of edges is necessary because the Gaussian smoothing blurs
edges and moves their positions. Since these linear diffusion shortcomings were too
restrictive, the mathematicians have switched to nonlinear diffusion models.

If the partial differential equation for image processing is of nonlinear type,
then the associated scale space is called nonlinear. One can study the axioms and
fundamental properties of scale spaces in [1], where the notion of image multiscale
analysis has been introduced.

First application of the nonlinear diffusion equations is connected with the
end of the 80s. Perona and Malik (see [20]) introduced equation

u— V- (g(|Vu)Vu) = 0 (6)
u(0,z) = wup(z), (7)

where g is a smooth nonincreasing function, ¢g(0) = 1, g(s) > 0, g(s) — 0 for
s — 00. In the computer vision community this equation is well-known as original
Perona-Malik model or also as so-called anisotropic diffusion. The most signifi-
cant advantage of this model is a better edge enhancement in comparing with the
convolution with Gaussians.

Diffusion in this model is governed by the shape of the diffusion coefficient
given by the function g and by its dependence on the edge indicator Vu. Smoothing
with the help of anisotropic diffusion is different in the regions where the signal has
only small variance of intensity and in the regions of strong change of signal.

This scheme requires a suitable choice for function g. In practice, e.g.,

o) = T ®)

g(s) = e* 9)



or

g9(s) = 5 (10)

with a constant K > 0 are used (see [16] and [2]). If s = |Vu(z)| is small then
g(|Vu(z|) tends to 1 and diffusion will be strong in a neighbourhood of a point z.
In the contrary, if s = |Vu(z)| is large then ¢g(|Vu(z)| is small and diffusion is low.
This idea ensures accurate detection of edges.

Although Perona-Malik model behaves better than the heat equation, it still
has some disadvantages. The noise induce too large oscilations of the Vu and
diffusion introduced by the model will not help, since all these noisy edges will be
kept. Further, if the product g(s)s is decreasing, the Perona-Malik equation can
behave locally like the backward heat equation, which is ill-posed, and we may
obtain unstable process. So, for g used in practice (see (10) and (9)) both the
existence and the uniqueness of a solution can not be obtained. This problem has
been studied in [9].

One way how to overcome these mathematical difficulties has been proposed
by Catté, Lions, Morel and Coll (see [3] and [8]). They introduced the convolution
with the Gaussian kernel G; into the decision process for the value of the diffusion
coefficient. The form of this model is given as

u— V- (9(|[VGi*xu)Vu) = 0 inQr=1x9 (11)
g—z = 0 onl x 00 (12)
u(z,0) = wy in§, (13)

where 2 C R? is a rectangular domain, n is the normal unit vector to 0 = K|L

outward to K, I = [0,7] is a scaling interval, g is a decreasing function, ¢g(0) = 1,

0 < g(s) — 0 for s — oo, g(+v/t) is smooth. G; € C®(R?) is a smoothing kernel

with [ Gi(z)dz = 1, Gi(x) — &, for t — 0, where J, is the Dirac measure at point
R4

x and ug € L*(Q) (see [16] and [17]).

This model is very convenient because it connects ideas of linear and nonlinear
scale space equations. This modification allowed to prove the existence and the
uniqueness of solution for the modified Perona-Malik equation. Other important
advantage is that this model also keep the practical favourable properties of the
original Perona-Malik model. The convolution with the prescribed ¢ offers a unique
way to compute gradients of piecewise constant image.

The other generalization of the Perona-Malik equation has been introduced
by Weickert (see [25], [26], [27] and [28]). This equation has a form

u— V- (DVu) = 0, (14)

where D is a matrix depending on the eigenvalues and on the eigenvectors of the
(regularised) structure tensor J = Vu(Vu)T (for details see next sections). This
modification is useful in any situation, where is diserable strong smoothing in one
direction and low smoothing in the perpendicular direction. Moreover, Preusser
and Rumpf also introduced this idea in multiscale flow field visualization in the
computional fluid dynamics (see [22]) and Mikula, Preusser and Rumpf consider a
similar idea in processing of image sequences (see [18] and [21]).
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In image processing we use a structure descriptor. A very simple structure
descriptor is given by Vu;, where

up(z,t) = (Gy*u(-,1)) (), (t > 0). (15)

We can use Vu; for detecting edges in some images (see [3] and (11)) but for images
with parallel structures this structure descriptor is unuseful. We know that for small
¢ high fluctuations remain, while larger ¢ leads to entirely useless results. This is
due to the fact that for larger ¢ neighbouring gradients with same orientation, but
opposite sign cancel each other. We need the structure descriptor invariant under
sign changes, so we replace Vu; by its tensor product

Jo(Vuz) = Vu; ® Vu; = VuiVug® (16)

The matrix J; is symmetric and positive semidefinite and its eigenvectors are
parallel and orthogonal to Vu;, respectively. We can average J by applying other
convolution with Gaussian G,

Jo(Vu) = Gy x (Vu; © V), (p > 0). (17)

In computer vision community the matrix

a b
=5 )

is well-known as structure tensor or interest operator or second moment matrix. Its
exploitation is possible to find in many tasks, for example in analysis of flow-like
textures (see [23]), corners and T-junctions (see [5] and [19]), shape cues (see [15])
and also spatio-temporal image sequences (see [6]).

This matrix J, is symmetric and positive semidefinite and its eigenvalues are
given as follows

pa=y ((@+exfla—prad),  m>m (18)
Since the eigenvalues integrate the variation of the grey values within a neighbour-
hood of size O(p), they describe the avarage contrast in the eigendirections v and
w. The integration scale p reflects the characteristic size of the texture and in the
most cases, it is large in comparison to the noise scale .

With the help of the eigenvalues of .J, we can obtain useful information on the
coherence of a structure. The expression (u; —u2)? is large for anisotropic structures
and tends to zero for isotropic structures. We can also identify kind of the image
structures. Constant areas are characterized by p; = ps = 0, straight edges by
1 > e = 0 and corners by p; > o > 0.

The corresponding orthonormal set of eigenvectors (v, w) to eigenvalues (p1, 112)
is given by

v = (v1,v2), w = (wy, ws), (19)

v, = 2b, v =c—a++/(a—c)?+ 402,
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w L v, wy; = —Va, Wy = V1,

The orientation of the eigenvector w, which corresponds to the smaller eigenvalue
o is called coherence orientation. This orientation has the lowest fluctuations.

Since we have a tool for analysing coherence, we draw our goals to enhance
of image coherence. One of possibilities, how to do it, can be done by embedding
the structure tensor analysis into a nonlinear diffusion filter.

The idea of nonlinear diffusion filtering is as follows. We get a processed
version u(z,t) of an image uo(z) with a scale parameter ¢ > 0 as the solution of
diffusion equation

uy = div(DVu) (20)

u(z,0) = up(x) (21)

< DVu,n >=0, (22)

where n is the outer normal unit vector and < -,- > the usual Euclidean scalar

product. D is a positive definite 2 x 2 matrix. It is called diffusion tensor because
it steers the diffusion process and its eigenvalues determine the diffusivities in the
directions of the eigenvectors. For enhancing coherence, D must steers a filtering
process such that diffusion is strong mainly along the coherence direction w and it
increases with the coherence (u; —p2)?. To obtain it, we require that D must possess
the same eigenvectors v and w as the structure tensor J,(Vu;) and we choose the
eigenvalues of D as

M = a a€(0,1l),ak],

A o «, lf:ul = M2,
2= a+(1—a)exp(ﬁ),0>0 else.
The matrix D has a form
D= ABA™!, (23)

where

=0 )
Vo U1
(A0
p=(7 0 )

We use the exponential function because it ensures that the smoothness of the
structure tensor carries over to the diffusion tensor and that A\ does not exceed 1.
The positive parameter o guarantees that the process never stops. Even if (jq — u2)?
tends to zero so the structure becomes isotropic, there still remains some small linear
diffusion with diffusivity o > 0. Such « is a regularization parameter, which keeps
the diffusion tensor uniformly positive definite. C' has a role of a treshold parameter.
Since if (p; — po)? > C then Xy &~ 1 and if (y; — pp)? < C then )\ = a.

3. Semi-implicit finite volume scheme for anisotropic diffusion

The aim of this section is the derivation of numerical schemes for the following
equation
ou

5~V (DVY) = 0. (24)
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where D = D(u) denotes the diffusion tensor and u denotes an unknown function
u(z,t). In our application D may depend on this solution u, however, we will
consider also the case that it is a given matrix. Let us consider a rectangular image
domain ©Q = (0,ny) x (0,n3) and let an image u(z) be represented by a bounded
mapping u : @ — R. Our image is represented by n; X ny pixels (finite volumes)
such that it looks as mesh with n; rows and ny columns (see Fig.1).

03

04 K 09

01
K Nk,

b;
Fig.1 a) A mesh consists of pixels (finite volumes) K. b) A detail of this mesh - a finite
volume K and its boundary ¢ = Ug;, ¢ = 1,2, 3,4.

We consider it in a scaling (time) interval I = [0,7]. Let 0 = ¢t < t; < --- <
tn,,,, = 1 denote the time discretization with ¢, = t,_1 + k, where k is the time

(scale) step. For n =0,..., Npe we will look for u™ an approximation of a solution
u at time t,. By integrating equation (24) over a control volume K, we obtain

0

—udx - / V. (DVu)dz = 0. (25)

We provide a semi—implimt in time discretization and use a divergence theorem to
get

-1
u'y n

UK Z UK Ky - Y / DY ng,ds = O, (26)
k oc€EK VT
where v is a value of K in time t¢,, m(K) is the measure of the control volume K
with boundary 0K, o is an edge of the control volume K, ek is a subset of € such
that 0K = U,ee, 0, € = Uker €k, Where 7, is admissible finite Volume mesh (see
[4]), D% ! is a mean value of D"~! = D(u"!) on K, that is D% ! = m(K) [x D" ldx
and ng , is the normal unit vector to o outward to K. We denote an approximation
of [, —D% 'Vu"™ ng ,ds by Fi ,. Then we follow the derivation of the scheme given
in [4] and get subsequently
n _ ,n—1
KT TK p(K)+ Y Fe, = 0, (27)
k o€EEK
where Fk , is an auxiliary unknown, namely the flux for control volume K and for
0 € €. We have choosen expresion for F , in the following form (see [4])
FK,a' = —m(o)/\K,a

w’ (28)

dK,U
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= |Dk 'nk.,l, (29)

where m(o) is the measure of edge o, u, is an auxiliary unknown, namely some
expected approximation of u in o, for all 0 € ex and dg, is the Euclidean distance
from zx to yo = Dxo,No. zx € K = KUOK and if 0 = K|L = KNL # 0,
then it is assumed that xx # x; and that the straight line Dy 1 going through zx
and x, is orthogonal to K|L. L € 7, is the control volume, such that 3 o € ek,
o = K|L. Dk, is a straight line, going through zx and orthogonal to o such that
Dg,No # 0. Then we have

n—1

ut —u Uy — U
KK m(K)+ Y —m(0)Ake———n = 0. (30)
k oEE K dK,o‘
In order to have a conservativity of the scheme, we set Fx, = —F},. Using this
condition we can express u, from (28) to get
1 AK o )‘L o
Uy = —Uug + ——ur, | . 31
2?’ + 3 )‘L" (dK,U T, " (31

Applying (31) in equation (28), we get

AK,o AL
ZK"ijL—“ (Fomule + mul) — vk
FK,O’ = —m(a))\K,(, Ko I d . (32)
K,o
Previous relation can be simplified to
FK,O’ :TU(U,K—UL), (33)
where
)\K a)‘L o
T = m(o 34
( AkfadL0'+'AlladKTU ( )
Applying (33) in equation (27) we have
n _ ,mn—1
% )+ S (-l = 0, (35)

oEE K
Rearranging the previous equation, we obtain the semi-implicit scheme for equation

(24)

[L(kK) - ] - ¥ nup = gt (36)

cEEK 0€EEK

Since in 2D image processing we work with regular square mesh, we can simplify 7,
by using following relations: m(K) = h?, m(o) = h, dx,, = dr,, = %, where h is a
space step. Then we get

)\K a)\L o
=2 7 37
K )\K,O' + )\L,O' ( )
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In a similar way we can also derive an explicit scheme for solving equation (24). In
this case instead of equation (35) we have

n _ ,n—1
ST m(K)+ Y mul ! —u ) = 0, (38)
k 0EEK
So we get
k k
up = |[1—-—= To| U+ —— Toul (39)
= l m(K) UEZEK ] £ m(K) aezé‘x r

In these numerical schemes we need to compute the diffusion tensor D at
every discrete time step t,. We obtain it in the following way. First we calculate
u, and u, for each pixel of the image u"~' except of pixels on the boundary in the
following form

u" M illg + 1] = w i lg — 1]
2h

ugli]lj] = (40)

u i + 1)) — " E = 1][]
2h ’

uy[1]j] = (41)
where 7 is a number of the row and j is a number of the column, in which the pixel
is situated in the image and u"![i][4] is a value of grey level intensity of this pixel
at (n — 1)th discrete time level. Then we construct a structure tensor J by outer
product of these vectors

so we get
J — (U’SU)Q U’$uy .
ugtty  (uy)?

Then the matrix D™ ! is constructed by (18), (19) and (23). Let us note that here
as well as in our implementation of this scheme we omit convolutions mainly due to
simplicity of presentation.

Since the tensor anisotropic diffusion is as well as the modified Perona-Malik
model in sense Catté, Lions, Morel and Coll some generalization of the original
Perona-Malik model, this semi-implicit finite volume schemes can be also used for

both Perona-Malik models. The only difference is changing D into g.
Perona-Malik model has the following form

ou

where g = ¢g(|Vul) for the original Perona-Malik model
and g = g(|VG;*ul|) for the modified Perona-Malik model by Catté et col.

In our numerical schemes we need to compute a value of the function g(s) at
every discrete time step t,. There are several possible choices for g(s) there. We
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have choosen g(s) = 7 +}{ > with a constant K > 0 for our experiments.
The function ¢ for an original Perona-Malik problem has a form

: 2 0
g(s) — ( 1+K(Um)O+K(uy) 1 ) .
14K (ug)?+ K (uy)?

We compute u, and u, by (40) and (41).

In case of the modlﬁed Perona-Malik model the convolution is realised with kernel
Gi(z) = exp (|$|£ ‘(.) ) where the constant Z is choosen so that G; has unit mass.
The function ¢ has a form

RGP TRGy? 0
o(s) = (TR L)
1+ K (sz)2+ K (sy)?

We obtain sx and sy in the following way. Using the convolution derivate property,
we obtain

VG, ulzg) = (a%(ag* u(:rK)))i:LZ - <‘3§t \ u(:rK)>

i=1,2

Then we have

0G; [ 0Gj

or, xu(rg) = /R2 oz, (s)u(xx — s)ds
0G; 0G;

=> um(zum) E( dSNZuM Tar) —(s)m(M),
IV; M 8 oz X

where the sum is evaluated on control volumes M. These control volumes belong 7,
or they are contained in the reflexion of 7, through boundary of 2 which are around
Txi. This sum is also restricted to control volumes intersecting the circle centered
at zx with radius £. All control volumes which belong 7;, are denoted by K. Since
in 2D image processing, we use uniform square mesh, we can express sz and sy by
using following relation: m(M) = h? to get

0G;

sz = h? Z“M‘TM 895()

aG
sy = h? Z“M Tar) ayt(s).

4. Numerical experiments

This section presents some results of image filtering using the scheme from the
previous section. The Figures show processing of the image with 100 x 100 pixels
by the semi-implicit finite volume scheme for the Weickert equation (see Figures:
2, 3, 4) and with 50 x 50 pixels by the semi-implicit finite volume scheme for the
Perona-Malik equations (see another Figures).

The original image consists of collection of parallel horizontal lines (see Fig.2a)).
Figure 2b) depicts image degenerated by additive noise. Figure 3 and Figure 4 give
examples of smoothed images, after 50 time steps (left) and after 100 time steps
(right). Figure 3 shows the images which were obtained by linear tensor anisotropic
diffusion with matrix coefficients based on original image only, i.e. D = D(uy).
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Figure 4 presents smoothing by nonlinear tensor anisotropic diffusion with updated
coefficients during filtering i.e. by the model (20)—(23).

We observe that nonlinear model gives the image of much better quality,
without blurring and very similar to the original image. In the scheme for tensor
anisotropic diffusion we use o = 0.001, C' = 1 and the arising linear systems are
solved by Gauss-Seidel iterative method.

Figure 5 presents the images before smoothing. The original image consists
of a small black square in the middle of a grey square (see Fig.5a) ). Figure 5b)
depicts image degenerated by additive noise.

Figures 6 and 7 give examples of smoothed images obtained by diffusion with
time step ¢ = 0.00005 after 10 time steps (see Fig.6) and after 50 time steps (see
Fig.7). Although the diffusion by the heat equation is expressive faster in comparing
with the Perona-Malik equations, the images obtained by the heat equation are not
so good as the images obtained by the Perona-Malik equations. The smoothing by
the heat equation is isotropic, it does not depend on the image and it is the same
in all directions. The edges are not preserved because of it. We can also see that
a diffusion by using the modified Perona-Malik model is faster than by using the
original Perona-Malik model.

In the scheme for the Perona-Malik model we use K = 1 and the arising
linear systems are solved by Gauss-Seidel iterative method. We can also get similar
results with the help of explicit finite volume schemes.

a b

Y ?

Fig.2 The images before filtering. a) an original image. b) a noisy image.

b,

a,

Fig.3 The images obtained by linear tensor anisotropic diffusion. a) after 50 time steps.
b) after 100 time steps.
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a, ba

Fig.4 The images obtained by nonlinear tensor anisotropic diffusion. a) after 50 time
steps. b) after 100 time steps.

Fig.5 The image before filtering.

a, b, c,

Fig.6 The filtered images after 10 time steps with time step ¢ = 0.00005 obtained by a)
the heat equation, b) the original Perona-Malik equation, ¢) the modified Perona-Malik
equation with ¢ = 0.04.
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a, ba ¢,

Fig.7 The filtered images after 50 time steps with time step ¢ = 0.00005 obtained by a)
the heat equation, b) the original Perona-Malik equation, ¢) the modified Perona-Malik
equation with ¢ = 0.04.

5. Conclusions

In this paper we have presented a derivation of the semi-implicit finite volume
scheme for the Weickert and Perona-Malik model. We derive this scheme by semi-
implicit finite volume scheme from [4]. Our scheme for the modified Perona-Malik
model in sense Catté et al. is different from the semi-implicit finite volume scheme
for the modified Perona-Malik model from [11], [12], [13], [14] and [16]. The authors
compute the convolution in a centre of each edge and then they obtain four different
Ak,s = Tk,- We realise the convolution in a point zx (a centre of pixel K) and then
we compute Tx, as the harmonious average of A, = |g?(_1nK,a| and Ap, for each
L, where L is an adjacent control volume of K.

We implemented our schemes to produce some filtered images. If we compare
linear and nonlinear diffusion for the Weickert equation, we can see that nonlinear
smoothing gives an image of expressive better quality. We can observe that although
a smoothing with the help of the heat equation (a linear diffusion model) is faster in
comparing with the Perona-Malik equations, the images obtained by the anisotropic
diffusion are expressive better than by a smoothing in the linear diffusion model
which is isotropic i.e. the same in all directions. Such filtration does not preserve
edges. If we compare the smoothing by original and modified Perona-Malik model in
sense Catté, Lions, Morel and Coll, we can see that the diffusion by modified Perona-
Malik model is faster than by the original Perona-Malik model but the edges can be
less sharper. It depends on a choice of .
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