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This paper onerns with the �nite volume sheme for nonlinear tensor di�usion in imageproessing. First we provide some basi information on this type of di�usion inluding aonstrution of its di�usion tensor. Then we derive a semi-impliit sheme with the help ofso-alled diamond-ell method (see Coirier [2℄ and Coirier, Powell [3℄). Further, we proveexistene and uniqueness of a disrete solution given by our sheme. The proof is based ona gradient bound in the tangential diretion by a gradient in normal diretion. Moreover,the proofs of L2(
) { a priori estimates for our disrete solution are given. Finally wepresent our omputational results.Keywords: �nite volume method, diamond-ell method, image proessing, nonlinearparaboli equation, tensor di�usionAMS Subjet Classi�ation: 35K60, 94A08, 74S101. INTRODUCTIONThe e�ort to gain proessed image quiker and by a less omputationally expensiveway leads to inventions of new di�usion models and also to their improvements. Oneof them was introdued by Weikert (see, e. g., [10℄) in the following form�u�t �r � (Dru) = 0; in QT � I �
; (1)u(x; 0) = u0(x); in 
; (2)hDru; ni = 0; on I � �
; (3)where u denotes an intensity of greylevel image and D is a matrix depending on theeigenvalues and on the eigenvetors of the so-alled (regularized) struture tensor J =ru(ru)T (for details see next setion). This modi�ation is useful in any situation,where strong smoothing in one diretion and low smoothing in the perpendiulardiretion are desirable. Owing to this property, tensor anisotropi di�usion has beenapplied mainly for images with interrupted oherene of strutures.We derive our numerial sheme for this di�usion model by �nite volume method.We hoose this modern disretization tehnique sine it is well suited for a numerial



778 O. DRBL�IKOV�Asolution of onservation laws. It has been suessfully applied in image proessing,e. g., for solving the Perona{Malik equation [9℄ or urvature driven level set equa-tion [8℄.2. DERIVATION OF DIFFUSION TENSOR2.1. Analyzing oherent struturesIn order to enhane a oherene of strutures, we need a reliable tool for analyzingoherent strutures.A very simple struture desriptor is given, e. g., by the properties of ru~t, whereu~t(x; t) = (G~t � u(�; t))(x); (~t > 0): (4)Let us note that ~t of Gaussian kernel G~t denotes the noise sale (the edge detetorignore details smaller than O(~t)). We an use, e. g., absolute value of ru~t for detet-ing edges in some images (see [1℄) but for images with line strutures this desriptoris not useful. We know that high utuations remain for small ~t, while larger ~t leadsto entirely useless results. This is due to fat that for larger ~t neighboring gradientswith same orientation but opposite sign anel eah other. One way how to gainthe struture desriptor invariant under sign hanges is to replae ru~t by its tensorprodut. Then we again average it by applying other onvolution with Gaussian G�J�(ru~t) = G� � (ru~truT~t ); (� � 0) (5)where � denotes the integration sale, whih reets the harateristi size of thetexture and in the most ases, it is large in omparison to the noise sale ~t. Inomputer vision ommunity the matrixJ� = � a bb  �is well-known as struture tensor. This matrix J� is symmetri and positive semi-de�nite and its eigenvalues are given as follows�1;2 = 12 �a+ �p(a� )2 + 4b2� ; �1 � �2: (6)The eigenvalues desribe the average ontrast in the eigendiretions ~v and ~w.The orresponding orthonormal set of eigenvetors (~v; ~w) to eigenvalues (�1; �2)is given by ~v = (v1; v2); ~w = (w1; w2); (7)v1 = 2b; v2 = � a+p(a� )2 + 4b2;~w ? ~v; w1 = �v2; w2 = v1:The orientation of the eigenvetor w, whih orresponds to the smaller eigenvalue�2 is alled oherene orientation. This orientation has the lowest utuations.



Disrete Solution of Nonlinear Tensor Di�usion Equation in Image Proessing 7792.2. Coherene-enhaning anisotropi di�usionSine we have a tool for analyzing oherene, we draw our goals to enhane theimage oherene. One of possibilities, how to do it, an be done by embedding thestruture tensor analysis into a nonlinear di�usion �lter.For enhaning oherene, the di�usion tensor D must steer a �ltering proesssuh that di�usion is strong mainly along the oherene diretion ~w and it inreaseswith the oherene (�1��2)2. To obtain it, we require that D must possess the sameeigenvetors ~w and ~w as the struture tensor J�(ru~t) and we hoose the eigenvaluesof D as �1 = �; � 2 (0; 1); �� 1;�2 = ( �; if �1 = �2;�+ (1� �) exp � �C(�1��2)2�; C > 0 else:The di�usion tensor D has a formD = ABA�1 = � � �� � � ; (8)where A = � v1 �v2v2 v1 � and B = � �1 00 �2 � :Due to the onvolutions in (4) and (5), the elements of matrix D are C1 funtions.3. FINITE{VOLUME SCHEME FOR TENSOR ANISOTROPIC DIFFUSIONIN IMAGE PROCESSINGThe aim of this setion is to prove the existene of a unique disrete solution forthe model (1) { (3) whih satis�es the semi-impliit �nite volume sheme obtainedwith the help of o-volume mesh. Let us onsider a retangular image domain
 = (0; n1h) � (0; n2h), h is a pixel size and let the image u(x) be represented bya bounded mapping u : 
 ! R. Our image is represented by n1 � n2 pixels (�nitevolumes) suh that it looks as mesh with n1 rows and n2 olumns. We onsider itin a saling (time) interval I = [0; T ℄. Let 0 = t0 � t1 � � � � � tNmax = T denotesthe time disretization with tn = tn�1 + k, where k is the time (sale) step. Forn = 0; : : : ; Nmax we will look for un an approximation of solution at time tn.We integrate equation (1) over �nite volume K, provide a semi-impliit in timedisretization and use a divergene theorem to getunK � un�1Kk m(K)� X�2EK Z� Dn�1run � ~nK;� ds = 0; (9)where unK , K 2 Th represents the mean value of un on K, m(K) is the measure ofthe �nite volume K with boundary �K, �KL = K \L = KjL is an edge of the �nitevolume K, where L 2 Th is an adjaent �nite volume to K suh that m(K \L) 6= 0.Let us note that only due to simpler notation, we will write in the sequel � instead



780 O. DRBL�IKOV�Aof �KL: EK is a subset of E suh that �K = S�2EK �, E = SK2Th EK , where This admissible �nite volume mesh (see [6℄). � is the set of pairs of adjaent �nitevolumes, de�ned by � = f(K;L) 2 T 2h ; K 6= L; m(KjL) 6= 0g. We will denoteDn�1� as mean value of Dn�1 � D(un�1) on �, that is Dn�1� = 1m(�) R�Dn�1 dx,where m(�) is the measure of edge �, and ~nK;� is the normal unit vetor to �outward to K. Let us de�ne the disrete solution byuh;k(x; t) = NmaxXn=0 XK2Th unK�fx 2 Kg�ftn�1 < t � tng; (10)where the funtion �(A) is de�ned as�fAg = � 1; if A is true;0; elsewhere:Due to theoretial reasons we have to extend suh de�ned uh;k outside 
: To thatgoal we de�ned the set 
~t = 
 [ B~t(x); x 2 �
; (11)where B~t(x) is a ball entered at x with radius ~t and extension ~uh;k in the follow-ing way: outside 
~t, ~uh;k � 0: In 
~t � 
 we de�ne ~uh;k by mirror reexion andperiodization through sides of 
 (retangular domain), where the number of suhmirror reexions depends on the size of ~t (see [7℄). In order to get an approximationof equation (9) we write it in the formunK � un�1Kk � 1m(K) X�2EK �n�(unh;k)m(�) = 0; (12)where �n�(unh;k) denotes an approximation of the exat ux 1m(�) R� Dn�1� run� ~nK;� dsand unh;k(x) =PK2Th unK�fx 2 Kg:One possibility how to onstrut �n�(unh;k) is obtained with the help of o-volumemesh. The spei� name (diamond-ell) of this method (see [2℄ and [3℄) is due to thehoie of o-volume as a diamond-shaped polygon. The o-volume �� assoiated to �is onstruted around eah edge by joining all four o-volume verties (i. e. endpointsof this edge and midpoints of �nite volumes whih are ommon to this edge) (seeFigure 1).We denote the endpoints of an edge �� � ��� by N1(��) and N2(��) and ~n��;�� isthe normal unit vetor to �� outward to ��. In order to have an approximation ofthe di�usion ux, we �rst derive, using divergene theorem, an approximation of theaveraged gradient on �1m(��) Z�� run dx = 1m(��) Z��� un~n��;�� dsand then we denote it bypn� = 1m(��) X��2��� 12 �unN1(��) + unN2(��)�m(��)~n�� ;��:
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� � �� � � ��� ���KxW xExN

xS
�1
�4�2 �3����3 -nK;���	~n��3 ;��Fig. 1. A detail of a mesh { a �nite volume K, its boundaries �i; i = 1; 2; 3; 4 ando-volume ��3 orresponding to �3.The value at the entres xE and xW are uE and uW while the values at the vertiesxN and xS are omputed as the arithmeti mean of values on �nite volumes whihare ommon to this vertex (for general nonuniform meshes see [2℄).Sine our mesh is uniform squared, for simpli�ation, we an use the followingrelations: m(��) = h22 , m(��) = p22 h and after a short alulation we are ready towrite pn� = unE � unWh ~nK;� + unN � unSh ~tK;� ; (13)where ~tK;� is a unit vetor parallel to � suh that (xN � xS) � ~tK;� > 0. Althoughsuh unN ; unW ; unE and unS orrespond to partiular edge �, we should denote themby unN� ; unW� ; unE� and unS� , we use those simpler notations. Replaing the exatgradient run by the numerial gradient pn� we get the numerial ux in the form�n�(unh;k) = 1m(�) Z�Dn�1pn� � ~nK;� ds = D�pn� � ~nK;� ; (14)where D� = 1m(�) Z�Dn�1 ds = � ��� ������ ��� �in the basis (~nK;� ;~tK;�). It means, ifD = � � �� � � then D�2 = D�3 = � �� ���� �� � ;i. e. ��� = �� , ��� = �� , ��� = �� . On the other hand,D�1 = D�4 = � �� ������ �� � ;i. e. ��� = �� , ��� = ���; ��� = �� , where �� = 1m(�) R� �n�1 ds and �� and ��orrespondingly. De�nition (14) an be also written in this form�n�(unh;k) = � ��� ������ ��� �0B� unE � unWhunN � unSh 1CA� 10 � = ��� unE � unWh + ��� unN � unSh ; (15)



782 O. DRBL�IKOV�Asine (13) in the basis (~nK;� ;~tK;�) an be for eah edge written aspn� = 0B� unE � unWhunN � unSh 1CA (16)and ~nK;� in the basis (~nK;� ;~tK;�) is equal to � 1 0 �T for all edges.In order to prove existene and uniqueness of unK , K 2 Th, we estimate theexpressions unN � unS by means of unE � unW for all edges � in the following formX�2Eint� �������2�uN � uSh �2 ��� � X�2E �uE � uWh �2 ��� ; (17)where 0 �  < 1;  = max�2E � ; � = (��)2���� (1 +O(h)) (18)for h suÆiently small (for details see [5℄).Let us now introdue the spae of pieewise onstant funtions assoiated to ourmesh and disrete H1 norm for this spae. This disrete norm will be used to obtainsome estimates on the approximate solution given by a �nite volume sheme.De�nition 3.1. Let 
 be an open bounded polygonal subset of R2. We de�neP0(Th) as the set of funtions from 
 to R whih are onstant over eah �nitevolume of the mesh.De�nition 3.2. Let 
 be an open bounded polygonal subset of R2. For u 2 P0(Th)we de�ne junh;kj1;Th = 0� X(K;L)2� (uL � uK)2dK;L m(�)1A 12 ; (19)where dK;L is the Eulidean distane between xK and xL.Remark that (19) an be rewritten into the following formjunh;kj1;Th =  2X�2E�uE � uWh �2m(��)! 12 (20)for our uniform mesh. We an de�ne disrete operator for (1) { (3) byLh(unh;k) = unKm(K)� k X�2EK �n�(unh;k)m(�); (21)



Disrete Solution of Nonlinear Tensor Di�usion Equation in Image Proessing 783suh that unh;k is the solution in P0(Th) ofLh(unh;k) = fh;k(un�1h;k ); (22)where fh;k(un�1h;k ) = un�1K m(K) and un�1K is a value of the pieewise onstant funtionun�1h;k inK. This equality is a linear system ofN equations withN unknowns, namelyunK , K 2 Th; where N = ard(K). Multiplying Lh(uh;k) by unK , summing over Kand splitting into a part A and B leads toXK2ThLh(unh;k)unK = A+B; (23)with A = XK2Th(unK)2m(K) = jjunh;kjj2L2(
); (24)B = k XK2Th unK X�2EK ��n�(unh;k)m(�) = Q(unh;k): (25)Then we bound Q(unh;k) as followsQ(unh;k) � ��min 1� 2 k2 junh;kj21;Th ; (26)where ��min = inf�2E ��� � C > 0: Subsequently, it yieldsXK2ThLh(unh;k)unK � ��junh;kj21;Th + jjunh;kjj2L2(
)� (27)with � = min (��min(1� )k2 ; 1), (for details of derivation of this inequality see [5℄).Theorem 3.3. For h suÆiently small, there exists unique solution uh;k given bysheme (12) with (15).P r o o f . Assume that uh;k satis�es the linear system (22) and let f = 0: Using(27) and (22) we get��junh;kj21;Th + jjunh;kjj2L2(
)� � XK2Th Lh(unh;k)unK = XK2Th funK = 0: (28)Due to relation (28), we know that unK = 0; 8K 2 Th. It means that kernel of thelinear transformation represented by the matrix of the system (22) ontains only�0 vetor, whih implies that the matrix is regular. And thus it implies that thereexists unique solution for any right hand side. �



784 O. DRBL�IKOV�ALemma 3.4. (L2(
) { a priori estimates) The sheme (12) with (15) leads to thefollowing estimates.There exists a positive onstant C whih does not depend on h; k suh thatmax0�n�Nmax XK2Th (unK)2m(K) � C; (29)NmaxXn=1 k X(K;L)2� (unK � unL)2dK;L m (�) � C; (30)NmaxXn=1 XK2Th �unK � un�1K �2m (K) � C: (31)P r o o f o f L2(
) { a p r i o r i e s t im a t e s. The sheme (12) an be written as(unK � un�1K )m(K) = k X�2EK �n�KL(unh;k)m(�): (32)We multiply (32) by unK , sum it over K 2 Th and use the property(a� b)a = 12a2 � 12b2 + 12 (a� b)2 on the left side of (32) to obtain12 XK2Th(unK)2m(K)� 12 XK2Th(un�1K )2m(K) + 12 XK2Th(unK � un�1K )2m(K)= k XK2Th X�2EK unK�n�KL(unh;k)m(�): (33)We an rearrange PK2Th P�2EK into P�KL2E and then we add a sum over n = 1; : : : ;m <Nmax to get 12 XK2Th(umK)2m(K) + 12 mXn=1 XK2Th(unK � un�1K )2m(K)�k mXn=1 X�KL2E unK�n�KL(unh;k)m(�) = 12 XK2Th(u0K)2m(K): (34)And from it using (25) and (26) we have12 XK2Th(umK)2m(K) + 12 mXn=1 XK2Th(unK � un�1K )2m(K)+�� mXn=1 kjunh;kj21;Th � 12 XK2Th(u0K)2m(K) (35)with a positive onstant ��. Sine u0K 2 L2(
), the right hand side is bounded bya positive onstant C. Using the �rst term of (35) we get the �rst L2(
) { a prioriestimate (29) and from the seond term of (35) we have the third L2(
) { a prioriestimate (31). From strit positiveness of �� in the third term of (35) and fromde�nition (19) we obtain the seond L2(
) { a priori estimate (30). �



Disrete Solution of Nonlinear Tensor Di�usion Equation in Image Proessing 7854. NUMERICAL EXPERIMENTSThe aim of this setion is to present behavior of the nonlinear tensor di�usion, usingour sheme (12) with the numerial ux given by (15).In these experiments we use spatial step h = 0:01, time step k = 0:0001, C =1, � = 0:001, ~t = 0:00001 and � = 0:002: The arising sparse linear systems aresolved by Gauss{Seidel iterative method. For numerial implementation we use theprogramming language C.

Fig. 2. Cell membranes. The image size is 100� 100 pixels. Top (left): original image.Top (right): edge detetion for the original image. Bottom (left): image after 4 �lteringsteps. Bottom (right): edge detetion for the image after 4 steps.The images used for our omputational experiments were obtained by multi-photon laser sanning mirosopy. They are hosen from series of images whih



786 O. DRBL�IKOV�Adepit ells of zebra-�sh embryogenesis.

Fig. 3. Cells with nulei and membranes as well. The image size is 240� 240 pixels. Top(left): original image. Top (right): edge detetion for the original image. Bottom (left):image after 5 �ltering steps. Bottom (right): edge detetion for the image after 5 steps.Our experiments are presented in two examples. Figure 2 shows ell membranes ofthe embryo while in Figure 3 ell membranes and nulei of the embryo are illustrated.Both �gures onsist of four sub-�gures. For eah of these �gures, we depit anoriginal noisy image at the top (left), a smoothed image at the bottom (left), anedge detetion whih orresponds to the original image at the top (right) and anedge detetion whih orresponds to the �ltered image at the bottom (right). Weuse Sobel method of edge detetion.We demonstrate an e�et of smoothing and emphasizing of line strutures in



Disrete Solution of Nonlinear Tensor Di�usion Equation in Image Proessing 787these �gures. Even if �ltered images (Figure 2 { 3 bottom (left))) are more blurredompared with original images (Figure 2 { 3 top (left)), one an observe that linestrutures (boundaries of membranes and nulei) (Figure 2 { 3 bottom (right)) arelearly deteted ompared with the original images (Figure 2 { 3 top (right)). Thisenhanement of edge detetion is useful for subsequent image proessing, e. g., seg-mentation. Human eye an see boundaries of membranes and nulei of the originalimages and �ltered ones. However, the omputer using edge detetion "is not ableto reognize" some boundaries of the original image, e. g., membranes of small ellin the middle of the image and its left and right neighboring ells as well (see Fig-ure 2 top). On the other hand, the omputer "an easy detet" these ells usingedge detetion of the �ltered image (see Figure 2 bottom (right)). The di�erenebetween edge detetion of the original and �ltered images is even more expressive inFigure 3. One is able to reognize only boundaries of ell nulei in the edge detetionof the original image (see Figure 3 top (right)) while after �ltering we an also seeboundaries of ell in the edge detetion (see Figure 3 bottom (right)).The satisfatory results were obtained after few time steps, so the denoisingmethod is really fast. In the presented experiments we do not observe any stabilityproblems whih is a usual drawbak of expliit shemes, (see [11℄).ACKNOWLEDGEMENTThis work was supported by the grants VEGA 1/0313/03, APVT-20-040902 and Europeanprojets Embryomis and BioEmergenes. We thank to Dr. Nadine Peyrieras (CNRS Paris)for the testing images. (Reeived November 30, 2006.)REFERENCES[1℄ F. Catt�e, P. L. Lions, J.M. Morel, and T. Coll: Image seletive smoothing and edgedetetion by nonlinear di�usion. SIAM J. Numer. Anal. 129 (1991), 182{193.[2℄ W. J. Coirier: An a Adaptively-Re�ned, Cartesian, Cell-Based Sheme for the Eulerand Navier-Stokes Equations. PhD Thesis, Mihigan Univ. NASA Lewis ResearhCenter, 1994.[3℄ W. J. Coirier and K.G. Powell: A artesian, ell-based approah for adaptive-re�nedsolutions of the Euler and Navier{Stokes equations. AIAA 1995.[4℄ Y. Coudiere, J. P. Vila, and P. Villedieu: Convergene rate of a �nite volume sheme fora two-dimensional onvetion-di�usion problem. M2AN Math. Model. Numer. Anal.33 (1999), 493{516.[5℄ O. Drbl��kov�a: Finite volume shemes for tensor anisotropi di�usion in image proess-ing. In: Pro. MAGIA 2005, STU Bratislava 2005, pp. 7{18. (www.math.sk/drblikov)[6℄ R. Eymard, T. Gallou�et, and R. Herbin: Finite Volume Methods. In: Handbook forNumerial Analysis, Vol. 7 (Ph. Ciarlet, J. L. Lions, eds.), Elsevier, Amsterdam 2000.[7℄ F. Guihard and J.M. Morel: Image Analysis and P.D.E.s. IPAM GBM Tutorials,2001.[8℄ A. Handlovi�ov�a, K. Mikula, and F. Sgallari: Semi-impliit omplementary volumesheme for solving level set like equations in image proessing and urve evolution.Numer. Math. 93 (2003), 675{695.
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