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This paper 
on
erns with the �nite volume s
heme for nonlinear tensor di�usion in imagepro
essing. First we provide some basi
 information on this type of di�usion in
luding a
onstru
tion of its di�usion tensor. Then we derive a semi-impli
it s
heme with the help ofso-
alled diamond-
ell method (see Coirier [2℄ and Coirier, Powell [3℄). Further, we proveexisten
e and uniqueness of a dis
rete solution given by our s
heme. The proof is based ona gradient bound in the tangential dire
tion by a gradient in normal dire
tion. Moreover,the proofs of L2(
) { a priori estimates for our dis
rete solution are given. Finally wepresent our 
omputational results.Keywords: �nite volume method, diamond-
ell method, image pro
essing, nonlinearparaboli
 equation, tensor di�usionAMS Subje
t Classi�
ation: 35K60, 94A08, 74S101. INTRODUCTIONThe e�ort to gain pro
essed image qui
ker and by a less 
omputationally expensiveway leads to inventions of new di�usion models and also to their improvements. Oneof them was introdu
ed by Wei
kert (see, e. g., [10℄) in the following form�u�t �r � (Dru) = 0; in QT � I �
; (1)u(x; 0) = u0(x); in 
; (2)hDru; ni = 0; on I � �
; (3)where u denotes an intensity of greylevel image and D is a matrix depending on theeigenvalues and on the eigenve
tors of the so-
alled (regularized) stru
ture tensor J =ru(ru)T (for details see next se
tion). This modi�
ation is useful in any situation,where strong smoothing in one dire
tion and low smoothing in the perpendi
ulardire
tion are desirable. Owing to this property, tensor anisotropi
 di�usion has beenapplied mainly for images with interrupted 
oheren
e of stru
tures.We derive our numeri
al s
heme for this di�usion model by �nite volume method.We 
hoose this modern dis
retization te
hnique sin
e it is well suited for a numeri
al



778 O. DRBL�IKOV�Asolution of 
onservation laws. It has been su

essfully applied in image pro
essing,e. g., for solving the Perona{Malik equation [9℄ or 
urvature driven level set equa-tion [8℄.2. DERIVATION OF DIFFUSION TENSOR2.1. Analyzing 
oherent stru
turesIn order to enhan
e a 
oheren
e of stru
tures, we need a reliable tool for analyzing
oherent stru
tures.A very simple stru
ture des
riptor is given, e. g., by the properties of ru~t, whereu~t(x; t) = (G~t � u(�; t))(x); (~t > 0): (4)Let us note that ~t of Gaussian kernel G~t denotes the noise s
ale (the edge dete
torignore details smaller than O(~t)). We 
an use, e. g., absolute value of ru~t for dete
t-ing edges in some images (see [1℄) but for images with line stru
tures this des
riptoris not useful. We know that high 
u
tuations remain for small ~t, while larger ~t leadsto entirely useless results. This is due to fa
t that for larger ~t neighboring gradientswith same orientation but opposite sign 
an
el ea
h other. One way how to gainthe stru
ture des
riptor invariant under sign 
hanges is to repla
e ru~t by its tensorprodu
t. Then we again average it by applying other 
onvolution with Gaussian G�J�(ru~t) = G� � (ru~truT~t ); (� � 0) (5)where � denotes the integration s
ale, whi
h re
e
ts the 
hara
teristi
 size of thetexture and in the most 
ases, it is large in 
omparison to the noise s
ale ~t. In
omputer vision 
ommunity the matrixJ� = � a bb 
 �is well-known as stru
ture tensor. This matrix J� is symmetri
 and positive semi-de�nite and its eigenvalues are given as follows�1;2 = 12 �a+ 
�p(a� 
)2 + 4b2� ; �1 � �2: (6)The eigenvalues des
ribe the average 
ontrast in the eigendire
tions ~v and ~w.The 
orresponding orthonormal set of eigenve
tors (~v; ~w) to eigenvalues (�1; �2)is given by ~v = (v1; v2); ~w = (w1; w2); (7)v1 = 2b; v2 = 
� a+p(a� 
)2 + 4b2;~w ? ~v; w1 = �v2; w2 = v1:The orientation of the eigenve
tor w, whi
h 
orresponds to the smaller eigenvalue�2 is 
alled 
oheren
e orientation. This orientation has the lowest 
u
tuations.
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essing 7792.2. Coheren
e-enhan
ing anisotropi
 di�usionSin
e we have a tool for analyzing 
oheren
e, we draw our goals to enhan
e theimage 
oheren
e. One of possibilities, how to do it, 
an be done by embedding thestru
ture tensor analysis into a nonlinear di�usion �lter.For enhan
ing 
oheren
e, the di�usion tensor D must steer a �ltering pro
esssu
h that di�usion is strong mainly along the 
oheren
e dire
tion ~w and it in
reaseswith the 
oheren
e (�1��2)2. To obtain it, we require that D must possess the sameeigenve
tors ~w and ~w as the stru
ture tensor J�(ru~t) and we 
hoose the eigenvaluesof D as �1 = �; � 2 (0; 1); �� 1;�2 = ( �; if �1 = �2;�+ (1� �) exp � �C(�1��2)2�; C > 0 else:The di�usion tensor D has a formD = ABA�1 = � � �� � � ; (8)where A = � v1 �v2v2 v1 � and B = � �1 00 �2 � :Due to the 
onvolutions in (4) and (5), the elements of matrix D are C1 fun
tions.3. FINITE{VOLUME SCHEME FOR TENSOR ANISOTROPIC DIFFUSIONIN IMAGE PROCESSINGThe aim of this se
tion is to prove the existen
e of a unique dis
rete solution forthe model (1) { (3) whi
h satis�es the semi-impli
it �nite volume s
heme obtainedwith the help of 
o-volume mesh. Let us 
onsider a re
tangular image domain
 = (0; n1h) � (0; n2h), h is a pixel size and let the image u(x) be represented bya bounded mapping u : 
 ! R. Our image is represented by n1 � n2 pixels (�nitevolumes) su
h that it looks as mesh with n1 rows and n2 
olumns. We 
onsider itin a s
aling (time) interval I = [0; T ℄. Let 0 = t0 � t1 � � � � � tNmax = T denotesthe time dis
retization with tn = tn�1 + k, where k is the time (s
ale) step. Forn = 0; : : : ; Nmax we will look for un an approximation of solution at time tn.We integrate equation (1) over �nite volume K, provide a semi-impli
it in timedis
retization and use a divergen
e theorem to getunK � un�1Kk m(K)� X�2EK Z� Dn�1run � ~nK;� ds = 0; (9)where unK , K 2 Th represents the mean value of un on K, m(K) is the measure ofthe �nite volume K with boundary �K, �KL = K \L = KjL is an edge of the �nitevolume K, where L 2 Th is an adja
ent �nite volume to K su
h that m(K \L) 6= 0.Let us note that only due to simpler notation, we will write in the sequel � instead



780 O. DRBL�IKOV�Aof �KL: EK is a subset of E su
h that �K = S�2EK �, E = SK2Th EK , where This admissible �nite volume mesh (see [6℄). � is the set of pairs of adja
ent �nitevolumes, de�ned by � = f(K;L) 2 T 2h ; K 6= L; m(KjL) 6= 0g. We will denoteDn�1� as mean value of Dn�1 � D(un�1) on �, that is Dn�1� = 1m(�) R�Dn�1 dx,where m(�) is the measure of edge �, and ~nK;� is the normal unit ve
tor to �outward to K. Let us de�ne the dis
rete solution byuh;k(x; t) = NmaxXn=0 XK2Th unK�fx 2 Kg�ftn�1 < t � tng; (10)where the fun
tion �(A) is de�ned as�fAg = � 1; if A is true;0; elsewhere:Due to theoreti
al reasons we have to extend su
h de�ned uh;k outside 
: To thatgoal we de�ned the set 
~t = 
 [ B~t(x); x 2 �
; (11)where B~t(x) is a ball 
entered at x with radius ~t and extension ~uh;k in the follow-ing way: outside 
~t, ~uh;k � 0: In 
~t � 
 we de�ne ~uh;k by mirror re
exion andperiodization through sides of 
 (re
tangular domain), where the number of su
hmirror re
exions depends on the size of ~t (see [7℄). In order to get an approximationof equation (9) we write it in the formunK � un�1Kk � 1m(K) X�2EK �n�(unh;k)m(�) = 0; (12)where �n�(unh;k) denotes an approximation of the exa
t 
ux 1m(�) R� Dn�1� run� ~nK;� dsand unh;k(x) =PK2Th unK�fx 2 Kg:One possibility how to 
onstru
t �n�(unh;k) is obtained with the help of 
o-volumemesh. The spe
i�
 name (diamond-
ell) of this method (see [2℄ and [3℄) is due to the
hoi
e of 
o-volume as a diamond-shaped polygon. The 
o-volume �� asso
iated to �is 
onstru
ted around ea
h edge by joining all four 
o-volume verti
es (i. e. endpointsof this edge and midpoints of �nite volumes whi
h are 
ommon to this edge) (seeFigure 1).We denote the endpoints of an edge �� � ��� by N1(��) and N2(��) and ~n��;�� isthe normal unit ve
tor to �� outward to ��. In order to have an approximation ofthe di�usion 
ux, we �rst derive, using divergen
e theorem, an approximation of theaveraged gradient on �1m(��) Z�� run dx = 1m(��) Z��� un~n��;�� dsand then we denote it bypn� = 1m(��) X��2��� 12 �unN1(��) + unN2(��)�m(��)~n�� ;��:
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� � �� � � ��� ���KxW xExN

xS
�1
�4�2 �3����3 -nK;���	~n��3 ;��Fig. 1. A detail of a mesh { a �nite volume K, its boundaries �i; i = 1; 2; 3; 4 and
o-volume ��3 
orresponding to �3.The value at the 
entres xE and xW are uE and uW while the values at the verti
esxN and xS are 
omputed as the arithmeti
 mean of values on �nite volumes whi
hare 
ommon to this vertex (for general nonuniform meshes see [2℄).Sin
e our mesh is uniform squared, for simpli�
ation, we 
an use the followingrelations: m(��) = h22 , m(��) = p22 h and after a short 
al
ulation we are ready towrite pn� = unE � unWh ~nK;� + unN � unSh ~tK;� ; (13)where ~tK;� is a unit ve
tor parallel to � su
h that (xN � xS) � ~tK;� > 0. Althoughsu
h unN ; unW ; unE and unS 
orrespond to parti
ular edge �, we should denote themby unN� ; unW� ; unE� and unS� , we use those simpler notations. Repla
ing the exa
tgradient run by the numeri
al gradient pn� we get the numeri
al 
ux in the form�n�(unh;k) = 1m(�) Z�Dn�1pn� � ~nK;� ds = D�pn� � ~nK;� ; (14)where D� = 1m(�) Z�Dn�1 ds = � ��� ������ ��� �in the basis (~nK;� ;~tK;�). It means, ifD = � � �� � � then D�2 = D�3 = � �� ���� �� � ;i. e. ��� = �� , ��� = �� , ��� = �� . On the other hand,D�1 = D�4 = � �� ������ �� � ;i. e. ��� = �� , ��� = ���; ��� = �� , where �� = 1m(�) R� �n�1 ds and �� and ��
orrespondingly. De�nition (14) 
an be also written in this form�n�(unh;k) = � ��� ������ ��� �0B� unE � unWhunN � unSh 1CA� 10 � = ��� unE � unWh + ��� unN � unSh ; (15)
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e (13) in the basis (~nK;� ;~tK;�) 
an be for ea
h edge written aspn� = 0B� unE � unWhunN � unSh 1CA (16)and ~nK;� in the basis (~nK;� ;~tK;�) is equal to � 1 0 �T for all edges.In order to prove existen
e and uniqueness of unK , K 2 Th, we estimate theexpressions unN � unS by means of unE � unW for all edges � in the following formX�2Eint� �������2�uN � uSh �2 ��� � 
X�2E �uE � uWh �2 ��� ; (17)where 0 � 
 < 1; 
 = max�2E 
� ; 
� = (��)2���� (1 +O(h)) (18)for h suÆ
iently small (for details see [5℄).Let us now introdu
e the spa
e of pie
ewise 
onstant fun
tions asso
iated to ourmesh and dis
rete H1 norm for this spa
e. This dis
rete norm will be used to obtainsome estimates on the approximate solution given by a �nite volume s
heme.De�nition 3.1. Let 
 be an open bounded polygonal subset of R2. We de�neP0(Th) as the set of fun
tions from 
 to R whi
h are 
onstant over ea
h �nitevolume of the mesh.De�nition 3.2. Let 
 be an open bounded polygonal subset of R2. For u 2 P0(Th)we de�ne junh;kj1;Th = 0� X(K;L)2� (uL � uK)2dK;L m(�)1A 12 ; (19)where dK;L is the Eu
lidean distan
e between xK and xL.Remark that (19) 
an be rewritten into the following formjunh;kj1;Th =  2X�2E�uE � uWh �2m(��)! 12 (20)for our uniform mesh. We 
an de�ne dis
rete operator for (1) { (3) byLh(unh;k) = unKm(K)� k X�2EK �n�(unh;k)m(�); (21)
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h that unh;k is the solution in P0(Th) ofLh(unh;k) = fh;k(un�1h;k ); (22)where fh;k(un�1h;k ) = un�1K m(K) and un�1K is a value of the pie
ewise 
onstant fun
tionun�1h;k inK. This equality is a linear system ofN equations withN unknowns, namelyunK , K 2 Th; where N = 
ard(K). Multiplying Lh(uh;k) by unK , summing over Kand splitting into a part A and B leads toXK2ThLh(unh;k)unK = A+B; (23)with A = XK2Th(unK)2m(K) = jjunh;kjj2L2(
); (24)B = k XK2Th unK X�2EK ��n�(unh;k)m(�) = Q(unh;k): (25)Then we bound Q(unh;k) as followsQ(unh;k) � ��min 1� 
2 k2 junh;kj21;Th ; (26)where ��min = inf�2E ��� � C > 0: Subsequently, it yieldsXK2ThLh(unh;k)unK � ��junh;kj21;Th + jjunh;kjj2L2(
)� (27)with � = min (��min(1� 
)k2 ; 1), (for details of derivation of this inequality see [5℄).Theorem 3.3. For h suÆ
iently small, there exists unique solution uh;k given bys
heme (12) with (15).P r o o f . Assume that uh;k satis�es the linear system (22) and let f = 0: Using(27) and (22) we get��junh;kj21;Th + jjunh;kjj2L2(
)� � XK2Th Lh(unh;k)unK = XK2Th funK = 0: (28)Due to relation (28), we know that unK = 0; 8K 2 Th. It means that kernel of thelinear transformation represented by the matrix of the system (22) 
ontains only�0 ve
tor, whi
h implies that the matrix is regular. And thus it implies that thereexists unique solution for any right hand side. �



784 O. DRBL�IKOV�ALemma 3.4. (L2(
) { a priori estimates) The s
heme (12) with (15) leads to thefollowing estimates.There exists a positive 
onstant C whi
h does not depend on h; k su
h thatmax0�n�Nmax XK2Th (unK)2m(K) � C; (29)NmaxXn=1 k X(K;L)2� (unK � unL)2dK;L m (�) � C; (30)NmaxXn=1 XK2Th �unK � un�1K �2m (K) � C: (31)P r o o f o f L2(
) { a p r i o r i e s t im a t e s. The s
heme (12) 
an be written as(unK � un�1K )m(K) = k X�2EK �n�KL(unh;k)m(�): (32)We multiply (32) by unK , sum it over K 2 Th and use the property(a� b)a = 12a2 � 12b2 + 12 (a� b)2 on the left side of (32) to obtain12 XK2Th(unK)2m(K)� 12 XK2Th(un�1K )2m(K) + 12 XK2Th(unK � un�1K )2m(K)= k XK2Th X�2EK unK�n�KL(unh;k)m(�): (33)We 
an rearrange PK2Th P�2EK into P�KL2E and then we add a sum over n = 1; : : : ;m <Nmax to get 12 XK2Th(umK)2m(K) + 12 mXn=1 XK2Th(unK � un�1K )2m(K)�k mXn=1 X�KL2E unK�n�KL(unh;k)m(�) = 12 XK2Th(u0K)2m(K): (34)And from it using (25) and (26) we have12 XK2Th(umK)2m(K) + 12 mXn=1 XK2Th(unK � un�1K )2m(K)+�� mXn=1 kjunh;kj21;Th � 12 XK2Th(u0K)2m(K) (35)with a positive 
onstant ��. Sin
e u0K 2 L2(
), the right hand side is bounded bya positive 
onstant C. Using the �rst term of (35) we get the �rst L2(
) { a prioriestimate (29) and from the se
ond term of (35) we have the third L2(
) { a prioriestimate (31). From stri
t positiveness of �� in the third term of (35) and fromde�nition (19) we obtain the se
ond L2(
) { a priori estimate (30). �
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rete Solution of Nonlinear Tensor Di�usion Equation in Image Pro
essing 7854. NUMERICAL EXPERIMENTSThe aim of this se
tion is to present behavior of the nonlinear tensor di�usion, usingour s
heme (12) with the numeri
al 
ux given by (15).In these experiments we use spatial step h = 0:01, time step k = 0:0001, C =1, � = 0:001, ~t = 0:00001 and � = 0:002: The arising sparse linear systems aresolved by Gauss{Seidel iterative method. For numeri
al implementation we use theprogramming language C.

Fig. 2. Cell membranes. The image size is 100� 100 pixels. Top (left): original image.Top (right): edge dete
tion for the original image. Bottom (left): image after 4 �lteringsteps. Bottom (right): edge dete
tion for the image after 4 steps.The images used for our 
omputational experiments were obtained by multi-photon laser s
anning mi
ros
opy. They are 
hosen from series of images whi
h
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t 
ells of zebra-�sh embryogenesis.

Fig. 3. Cells with nu
lei and membranes as well. The image size is 240� 240 pixels. Top(left): original image. Top (right): edge dete
tion for the original image. Bottom (left):image after 5 �ltering steps. Bottom (right): edge dete
tion for the image after 5 steps.Our experiments are presented in two examples. Figure 2 shows 
ell membranes ofthe embryo while in Figure 3 
ell membranes and nu
lei of the embryo are illustrated.Both �gures 
onsist of four sub-�gures. For ea
h of these �gures, we depi
t anoriginal noisy image at the top (left), a smoothed image at the bottom (left), anedge dete
tion whi
h 
orresponds to the original image at the top (right) and anedge dete
tion whi
h 
orresponds to the �ltered image at the bottom (right). Weuse Sobel method of edge dete
tion.We demonstrate an e�e
t of smoothing and emphasizing of line stru
tures in
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rete Solution of Nonlinear Tensor Di�usion Equation in Image Pro
essing 787these �gures. Even if �ltered images (Figure 2 { 3 bottom (left))) are more blurred
ompared with original images (Figure 2 { 3 top (left)), one 
an observe that linestru
tures (boundaries of membranes and nu
lei) (Figure 2 { 3 bottom (right)) are
learly dete
ted 
ompared with the original images (Figure 2 { 3 top (right)). Thisenhan
ement of edge dete
tion is useful for subsequent image pro
essing, e. g., seg-mentation. Human eye 
an see boundaries of membranes and nu
lei of the originalimages and �ltered ones. However, the 
omputer using edge dete
tion "is not ableto re
ognize" some boundaries of the original image, e. g., membranes of small 
ellin the middle of the image and its left and right neighboring 
ells as well (see Fig-ure 2 top). On the other hand, the 
omputer "
an easy dete
t" these 
ells usingedge dete
tion of the �ltered image (see Figure 2 bottom (right)). The di�eren
ebetween edge dete
tion of the original and �ltered images is even more expressive inFigure 3. One is able to re
ognize only boundaries of 
ell nu
lei in the edge dete
tionof the original image (see Figure 3 top (right)) while after �ltering we 
an also seeboundaries of 
ell in the edge dete
tion (see Figure 3 bottom (right)).The satisfa
tory results were obtained after few time steps, so the denoisingmethod is really fast. In the presented experiments we do not observe any stabilityproblems whi
h is a usual drawba
k of expli
it s
hemes, (see [11℄).ACKNOWLEDGEMENTThis work was supported by the grants VEGA 1/0313/03, APVT-20-040902 and Europeanproje
ts Embryomi
s and BioEmergen
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