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ABSTRACTThis paper is devoted to a finite volume scheme for coheremitaneing diffusion
filtering in 3D image processing. First, we derive the modetjuding a construction of its
diffusion tensor. Then we design an original semi-impliititte volume scheme for this 3D
model with the help of the co-volume mesh. Our method is basélde choice of co-volumes
as diamond-shaped polygons around each side of a 3D finitenal Finally we discuss com-
putational results in biomedical image processing illaséd in figures.
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1. Introduction

Nonlinear diffusion is an interesting topic of study beao$the amazing diver-
sity of its applications, among which image processing hasvg rapidly in recent
decades, cf. [WEI 99, PRR 00, PRR 02, MNW 02, DRM 07]. In thipgrave
suggest an original 3D diamond-cell finite volume schemafalb model of nonlinear
tensor anisotropic filtering. The model is given in the faling form

ou

Frin V- (DVu) = 0, inQr=1Ix9Q, [1]
u($70) = uO(]“)a in Q7 [2]
(DVu)-n = 0, on I x 09, [3]

whereu denotes an intensity of greylevel 3D imagg,c L*(92), I = [0, 7] is a time
interval, 2 is an image domain) is a diffusion tensor depending arfz, ¢t) andn
is the outer normal unit vector t@Q2. This model is useful in any situation, where



strong smoothing is desirable in a particular directiog, along 2D edge surfaces in
3D images, where a low smoothing is expected in the perpeladidirection. It has a
capacity to improve the spatial coherence of structureg;iwtan be deteriorated by
a high level of noise.

2. Derivation of the diffusion tensor

First we build a gradient of the intensity functiargiven by
Vg = (Usy, Ugy, Ugs) -, where wug(z,t) = (G;xu(-,t))(z), (£ >0) [4]

andGj is a smoothing kernel. We dendt&u;||? by p. Providedu > 0 we choose
the triplet of vectorgv;, ve, v3) as follows

vy || Vug, vy L Vug, vy L Vug, vy L wg. [5]

The direction of vector; represents in every point a direction of the largest chamge i
image intensity. The other two vectors give a tangentiai@l@ a level set of image
intensity which may represent a 2D surface edge in 3D imag®jged thatu is large,
and we call it a coherence plafe cf. [MNW 02]. The coherence plane corresponds
to an eigenspace corresponding to eigenvalakthe outer producVu; ® Vu;.

The idea of the nonlinear diffusion tensor filtering is addats. We obtain a
processed version(x, t) of an original image:,(z) with a scale parameter> 0 as
the solution of mathematical model [1]-[3], whefedepends on solution, satisfies
smoothness and symmetry properties. In order to enhaneageamte, the diffusion
tensorD must steer a filtering process such that diffusion is stramdjiacreasing
with the level ofy, along the coherence plane and is small in the direction aiovec
v1. To that end, we choose the eigenvalues of the diffusiorotedy

k1 = a «a€(0,1), akl, [6]

14

a, ifp=0,
2 = a+ (1 —a)exp (‘C), C >0 otherwise,

and corresponding eigenspaces are given;bgnd’P. In such a way, and, applying
Gaussian smoothing with varianpeve get the diffusion matrixD in the form

B, ifp=0 Fo 000
D =Gy * Do, where Do = { PBP-! otherwise, © 8 %2 /S [71
2

andP is a transition matrix from the bas{s;, vo, v3) to (e1, €2, e3). The exponential
function in [6] is used because it ensures thatdoes not exceetl, and the positive
parametery guarantees that the process never stops; evertéhds to zero, there
still remains some small linear diffusiod: has the role of a threshold parameter. If
> Cthenks ~ 1, and, conversely ifi < C thenk, = .



In fact, the matrixD, is uniformly positive definite, it does not depend on the
concrete choice of; andvs and, if > 0, in standard basis it has the form

1 [ ui s+ (ug, i)k Uy Uz, (K1 — K2) Uz Uag (K1 — K2)
el Uz, Uzy (K1 — K2) uizm + (ui1 + uig)m , Uy Uzy (;’1 — /<;22)
2 Uz, Uzg (K1 — K2) Ugy Uzg (K1 — K2) Ugg K1 + (Ug, + Uy )K2

It depends explicitly o'Vu; and can thus be evaluated in a direct and fast way using
the diamond-cell finite volume method (see also next sektibmen the matrices, and
correspondingly the coherence and gradient directioresspatially averaged using
convolution applied to the matrix elements. Since

3 3
2"D(x)z = 21(G, * Do(x))z = ZZ zJ/G,, —&)d;;(§)de =

3 3
/Gp(x—g)zz zizjdij ( d§>a/G (x —&)dé = a >0,
R? =1i=1

wherez € Q, 2 = (21, 22, 23) iS any non-zero vector iR* andd,; are elements of the
matrix Dy, we see that the diffusion tensbris positive definite. At this point we dif-
fer from other possible approaches, see e.g. [WEI 99], wiherso-called 3D struc-
ture tensor is first built using convolution applied to thessyroduct of the intensity
gradient, and its eigenvalues and eigenvectors are catetrand used for building
diffusion tensor. In the general 3D case this procedure isernomplicated than our
method (with explicitly given matrixD,) because it has to deal with eigenvector and
eigenvalue analysis of genetalx 3 matrices in every image pixel. However, it can
also be made fast using, e.g., AOS schemes [WEI 99,WES 02nias approach

to ours (without explicitly stating the convolution I6y,) is also givenin [MNW 02].

3. Finite volume scheme for 3D nonlinear tensor anisotropidiffusion

The goal of this section is to derive our method of calcutatibet the image be
represented by, x ny x ng voxels (finite volumes) such that it looks like a mesh with
n1 rOWS,nqe columns andug layers. Let2 = (0,n1h) x (0,n2h) x (0,n3h), h be a
voxel size and let the image(x) be given by a bounded mapping:  — R. We
consider the smoothing process in atime intefval [0, T]. Let0 = t; < t; < --- <
tn,.. = 1 denote the time discretization with = ¢,,_; + k, wherek is a length of
discrete time step. In our scheme we will look 16 an approximation of solution at
timet,, for everyn = 1, ..., N,uq.. As usual in finite volume methods, we integrate
equation [1] over finite volumé(, then provide a semi-implicit time discretization
and use a divergence theorem to get

n—1

%m(m— 3 (D" 'Vu™) -ngq.ds = 0,  [8]

0€EKNEint © 9



whereu’, K € T, represents the mean value«f on K and7;, is a cubic finite
volume mesh. Further quantities and notations are destabdollows:m(K) is a
3D measure of the finite volum& with boundary0K, ok, = K N L is a side of
the finite volumekK, whereL € 7} is an adjacent finite volume t& such that a 2D
measuren(K N L) # 0. Due to simplifying notations, we useinstead ofox;, at
several places if no confusion can appéar.is set of sides such that' = (J, .., o
and& = Ugez, €x. The set of boundary sides is denoteddy;, that is&..: =
{oc € &0 C 8(2} and let&,,: = £\ Eezt. T is the set of pairs of adjacent finite
volumes, defined b{f = {(K,L) € 7,2, K # L, m(KNL) # 0} andng , is
the normal unit vector te- outward toK.

Nrnu.r
Let our numerical solution bey, ,(z,t) = > > UkX{zeK}X{tn_1<t<tn}s
n=0 KeT;
. . . 1, if A is true,
where the functiony 4, is defined asyja, = { 0. elsewhere In our
scheme we start the computation by defining initial valw%s_ fK uo(z)dz,
K € T, andletuy, , (z) = > ukx{z € K} denote afinite volume approximation
KeTy,
at then-th time step. In order to obtain the scheme we write [8] inftren
n—1
U’K — Uk 1 ng.n _
c€EEKNEint

wherem(o) is the measure of side and ¢, (uj, ;) denotes an approximation of the
exact averaged flum(g) JL(D""'Vu™) - ng ods forany K ando € Ex.

We construcipy (uj, ;) with the help of a co-volume mesh, cf. e.g. [CVV 99,
DRM 07], forthe 2D case. The co-volumg associated withr is constructed around
each finite volume side by joining four vertices of this side anidpoints of finite vol-
umes which are common to this side, cf. Fig.1. The co-volumedary is given by
trianglesc C Jx., (we denote their vertices by (7), N2(5) and N3(7)) and let
n, s be the normal unit vector t6 outward toy,. In order to approximate diffu-
sion flux, using divergence theorem, we first derive an agpration of the averaged

H 1 n _ 1 n
gradient ony,, namely -~ fxg Vude = - faxa u"n,, sds and then we
approximate it by (u) = m Xa: 3 (“er(&) + U5+ u"Na([_,)) m(o)ny, &
o€EdXo
For each sider, let the values atrz andzy, be denoted asg anduy,, and let the

valuesury, urs, ugn, andupgg at the verticesry, z1s, Ty, andxgs, cf. Fig. 1, be
computed as the arithmetic meanwgf, whereK are finite volumes which are com-
mon to the vertex. Since our mesh is uniform and squared, weisa the following

relations:m(xs) = %3 m(c) = ‘/T§h2 and after a short calculation we are ready to
state
PR (u) = U — urlean I Uy + Uy — U — u%sﬂKU
h ’ 2h '
ufy +Ung — Upy — Upg
2k o, 10
+ oh K, [10]



wheretl i, is a unit vector parallel tern — x1s such thalzrn — z7s) - tlgx s > 0
andt2k , is a unit vector parallel tery — zpy such thaxry — 2y ) - 2k, > 0.
Replacing the exact gradieRtu™ by the numerical gradient? («) in approximation

Figure 1. The vertices of co-volume, associated with side

of ¢ (uj; ) we get the numerical flux in the form

¢5 (up k) = (Dopy(u)) - Nk 0, [11]
Df, DY, Diy
whereD, = D2~' = | DY, D3, D3, | isanapproximationofthe mean value

Dis D33 Dy
of matrix D alongo evaluated at the previous time step. To that end wedgke for
the construction of the diffusion tensor. Because of therglutions in (4) and ’(7), the
elements of matridD,, areC® functions.
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Figure 2. A finite volumeX, its boundariesr;, i« = E, W, N, S, T, B and the fluxes outward
to the finite volumey

It is important to note that in [11] we always consider the naD, written in
the basis(nk »,tlx . 2x,), cf. [CVV 99, DRM 07] for an analogy with the



2D model. Although it may look artificial, it will simplify feher considerations. In
practice it means that, cf. Fig. 2, if the matfixis given in standard basis on siddy
Dy, DYy Dis
DY{, D3, D3 | thenitdoesnotchangein new basis on two siglgsando.
Di; D33 Dis
D3, Dy D3
For two other sidess andoy, in new basis it has the form Df, DY, Df; |,
D3; Dy Dgy
D33 D33 Di;
and for the last two sidess andoy it becomes| D3, D3, D7, |. Usingsuch
. . o Di; Dy, Dfy
matrix representations, definition [11] can be written iis tompact form

No No No Up— UGy
11 D12 13 h . 1
(7 = Do, Dg. Dg. UIN +HUBN —Uhs —URs 0 =
¢a(uh,k) = V12 Daa LDas h =
D(fj ng ng Urn +UTs —UpN —Ups 0

2h

— Do Up—Upy _|_Da wrn +URN —UTs —URs + Do, U HUTs —UBN —Us
— 11 h 12 2h 13 2h :

Finally, let us summarize owemi-implicit finite volume scheme

n n—1
uK — uK 1 n n
- ¢y (up, x)m(o) =0, [12]
K m(K) Geggr;&:nt 7
where (bZ(UZk) = Di’lw 1 Dg, Upn + UBN2;L Urg — Upg
+ DMy + urs Q_hUBN ~ Ups [13]

Let us note that when we consider the arithmetic mean of tixelwalues for the
values ofury, urs, upy andugg in [13], we end up with27 point finite volume
scheme. We solve the resulting linear system by the Gaudgl$terative method.

4. Numerical experiments

In this section we present computational results using3®amages coming from
multiphoton laser scanning microscopy. It represents teenbranes of sea urchin
cells in the early stages of embryogenesis and its sizelis< 200 x 94 voxels.

The images of the membranes are well suited for processitigi®yype of diffu-
sion, which is documented by comparing the edge detectisuiteebefore and after
filtering in Figures 3-4. The edge detection is a well suitezhsure of the filtering
quality, because filtering usually serves as a prelimintey ef segmentation, which
strongly depends on proper edge detection result. In theraxpnts we usé = 0.01,

k = 0.00001, C = 1, a = 0.001, £ = 0.00001, p = 0.002. The satisfactory results



were obtained after a few filtering steps and in the presestpdriments we did not
observe any instability problem, which is a usual drawbacéxplicit schemes, cf.
[WES 02].

Figure 3. 2D slice of 3D membranes image. Original image (left), edgtection of the
original image (in the middle), edge detection of the filteimage afteid steps (right)

In Figure 3 and in its zoom in Figure 4, we can clearly see th@meoement of the
structure connectivity and improvement of the quality of #dge detection using 3
filtering steps. Itis not possible to correctly recognizésganembranes in the central
part of the original image (Figure 3 left). Comparing the edlgtection of original
(middle) and after 3D filtering (right), we can see that meam@s become visible
after diffusion and thus can also be segmented. A more ddtadlsult is presented
in Figure 4. In the upper left part is a zoom of a noisy originalthe upper right
is a result of filtering. At the bottom there are two edge d@tes, on the left using
original, on the right using the filtered image. The connétytand denoising of edges
given by the black pixels in the edge detection images islighmproved, especially
for the cells in the bottom part.
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