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ABSTRACT.This paper is devoted to a finite volume scheme for coherence enhancing diffusion
filtering in 3D image processing. First, we derive the model,including a construction of its
diffusion tensor. Then we design an original semi-implicitfinite volume scheme for this 3D
model with the help of the co-volume mesh. Our method is basedon the choice of co-volumes
as diamond-shaped polygons around each side of a 3D finite volume. Finally we discuss com-
putational results in biomedical image processing illustrated in figures.
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1. Introduction

Nonlinear diffusion is an interesting topic of study because of the amazing diver-
sity of its applications, among which image processing has grown rapidly in recent
decades, cf. [WEI 99, PRR 00, PRR 02, MNW 02, DRM 07]. In this paper we
suggest an original 3D diamond-cell finite volume scheme fora 3D model of nonlinear
tensor anisotropic filtering. The model is given in the following form

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω, [1]

u(x, 0) = u0(x), in Ω, [2]

(D∇u) · n = 0, on I × ∂Ω, [3]

whereu denotes an intensity of greylevel 3D image,u0 ∈ L2(Ω), I = [0, T ] is a time
interval,Ω is an image domain,D is a diffusion tensor depending onu(x, t) andn

is the outer normal unit vector to∂Ω. This model is useful in any situation, where



strong smoothing is desirable in a particular direction, e.g. along 2D edge surfaces in
3D images, where a low smoothing is expected in the perpendicular direction. It has a
capacity to improve the spatial coherence of structures, which can be deteriorated by
a high level of noise.

2. Derivation of the diffusion tensor

First we build a gradient of the intensity functionu given by

∇ut̃ = (ux1
, ux2

, ux3
)T , where ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0) [4]

andGt̃ is a smoothing kernel. We denote||∇ut̃||
2 by µ. Providedµ > 0 we choose

the triplet of vectors(v1, v2, v3) as follows

v1 ‖ ∇ut̃, v2 ⊥ ∇ut̃, v3 ⊥ ∇ut̃, v2 ⊥ v3 . [5]

The direction of vectorv1 represents in every point a direction of the largest change in
image intensity. The other two vectors give a tangential plane to a level set of image
intensity which may represent a 2D surface edge in 3D image, provided thatµ is large,
and we call it a coherence planeP , cf. [MNW 02]. The coherence plane corresponds
to an eigenspace corresponding to eigenvalue0 of the outer product∇ut̃ ⊗∇ut̃.

The idea of the nonlinear diffusion tensor filtering is as follows. We obtain a
processed versionu(x, t) of an original imageu0(x) with a scale parametert ≥ 0 as
the solution of mathematical model [1]-[3], whereD depends on solutionu, satisfies
smoothness and symmetry properties. In order to enhance coherence, the diffusion
tensorD must steer a filtering process such that diffusion is strong and increasing
with the level ofµ along the coherence plane and is small in the direction of vector
v1. To that end, we choose the eigenvalues of the diffusion tensor D by

κ1 = α, α ∈ (0, 1), α ≪ 1, [6]

κ2 =

{

α, if µ = 0,

α + (1 − α) exp
(

−C
µ

)

, C > 0 otherwise,

and corresponding eigenspaces are given byv1 andP . In such a way, and, applying
Gaussian smoothing with varianceρ we get the diffusion matrixD in the form

D = Gρ ∗ D0, where D0 =

{

B, if µ = 0,

PBP−1 otherwise,
B =





κ1 0 0
0 κ2 0
0 0 κ2



 [7]

andP is a transition matrix from the basis(v1, v2, v3) to (e1, e2, e3). The exponential
function in [6] is used because it ensures thatκ2 does not exceed1, and the positive
parameterα guarantees that the process never stops; even ifµ tends to zero, there
still remains some small linear diffusion.C has the role of a threshold parameter. If
µ ≫ C thenκ2 ≈ 1, and, conversely ifµ ≪ C thenκ2 ≈ α.
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In fact, the matrixD0 is uniformly positive definite, it does not depend on the
concrete choice ofv2 andv3 and, ifµ > 0, in standard basis it has the form

1

µ

(

u2

x1
κ1 + (u2

x2
+ u2

x3
)κ2 ux1

ux2
(κ1 − κ2) ux1

ux3
(κ1 − κ2)

ux1
ux2

(κ1 − κ2) u2

x2
κ1 + (u2

x1
+ u2

x3
)κ2 ux2

ux3
(κ1 − κ2)

ux1
ux3

(κ1 − κ2) ux2
ux3

(κ1 − κ2) u2

x3
κ1 + (u2

x1
+ u2

x2
)κ2

)

It depends explicitly on∇ut̃ and can thus be evaluated in a direct and fast way using
the diamond-cell finite volume method (see also next section). Then the matrices, and
correspondingly the coherence and gradient directions, are spatially averaged using
convolution applied to the matrix elements. Since

zTD(x)z = zT(Gρ ∗ D0(x))z =

3
∑

i=1

3
∑

j=1

zizj

∫

R3

Gρ(x − ξ)dij(ξ)dξ =

∫

R3

Gρ(x − ξ)

3
∑

i=1

3
∑

j=1

zizjdij(ξ)dξ ≥ α

∫

R3

Gρ(x − ξ)dξ = α > 0,

wherex ∈ Ω, z = (z1, z2, z3) is any non-zero vector inR3 anddij are elements of the
matrixD0, we see that the diffusion tensorD is positive definite. At this point we dif-
fer from other possible approaches, see e.g. [WEI 99], wherethe so-called 3D struc-
ture tensor is first built using convolution applied to the outer product of the intensity
gradient, and its eigenvalues and eigenvectors are constructed and used for building
diffusion tensor. In the general 3D case this procedure is more complicated than our
method (with explicitly given matrixD0) because it has to deal with eigenvector and
eigenvalue analysis of general3 × 3 matrices in every image pixel. However, it can
also be made fast using, e.g., AOS schemes [WEI 99,WES 02]. A similar approach
to ours (without explicitly stating the convolution byGρ) is also given in [MNW 02].

3. Finite volume scheme for 3D nonlinear tensor anisotropicdiffusion

The goal of this section is to derive our method of calculation. Let the image be
represented byn1×n2×n3 voxels (finite volumes) such that it looks like a mesh with
n1 rows,n2 columns andn3 layers. LetΩ = (0, n1h) × (0, n2h) × (0, n3h), h be a
voxel size and let the imageu(x) be given by a bounded mappingu : Ω → R. We
consider the smoothing process in a time intervalI = [0, T ]. Let0 = t0 ≤ t1 ≤ · · · ≤
tNmax

= T denote the time discretization withtn = tn−1 + k, wherek is a length of
discrete time step. In our scheme we will look forun an approximation of solution at
time tn, for everyn = 1, ..., Nmax. As usual in finite volume methods, we integrate
equation [1] over finite volumeK, then provide a semi-implicit time discretization
and use a divergence theorem to get

un
K − un−1

K

k
m(K) −

∑

σ∈EK∩Eint

∫

σ

(Dn−1∇un) · nK,σds = 0, [8]
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whereun
K , K ∈ Th, represents the mean value ofun on K andTh is a cubic finite

volume mesh. Further quantities and notations are described as follows:m(K) is a
3D measure of the finite volumeK with boundary∂K, σKL = K ∩ L is a side of
the finite volumeK, whereL ∈ Th is an adjacent finite volume toK such that a 2D
measurem(K ∩ L) 6= 0. Due to simplifying notations, we useσ instead ofσKL at
several places if no confusion can appear.EK is set of sides such that∂K =

⋃

σ∈EK
σ

andE =
⋃

K∈Th
EK . The set of boundary sides is denoted byEext, that isEext =

{σ ∈ E , σ ⊂ ∂Ω} and letEint = E \ Eext. Υ is the set of pairs of adjacent finite
volumes, defined byΥ = {(K, L) ∈ T 2

h , K 6= L, m(K ∩ L) 6= 0} andnK,σ is
the normal unit vector toσ outward toK.

Let our numerical solution beuh,k(x, t) =
Nmax
∑

n=0

∑

K∈Th

un
Kχ{x∈K}χ{tn−1<t≤tn},

where the functionχ{A} is defined asχ{A} =

{

1, if A is true,
0, elsewhere.

In our

scheme we start the computation by defining initial valuesu0
K = 1

m(K)

∫

K
u0(x)dx,

K ∈ Th and letun
h,k(x) =

∑

K∈Th

un
Kχ{x ∈ K} denote a finite volume approximation

at then-th time step. In order to obtain the scheme we write [8] in theform

un
K − un−1

K

k
−

1

m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0, [9]

wherem(σ) is the measure of sideσ andφn
σ(un

h,k) denotes an approximation of the
exact averaged flux 1

m(σ)

∫

σ
(Dn−1∇un) · nK,σds for anyK andσ ∈ EK .

We constructφn
σ(un

h,k) with the help of a co-volume mesh, cf. e.g. [CVV 99,
DRM 07], for the 2D case. The co-volumeχσ associated withσ is constructed around
each finite volume side by joining four vertices of this side and midpoints of finite vol-
umes which are common to this side, cf. Fig.1. The co-volume boundary is given by
trianglesσ̄ ⊂ ∂χσ (we denote their vertices byN1(σ̄), N2(σ̄) andN3(σ̄)) and let
nχσ ,σ̄ be the normal unit vector tōσ outward toχσ. In order to approximate diffu-
sion flux, using divergence theorem, we first derive an approximation of the averaged
gradient onχσ, namely 1

m(χσ)

∫

χσ
∇undx = 1

m(χσ)

∫

∂χσ
un

nχσ ,σ̄ds and then we

approximate it bypn
σ(u) = 1

m(χσ)

∑

σ̄∈∂χσ

1
3

(

un
N1(σ̄) + un

N2(σ̄) + un
N3(σ̄)

)

m(σ̄)nχσ ,σ̄.

For each sideσ, let the values atxE andxW be denoted asuE anduW , and let the
valuesuTN , uTS, uBN , anduBS at the verticesxTN , xTS , xBN , andxBS , cf. Fig. 1, be
computed as the arithmetic mean ofuK , whereK are finite volumes which are com-
mon to the vertex. Since our mesh is uniform and squared, we can use the following
relations:m(χσ) = h3

3 , m(σ̄) =
√

2
4 h2 and after a short calculation we are ready to

state

pn
σ(u) =

un
E − un

W

h
nK,σ +

un
TN + un

BN − un
TS − un

BS

2h
t1K,σ

+
un

TN + un
TS − un

BN − un
BS

2h
t2K,σ, [10]
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wheret1K,σ is a unit vector parallel toxTN −xTS such that(xTN − xTS) · t1K,σ > 0
andt2K,σ is a unit vector parallel toxTN − xBN such that(xTN − xBN ) · t2K,σ > 0.
Replacing the exact gradient∇un by the numerical gradientpn

σ(u) in approximation

Figure 1. The vertices of co-volumeχσ associated with sideσ

of φn
σ(un

h,k) we get the numerical flux in the form

φn
σ(un

h,k) = (Dσpn
σ(u)) · nK,σ, [11]

whereDσ = Dn−1
σ =





D̄σ
11 D̄σ

12 D̄σ
13

D̄σ
12 D̄σ

22 D̄σ
23

D̄σ
13 D̄σ

23 D̄σ
33



 is an approximation of the mean value

of matrixD alongσ evaluated at the previous time step. To that end we takeun−1
h,k for

the construction of the diffusion tensor. Because of the convolutions in (4) and (7), the
elements of matrixDσ areC∞ functions.
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Figure 2. A finite volumeK, its boundariesσi, i = E, W, N, S, T, B and the fluxes outward
to the finite volumeK

It is important to note that in [11] we always consider the matrix Dσ written in
the basis(nK,σ, t1K,σ, t2K,σ), cf. [CVV 99, DRM 07] for an analogy with the
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2D model. Although it may look artificial, it will simplify further considerations. In
practice it means that, cf. Fig. 2, if the matrixD is given in standard basis on sideσ by




Dσ
11 Dσ

12 Dσ
13

Dσ
12 Dσ

22 Dσ
23

Dσ
13 Dσ

23 Dσ
33



 then it does not change in new basis on two sidesσW andσE .

For two other sidesσS andσN , in new basis it has the form





Dσ
22 Dσ

12 Dσ
23

Dσ
12 Dσ

11 Dσ
13

Dσ
23 Dσ

13 Dσ
33



,

and for the last two sidesσB andσT it becomes





Dσ
33 Dσ

23 Dσ
13

Dσ
23 Dσ

22 Dσ
12

Dσ
13 Dσ

12 Dσ
11



. Using such

matrix representations, definition [11] can be written in this compact form

φn
σ(un

h,k) =











D̄σ
11 D̄σ

12 D̄σ
13

D̄σ
12 D̄σ

22 D̄σ
23

D̄σ
13 D̄σ

23 D̄σ
33











un

E
−un

W

h
un

TN
+un

BN
−un

TS
−un

BS

2h
un

TN
+un

TS
−un

BN
−un

BS

2h












·





1
0
0



 =

= D̄σ
11

un

E
−un

W

h
+ D̄σ

12
un

TN
+un

BN
−un

TS
−un

BS

2h
+ D̄σ

13
un

TN
+un

TS
−un

BN
−un

BS

2h
.

Finally, let us summarize oursemi-implicit finite volume scheme:

un
K − un−1

K

k
−

1

m(K)

∑

σ∈EK∩Eint

φn
σ(un

h,k)m(σ) = 0, [12]

where φn
σ(un

h,k) = D̄σ
11

un
E − un

W

h
+ D̄σ

12

un
TN + un

BN − un
TS − un

BS

2h

+ D̄σ
13

un
TN + un

TS − un
BN − un

BS

2h
. [13]

Let us note that when we consider the arithmetic mean of the voxel values for the
values ofuTN , uTS , uBN anduBS in [13], we end up with27 point finite volume
scheme. We solve the resulting linear system by the Gauss-Seidel iterative method.

4. Numerical experiments

In this section we present computational results using real3D images coming from
multiphoton laser scanning microscopy. It represents the membranes of sea urchin
cells in the early stages of embryogenesis and its size is200 × 200 × 94 voxels.

The images of the membranes are well suited for processing bythis type of diffu-
sion, which is documented by comparing the edge detection results before and after
filtering in Figures 3-4. The edge detection is a well suited measure of the filtering
quality, because filtering usually serves as a preliminary step of segmentation, which
strongly depends on proper edge detection result. In the experiments we useh = 0.01,
k = 0.00001, C = 1, α = 0.001, t̃ = 0.00001, ρ = 0.002. The satisfactory results
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were obtained after a few filtering steps and in the presentedexperiments we did not
observe any instability problem, which is a usual drawback of explicit schemes, cf.
[WES 02].

Figure 3. 2D slice of 3D membranes image. Original image (left), edge detection of the
original image (in the middle), edge detection of the filtered image after3 steps (right)

In Figure 3 and in its zoom in Figure 4, we can clearly see the enhancement of the
structure connectivity and improvement of the quality of the edge detection using 3
filtering steps. It is not possible to correctly recognize noisy membranes in the central
part of the original image (Figure 3 left). Comparing the edge detection of original
(middle) and after 3D filtering (right), we can see that membranes become visible
after diffusion and thus can also be segmented. A more detailed result is presented
in Figure 4. In the upper left part is a zoom of a noisy original, in the upper right
is a result of filtering. At the bottom there are two edge detections, on the left using
original, on the right using the filtered image. The connectivity and denoising of edges
given by the black pixels in the edge detection images is highly improved, especially
for the cells in the bottom part.
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