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Abstract. The paper deals with an error analysis of the semi-implicit diamond-cell finite volume
scheme, introduced in [4], for solving the nonlinear tensor anisotropic diffusion. First we present the
finite volume scheme and its basic properties. Then the error estimate analysis is presented, where
the piecewise constant approximation given by the finite volume scheme is compared with the weak
solution to the problem. We proved that the error of the approximate solution in L2-norm is of
order h, where h is a spatial resolution step under the natural relation k ≈ h2, where k is a time
discretization step. The numerical results devoted to image processing applications are also given.
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1. Introduction. The nonlinear tensor anisotropic diffusion introduced by Weic-
kert, cf. [20], is used in many image processing applications, cf. [6, 12, 16, 17, 4]. Such
model is proper in any situation, where a strong smoothing is useful in a preferred
direction, but it should be low in the perpendicular direction. This type of diffu-
sion completes interrupted coherent structures and thus improves the edge detection,
cf. [20, 4]. It means that the model is useful to provide image pre-processing for
algorithms which depend on edge indicators like the image segmentation, cf. Section
6.

The semi-implicit schemes were introduced to image processing in [8, 19] for solv-
ing the regularized Perona-Malik equation, cf. [2, 15]. The finite volume methods
were used first time in this context in [13] and adaptivity was developed in [10, 9].
The error estimates for the finite volume discretization of the regularized Perona-
Malik model was given in [7]. In [4] the nine point finite volume scheme was designed
and studied for solving the nonlinear tensor anisotropic diffusion in image processing.
In this paper we prove the error estimates for that scheme. We estimate the difference
between approximate and exact solution in dependence on spatial and time discretiza-
tion step. The main ideas used in our error analysis are a bounding of the gradient
in tangential direction by using the gradient in normal direction, a time translate
estimate for approximate solution and the Lipschitz continuity of the diffusion tensor
elements with respect to the smoothed partial derivatives of the solution.

In section 2 we present the studied mathematical model, its basic properties and
provide brief description of the anisotropic diffusion tensor construction. Section
3 is devoted to our semi-implicit diamond-cell finite volume scheme and section 4
sumarises important properties of the scheme which are used in the sequel. The core
of the paper, the error estimate analysis, is presented in section 5. The paper is
finished by a discussion on computational results presented in section 6.
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2. Mathematical model. The nonlinear tensor anisotropic diffusion model has
the following form

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω,(2.1)

u(x, 0) = u0(x), in Ω,(2.2)

D∇u · n = 0, on I × ∂Ω,(2.3)

where an unknown function is given by u(x, t) and represents a grey level image
intensity, I = [0, T ] denotes a time interval, Ω is a 2D rectangular image domain with
boundary ∂Ω, u0 ∈ L2(Ω) is an initial condition (processed image) and n is the outer
normal unit vector to the ∂Ω. The matrix D represents so-called the diffusion tensor
depending on the eigenvalues and eigenvectors of the (regularized) structure tensor

Jρ(∇ut̃) = Gρ ∗ (∇ut̃∇ut̃
T ),(2.4)

where ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0) is used. Gt̃ and Gρ are Gaussian kernels.
The matrix Jρ is symmetric and positive semidefinite and its eigenvectors are parallel

and orthogonal to ∇ut̃, respectively. In computer vision the matrix Jρ =

(

a b

b c

)

is known as a structure tensor or interest operator or second moment matrix. Its
eigenvalues are given by

µ1,2 =
1

2

(

a + c ±
√

(a − c)2 + 4b2
)

, µ1 ≥ µ2.(2.5)

The corresponding orthogonal set of eigenvectors (v, w) to eigenvalues (µ1, µ2) is given
by

v = (v1, v2), w = (w1, w2),

v1 = 2b, v2 = c − a +
√

(a − c)2 + 4b2,(2.6)

w ⊥ v, w1 = −v2, w2 = v1.

The orientation of the eigenvector w, which corresponds to the smaller eigenvalue µ2

is called coherence orientation. This orientation has the lowest fluctuations in image
intensity.

The diffusion tensor D is designed to steer a smoothing process such that the
filtering is strong along the coherence direction w and increases with the coherence
(µ1−µ2)

2. To that goal D must possess the same eigenvectors v and w as the structure
tensor Jρ(∇ut̃) and the eigenvalues of D are chosen as follows

κ1 = α, α ∈ (0, 1), α ≪ 1,(2.7)

κ2 =

{

α, if µ1 = µ2,

α + (1 − α) exp
(

−C
(µ1−µ2)2

)

, C > 0 else.

Then D has the following form

D = ABA−1, where A =

(

v1 −v2

v2 v1

)

and B =

(

κ1 0
0 κ2

)

,(2.8)

so it depends nonlinearly on partial derivatives of solution u, satisfies smoothness,
symmetry and uniform positive definiteness properties.
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Definition 2.1. A function u ∈ L2(0, T ; H1(Ω)) is a weak solution of the prob-
lem (2.1)-(2.3) if satisfies the identity

T
∫

0

∫

Ω

u
∂ϕ

∂t
(x, t) dxdt +

∫

Ω

u0 (x)ϕ (x, 0) dx −

T
∫

0

∫

Ω

(D∇u) · ∇ϕdxdt = 0, ∀ϕ ∈ Ψ,(2.9)

where

Ψ =
{

ϕ ∈ C2,1
(

Ω × [0, T ]
)

, D∇ϕ.−→n = 0 on ∂Ω × (0, T ) , ϕ (., T ) = 0
}

.(2.10)

3. The numerical scheme. In order to build the scheme we used the finite
volume method, cf. [5], since this discretization technique uses the piecewise constant
representation of approximate solutions similarly to the structure of digital images,
cf. [13]. The restrictions of the classical five-point methods for the tensor models lead
to a choice of the nine-point diamond-cell method, cf. [3, 4].

Let the image be represented by n1 × n2 pixels (finite volumes) such that it
looks like a mesh with n1 rows and n2 columns. Let Ω = (0, n1h) × (0, n2h), h is
a pixel size. We consider the smoothing process in a time interval I = [0, T ]. Let
0 = t0 ≤ t1 ≤ · · · ≤ tNmax

= T denote the time discretization with tn = tn−1 + k,
where k is a length of discrete time step. In our scheme we will look for un an
approximation of solution at time tn, for every n = 1, ..., Nmax. We start with an
integration of the equation (2.1) over finite volume W , then provide a semi-implicit
time discretization and use a divergence theorem to get

un
W − un−1

W

k
m(W ) −

∑

σ∈EW ∩Eint

∫

σ

(Dn−1∇un) · nW,σds = 0,(3.1)

where un
W , W ∈ Th, represents the value of un on W . Th is an admissible finite volume

mesh, cf. [5] and further quantities and notations are described as follows: m(W ) is
the measure of the finite volume W with boundary ∂W , σWE = W ∩ E = W |E is an
edge of the finite volume W , where E ∈ Th is an adjacent finite volume to W such
that m(W ∩E) 6= 0. Due to simplifying notation, we use σ instead of σWE at several
places if no confusion can appear (e.g. in (3.1)). EW is the set of edges such that
∂W =

⋃

σ∈EW
σ and E =

⋃

W∈Th
EW . The set of boundary edges is denoted by Eext,

that is Eext = {σ ∈ E , σ ⊂ ∂Ω} and let Eint = E \Eext. Υ is the set of pairs of adjacent
finite volumes, defined by Υ = {(W, E) ∈ T 2

h , W 6= E, m(σWE) 6= 0} and nW,σ

is the normal unit vector to σ outward to W .
Next step is to define our discrete numerical solution by

uh,k(x, t) =

Nmax
∑

n=0

∑

W∈Th

un
W χ{x ∈ W}χ{tn−1 < t ≤ tn},(3.2)

where the function χ(A) is defined as follows

χ{A} =

{

1, if A is true,
0, elsewhere.

(3.3)
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The extension of the function (3.2) outside Ω is given first by its periodic mirror
reflection in Ωt̃, where t̃ is the width of the smoothing kernel,

Ωt̃ = Ω ∪ Bt̃(x), x ∈ ∂Ω,(3.4)

Bt̃(x) is a circle centered at x with radius t̃, and then we extend this periodic mirror
reflection by 0 outside Ωt̃ and denote it by ũh,k.

We start computations by defining initial values

u0
W =

1

m(W )

∫

W

u0(x)dx, W ∈ Th(3.5)

and let the finite volume approximation at the n-th time step be given by

un
h,k(x) =

∑

W∈Th

un
W χ{x ∈ W}.

In order to get the scheme we write (3.1) in the form

un
W − un−1

W

k
− 1

m(W )

∑

σ∈EW ∩Eint

φn
σ(un

h,k)m(σ) = 0,

where m(σ) is the measure of edge σ and φn
σ(un

h,k) denotes an approximation of the

exact averaged flux 1
m(σ)

∫

σ
(Dn−1∇un) · nW,σds for any W and σ ∈ EW .

We construct an approximation of the flux with the help of a co-volume mesh, cf.
e.g. [3]. The co-volume χσ associated to σ is constructed around each edge by joining
endpoints of this edge and midpoints of finite volumes which are common to this edge,
see Fig.3.1. Using this method we get the scheme which has the form, cf. [4],
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Fig. 3.1. A detail of a mesh. The co-volumes χσ associated to edges σ = σWE (left) and
σ = σEW (right).

un
W − un−1

W

k
− 1

m(W )

∑

σ∈EW ∩Eint

φn
σ(un

h,k)m(σ) = 0(3.6)
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with

φn
σ(un

h,k) = λ̄σ

un
E − un

W

h
+ β̄σ

un
N − un

S

h
,(3.7)

where λ̄σ and β̄σ are elements of the matrix Dσ = Dn−1
σ =

(

λ̄σ β̄σ

β̄σ ν̄σ

)

written

in the basis (nW,σ, tW,σ), cf. [3], where tW,σ is a unit vector parallel to σ such that
(xN − xS) · tW,σ > 0. Let us note that λ̄σ denotes λ̄(uh,k)(xWE , tn−1) and β̄σ is
given correspondingly, where xWE is a point of σWE = W |E intersecting the segment
xW xE . Even if it may look artificial, it will simplify further considerations. In practice
it means that,

λ̄σ = λσ, β̄σ = βσ and ν̄σ = νσ for edges parallel to axis y.(3.8)

On the other hand,

λ̄σ = νσ, β̄σ = −βσ and ν̄σ = λσ for edges parallel to axis x,(3.9)

where

(

λσ βσ

βσ νσ

)

are values of the diffusion tensor on edge σ written in the standard

basis ((1, 0)T , (0, 1)T ).
The values at xE and xW are taken as uE and uW , and the values uS and uN

at the vertices xN and xS are computed as the arithmetic mean of uW , where W are
finite volumes which are common to this vertex. Although these un

N , un
W , un

E and un
S

correspond to particular edge σ, and so we should denote them by un
Nσ

, un
Wσ

, un
Eσ

and un
Sσ

in (3.7), we will use the above simplified notations.

4. Stability and convergence results. The goal of this section is to present
results concerning stability and convergence properties for our scheme. All results
given in this section were proven in [4], we present them here because they will be
also used in section 5 devoted to error estimates for the scheme.

Lemma 4.1. (Bounding of the gradient in tangential direction) The gra-
dient in tangential direction can be bounded by the gradient in normal direction (see
Fig. 3.1) as follows

∑

σ∈Eint

(

β̄σ

λ̄σ

)2(
un

N − un
S

h

)2

λ̄σ ≤ γ
∑

σ∈Eint

(

un
E − un

W

h

)2

λ̄σ ,(4.1)

where 0 ≤ γ < 1, γ = max
σ∈E

γσ, γσ =
∑

δ∈Pσ∩Eint

1

4

(

β̄δ

λ̄δ

)2
λ̄δ

λ̄σ

,

where edges δ and set Pσ are given in the following definition.
Definition 4.2. Let Pσ be the set of all edges δ perpendicular to σ (see Fig. 4.1

for two illustrative situations when σ = σWE and σ = σEW ), which have common
vertex with σ and fulfill the following conditions:
(xEδ

− xWδ
) · nW,σ > 0 if (xNσ

− xSσ
) · tW,σ > 0 and

(xEδ
− xWδ

) · nW,σ < 0 if (xNσ
− xSσ

) · tW,σ < 0.

Let us note that xWσ
= x1

Wδ
= x3

Eδ
, for σ = σWE, xEσ

= x2
Wδ

= x4
Eδ

, for σ = σWE ,
xWσ

= x2
Eδ

= x4
Wδ

, for σ = σEW and xEσ
= x1

Eδ
= x3

Wδ
, for σ = σEW .

Theorem 4.3. (Existence and uniqueness of discrete solution) For h

sufficiently small, there exists unique solution un
h,k given by the scheme (3.6)-(3.7) at

any discrete time step tn.
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Fig. 4.1. Left: an edge σWE and edges δ1, δ2, δ3, δ4 ∈ PσWE . Right: an edge σEW and edges
δ1, δ2, δ3, δ4 ∈ PσEW .

The convergence analysis of our scheme was based on Lemma 4.1 and Kol-
mogorov’s compactness criterion in L2. The scheme is more complicated in com-
parison with classical five-point schemes due to ”corners points”, which are included
in the gradient in tangential direction, and we overcame that difficulty with the help
of Lemma 4.1. Kolmogorov’s compactness theorem, cf. e.g. [5], follows from lem-
mata 4.4-4.7 and implies relative compactness of the sequence of numerical solutions
given by our scheme refining the space and time discretization step. The relative
compactness enables us to choose the convergent subsequence which in the limit gives
the weak solution.

Lemma 4.4. (Uniform boundedness) There exists a positive constant C such
that

‖uh,k‖L2(QT ) ≤ C.(4.2)

Lemma 4.5. (Time translate estimate) For any s ∈ (0, T ) there exists a
positive constant C such that

∫

Ω×(0,T−s)

(uh,k (x, t + s) − uh,k (x, t))2 dxdt ≤ Cs.(4.3)

Lemma 4.6. (Space translate estimate I) There exists a positive constant C

such that
∫

Ωξ×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))
2
dxdt ≤ C |ξ| (|ξ| + 2h)(4.4)

for any vector ξ ∈ Rd, where Ωξ = {x ∈ Ω, [x, x + ξ] ∈ Ω}.
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Lemma 4.7. (Space translate estimate II) There exists a positive constant
C such that

∫

Ω×(0,T )

(uh,k (x + ξ, t) − uh,k (x, t))2 dxdt ≤ C |ξ|(4.5)

for any vector ξ ∈ Rd.
Finally we state the following theorem from [4].

Theorem 4.8. (Convergence of the scheme) The sequence uh,k converges
strongly in L2(QT ) to the unique weak solution u of (2.1)-(2.3) as h, k → 0.

5. Error estimates. In this section we are going to derive error estimates bet-
ween weak solution of the model (2.1)-(2.3) and the numerical solution satisfying
the scheme (3.6)-(3.7). For the error analysis a stronger regularity assumptions
must be stated than arise in practice, but it is a general approach when deriving
the error estimates. By the results presented in [20] we know that weak solution
u ∈ C∞(Ω̄, (0,∞))..

Theorem 5.1. (Error estimate) Let the weak solution fulfill the following
regularity properties: ∇u ∈ L∞(QT ), utt ∈ L2(QT ), u ∈ L2(I, W 2,2(Ω)), ∇ut ∈
L2(I, L∞(Ω)). Let en

W = u(xW , tn) − un
W and

en
h,k(x, t) =

∑

W∈Th

en
W χ{x ∈ W}χ{tn−1 < t ≤ tn}.

Then, there exist a constant C, such that for sufficiently small h

∫

Ω

|em
h,k|2dx +

m
∑

n=1

∫

Ω

|en
h,k − en−1

h,k |2dx +

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

(en
E − en

W )
2
dt

≤ C(h2 + k)(5.1)

for every m = 1, ..., Nmax.
Proof. Let us define P0(Th) as the set of functions from Ω to R which are constant

over each finite volume W of the mesh Th. Let now tn−1 < t ≤ tn. We multiply equa-
tion (2.1) by vn

W ∈ P0(Th), integrate it over volume W and use divergence theorem
to have

∫

W

∂tu(x, t) vn
W dx −

∑

σ∈EW ∩Eint

∫

σ

D∇u · nW,σvn
W ds = 0.(5.2)

Let us note that we consider D∇u · nW,σ in the basis (nW,σ , tW,σ). It means that
the elements of the matrix D are given by (3.8)-(3.9). The elements of the gradient

∇un(s, t), in this basis are written as

(

ūx

ūy

)

, are equal to

(

ux

uy

)

on right edge

σ of finite volume W ,

(

−ux

−uy

)

on left edge of W ,

(

uy

−ux

)

on upper edge of W

and

(

−uy

ux

)

on lower edge of W . The normal nW,σ is equal to

(

1
0

)

in the basis

(nW,σ , tW,σ) for each edge σ. Multiplying equation (3.6) by vn
W m(W ) we get the

discrete scheme in the form

(un
W − un−1

W )vn
W

k
m(W ) −

∑

σ∈EW ∩Eint

(

λ̄σ

un
E − un

W

h
+ β̄σ

un
N − un

S

h

)

m(σ)vn
W = 0.(5.3)
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Then setting vn
W = en

W and subtracting (5.3) from (5.2) we get

∫

W

(

en
W − en−1

W

)

en
W

k
dx(5.4)

+
∑

σ∈EW ∩Eint

∫

σ

[(

λ̄σ

(un
E − un

W )

h
+ β̄σ

(un
N − un

S)

h

)

en
W − D∇u · nW,σen

W

]

ds

=

∫

W

(

u(xW , tn) − u(xW , tn−1)

k
− ∂tu

)

en
W dx.

Then we sum (5.4) over W ∈ Th, integrate over (tn−1, tn) and sum again over n =
1, . . . , m. We apply the property 2(a − b)a = a2 − b2 + (a − b)2 to state that

∫

Ω

|em
h,k|2dx +

m
∑

n=1

∫

Ω

|en+1
h,k − en

h,k|2dx(5.5)

+2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

[(

λ̄σ

(un
E − un

W )

h
+ β̄σ

(un
N − un

S)

h

)

en
W − D∇u · nW,σen

W

]

dsdt

=

∫

Ω

|e0
h,k|2dx + 2

m
∑

n=1

tn
∫

tn−1

∑

W∈Th

∫

W

(

u(xW , tn) − u(xW , tn−1)

k
− ∂tu

)

en
W dxdt.

In order to rearrange the third term on the left hand side of (5.5) we define auxiliary
variables ΛWE and ΛSN as follows

ΛWE =
u(xE , tn) − u(xW , tn)

h
,(5.6)

ΛSN =
∑

δ∈Pσ∩Eint

1

4

u(xEδ
, tn) − u(xWδ

, tn)

h
.(5.7)

Then, using (5.6) and (5.7), we rearrange the third term into the following splitting

2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

[(

λ̄σ

(un
E − un

W )

h
+ β̄σ

(un
N − un

S)

h

)

en
W − D∇u · nW,σen

W

]

dsdt

= A1 + A2 + A3 + A4,

where

A1 = −2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ

(en
E − en

W )

h
en

W m(σ)dt,

A2 = 2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄σ

(

un
N − un

S

h
− ΛSN

)

en
W m(σ)dt,

A3 = 2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

((

λ̄σ − λ̄
)

ΛWE +
(

β̄σ − β̄
)

ΛSN

)

en
W dsdt,



ERROR ESTIMATES 9

A4 = 2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u · nW,σ

)

en
W dsdt,

where λ̄ denotes λ̄(u)(s, t), s ∈ σ, t ∈ (tn−1, tn) and λ̄σ denotes λ̄(uh,k)(xWE , tn−1),
which indicates our strategy for evaluation of diffusion tensor at time tn−1 and in the
point xWE using approximation uh,k. Owing to conservativity of numerical fluxes and
fact that m(σ) = h we have

A1 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ

(en
E − en

W )

h
en

W m(σ)dt =

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ(en
E − en

W )2dt.

Next step is to rearrange A4 by adding and subtracting term D∇u(s, tn) · nW,σ

A4 = 2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u(s, t) · nW,σ

)

en
W dsdt,

= 2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u(s, tn) · nW,σ

)

en
W dsdt

+ 2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(D∇u(s, tn) − D∇u(s, t)) · nW,σen
W dsdt.

Further, we put A1, A2, A3 and A4 into (5.5) and get

∫

Ω

|em
h,k|2dx +

m
∑

n=1

∫

Ω

|en
h,k − en−1

h,k |2dx +

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt

=

∫

Ω

|e0
h,k|2dx + B1 + B2 + B3 + B4 + B5 + B6,(5.8)

where

B1 = 2

m
∑

n=1

tn
∫

tn−1

∑

W∈Th

∫

W

(

u(xW , tn) − u(xW , tn−1)

k
− ∂tu

)

en
W dxdt,

B2 = −2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄σ

(

un
N − un

S

h
− ΛSN

)

en
W m(σ)dt,

B3 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄σ − λ̄
)

ΛWEen
W dsdt,

B4 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

β̄σ − β̄
)

ΛSNen
W dsdt,
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B5 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u(s, tn) · nW,σ

)

en
W dsdt,

B6 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(D∇u(s, tn) − D∇u(s, t)) · nW,σen
W dsdt.

Now we bound each term Bi, i = 1, 2, ..., 6 and begin with B1, where we can estimate
∣

∣

∣

∣

u(xW , tn) − u(xW , tn−1)

k
− ∂tu

∣

∣

∣

∣

≤

1

k

∣

∣

∣

∣

∣

∣

tn
∫

tn−1

1
∫

0

∇ut(x + z(xW − x), g) · (xW − x)dzdg

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

tn
∫

tn−1

utt(x, g)dg

∣

∣

∣

∣

∣

∣

.

Applying previous inequality we have

|B1| ≤ 2

m
∑

n=1

tn
∫

tn−1

∑

W∈Th

∫

W





h

k

tn
∫

tn−1

1
∫

0

|∇ut(xW + z(xW − x), g)|dzdg +

tn
∫

tn−1

|utt(x, g)|dg



 |en
W |dxdt.

Then we use Young’s inequality to obtain

|B1| ≤
m
∑

n=1

tn
∫

tn−1

∑

W∈Th

∫

W

(en
W )2dxdt

+

m
∑

n=1

tn
∫

tn−1

∑

W∈Th

∫

W





h

k

tn
∫

tn−1

1
∫

0

|∇ut(xW + z(xW − x), g)|dzdg +

tn
∫

tn−1

|utt(x, g)|dg





2

dxdt,

and from it we get

|B1| ≤ 2k2‖utt‖2
L2(I,L2(Ω)) + 2h2‖∇ut‖2

L2(I,L2(Ω)) +
m−1
∑

n=0

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt.(5.9)

Concerning the second term we can write

B2 = −
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄σ

2

∑

δ∈Pσ∩Eint

(

uEδ
− uWδ

h
− u(xEδ

, tn) − u(xWδ
, tn)

h

)

en
W m(σ)dt

=
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄σ

2
√

λ̄σ

∑

δ∈Pσ∩Eint

(

en
Eδ

− en
Wδ

)

h

√

λ̄σen
W m(σ)dt

=
1

2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄σ

2
√

λ̄σ

∑

δ∈Pσ∩Eint

(

en
Eδ

− en
Wδ

)

h

√

λ̄σ (en
W − en

E)m(σ)dt

≤ 1

4

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ

(en
E − en

W )
2

h
m(σ)dt
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+
1

4

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

β̄2
σ

2λ̄σ

∑

δ∈Pσ∩Eint

(

en
Eδ

− en
Wδ

)2

h2
hm(σ)dt.

Similarly to the proof of (4.1), given in section 3 of [4], we get

∑

σ∈Eint

(

β̄σ

λ̄σ

)2
∑

δ∈Pσ∩Eint

1

4

(

en
Eδ

− en
Wδ

h

)2

λ̄σ ≤ γ
∑

σ∈Eint

(

en
E − en

W

h

)2

λ̄σ

with γ given in (4.1). Then we have

B2 ≤ 1

4

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt +

γ

2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt,

which yields

B2 ≤ 1 + 2γ

4

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )2 dt.(5.10)

Let us rewrite term B3 as

B3 =

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄σ − λ̄
) (u(xE , tn) − u(xW , tn))

h
(en

E − en
W ) dsdt.

Thanks to regularity of the solution u we know that

|B3| ≤ ‖∇u‖L∞(QT )

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

∣

∣λ̄σ − λ̄
∣

∣ |en
E − en

W | dsdt.

Using Young’s inequality we obtain

|B3| ≤ B3A + B3B,

where

B3A =
ω

2

m
∑

n=1

k
∑

σ∈Eint

λ̄σ

(en
E − en

W )
2

h
m(σ) =

ω

2

m
∑

n=1

k
∑

σ∈Eint

λ̄σ (en
E − en

W )
2
,(5.11)

B3B =
1

2ω
‖∇u‖2

L∞(QT )

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄σ − λ̄
)2

λ̄σ

h dsdt(5.12)

and ω is a sufficiently small parameter. Our notation λ̄σ − λ̄ means rigorously
λ̄(uh,k)(xWE , tn−1) − λ̄(u)(s, t). In order to estimate this difference we introduce
the following lemma, which gives an estimate between elements of discrete and exact
diffusion tensor. Let us note that the construction of Dσ and D described by (2.4)-
(2.8) is the same, the index σ is used only because the tensor Dσ is evaluated using
numerical solution on edge σ, and the arguments are different. In the first case it is
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the numerical solution uh,k, which is used in evaluation of diffusion tensor at point
xWE ∈ σ and at time tn−1, where xWE is a point of σWE = W |E intersecting the
segment xW xE . In the second case the argument is given by the function u and the
tensor is evaluated at any point s ∈ σ and t ∈ (tn−1, tn).

Lemma 5.2. There exist a positive constant C such that

|λ̄(uh,k)(xWE , tn−1) − λ̄(u)(s, t)| ≤ C(h + ||uh,k(t − k) − uh,k(t)||L2(Ω)

+||uh,k(t) − u(t)||L2(Ω) + ||u(t)||L2(Ω)||u(t) − uh,k(t)||L2(Ω)).(5.13)

and

|β̄(uh,k)(xWE , tn−1) − β̄(u)(s, t)| ≤ C(h + ||uh,k(t − k) − uh,k(t)||L2(Ω)

+||uh,k(t) − u(t)||L2(Ω) + ||u(t)||L2(Ω)||u(t) − uh,k(t)||L2(Ω)).(5.14)

Proof. The basic ingredients of the proof are given by the properties of functions λ̄

and β̄ as Lipschitz functions of the partial derivatives of solution (smoothed by spatial
convolutions). We show the Lipschitz continuity for all functions λ, β, ν, because λ̄

and β̄ may be equal to one of them, cf. (3.8)-(3.9), depending on the local basis in
which both matrices Dσ and D are written. From the diffusion tensor construction,
cf. (2.4)-(2.8), it follows that we can write the estimated terms in the following form,

|λ̄(an−1
h,k , bn−1

h,k , cn−1
h,k ) − λ̄(a, b, c)| or |β̄(an−1

h,k , bn−1
h,k , cn−1

h,k ) − β̄(a, b, c)|,(5.15)

where

a =

(

Gρ ∗
(

∂Gt̃

∂x
∗ u

)2
)

(s, t),

b =

(

Gρ ∗
[(

∂Gt̃

∂x
∗ u

)(

∂Gt̃

∂y
∗ u

)])

(s, t),

c =

(

Gρ ∗
(

∂Gt̃

∂y
∗ u

)2
)

(s, t),

an−1
h,k =

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(xWE , tn−1),

bn−1
h,k =

(

Gρ ∗
[(

∂Gt̃

∂x
∗ uh,k

)(

∂Gt̃

∂y
∗ uh,k

)])

(xWE , tn−1),

cn−1
h,k =

(

Gρ ∗
(

∂Gt̃

∂y
∗ uh,k

)2
)

(xWE , tn−1)

and λ̄, β̄ is equal to one of the functions λ, β, ν depending on the above defined three
arguments as follows

λ(a, b, c) =
κ1v

2
1 + κ2v

2
2

v2
1 + v2

2

=

=







α, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),

α + (1 − α)

(

1
2 + c−a

2
√

4b2+(a−c)2

)

e
− 1

4b2+(a−c)2 , else.
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β(a, b, c) =
v1v2(κ1 − κ2)

v2
1 + v2

2

=

=

{

0, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),
(α−1)b√

4b2+(a−c)2
e
− 1

4b2+(a−c)2 , else.

ν(a, b, c) =
κ2v

2
1 + κ1v

2
2

v2
1 + v2

2

=

=







α, if µ1 = µ2 (i.e. if
√

4b2 + (a − c)2 = 0),

α + (1 − α)

(

1
2 − c−a

2
√

4b2+(a−c)2

)

e
− 1

4b2+(a−c)2 , else.

If we denote by F = 4b2 + (a− c)2 the values of λ, β, ν for F = 0 are defined as limit
values as F → 0 and thus the functions are continuous.

From such form of λ, β, ν one can simply see that they are uniformly bounded.
We can write

λ(a, b, c) = α + (1 − α)

(

1

2
+

c − a

2
√

F

)

e−
1
F .

Since |a − c| ≤
√

4b2 + (a − c)2 =
√

F and α ∈ (0, 1), we get

|λ| ≤ α + (1 − α)

(

1

2
+

√
F

2
√

F

)

e−
1
F ≤ 1.(5.16)

and similarly for β and ν.
From the structure of λ, β, ν we can also see that their partial derivatives of any

order, with respect to a, b, c will contain a product of the term e−
1
F and a rational

polynomial, which can be estimated by powers of F , and which together give uniform
bounds on the derivatives. In our proof it is sufficient to have Lipschitz continuity of
λ, β, ν, so we show that their first partial derivatives are uniformly bounded. First
we have

∂λ

∂a
= (1 − α)(a − c)

e−
1
F

F 2
+ (α − 1)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

.

Since |α| < 1, |1 − α| < 1 and |a − c| ≤ F
1
2 we have

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ |a − c|e
− 1

F

F 2
+ ((4b2 + (a − c)2)2 + (a − c)2 + 4b2)

e−
1
F

F
5
2

≤ Fe−
1
F

F
5
2

+
(F 2 + F )e−

1
F

F
5
2

=
F + 2

F
3
2

e−
1
F = h1(F ) ≤ max

F≥0
h1(F ) = h1(F1),

where F1 = 2(
√

2 − 1), so

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ C1 ≤ 1.2 .(5.17)

Then we similarly get

∂λ

∂b
= (1 − α)

4be−
1
F

F 2
+ (1 − α)2b(a − c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

.
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Since 2|b| ≤
√

4b2 + (a − c)2 = F
1
2 we have

∣

∣

∣

∣

∂λ

∂b

∣

∣

∣

∣

≤ 2F
1
2 e−

1
F

F 2
+

F
1
2 F

1
2 (F + 2)e−

1
F

F
5
2

=
(F + 4)e−

1
F

F
3
2

= h2(F ) ≤ max
F≥0

h2(F ) = h2(F2),

where F2 =
√

33 − 5, so
∣

∣

∣

∣

∂λ

∂b

∣

∣

∣

∣

≤ C2 ≤ 2 .(5.18)

Since

∂λ

∂c
= (α − 1)(a − c)

e−
1
F

F 2
+ (1 − α)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

= −∂λ

∂a

we get
∣

∣

∣

∣

∂λ

∂c

∣

∣

∣

∣

=

∣

∣

∣

∣

∂λ

∂a

∣

∣

∣

∣

≤ C1 .(5.19)

For the function ν we get

∂ν

∂a
= (1 − α)(a − c)

e−
1
F

F 2
+ (1 − α)(8b4 + 2b2(a − c)2 + (a − c)2)

e−
1
F

F
5
2

so we get the same estimate as in (5.17) and (5.19) also for
∣

∣

∂ν
∂a

∣

∣. Since

∂ν

∂b
= (1 − α)

4be−
1
F

F 2
+ (α − 1)2b(a− c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

,

so we get the same estimate as in (5.18) for
∣

∣

∂ν
∂b

∣

∣, and because ∂ν
∂c

= −∂ν
∂a

we have

again
∣

∣

∂ν
∂c

∣

∣ ≤ C1. For the function β we have

∂β

∂a
= (1 − α)b(a − c)(4b2 + (a − c)2 − 2)

e−
1
F

F
5
2

,

thus
∣

∣

∣

∣

∂β

∂a

∣

∣

∣

∣

≤ F
1
2 F

1
2 (F + 2)e−

1
F

F
5
2

=
(F + 2)e−

1
F

F
3
2

≤ h1(F1)

and therefore
∣

∣

∣

∣

∂β

∂a

∣

∣

∣

∣

≤ C1 .(5.20)

We also have

∂β

∂b
= (α − 1)(8b2 + 4b2(a − c)2 + (a − c)4)

e−
1
F

F
5
2

,

so
∣

∣

∣

∣

∂β

∂b

∣

∣

∣

∣

≤ (2(4b2 + (a − c)2) + (4b2 + (a − c)2)2)
e−

1
F

F
5
2

=
2F + F 2

F
5
2

e−
1
F ≤ h1(F1)
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and from it
∣

∣

∣

∂β
∂b

∣

∣

∣
≤ C1. Using ∂β

∂c
= −∂β

∂a
we also get

∣

∣

∣

∂β
∂c

∣

∣

∣
≤ C1.

The relation in (5.15) contains differences of either λ, β or ν evaluated in different
arguments. Using boundedness of their partial derivatives, and thus the Lipschitz
continuity, those differences can be estimated by the differences of the arguments. We
will do it only for λ, all other situations are treated similarly. We have

|λ(an−1
h,k , bn−1

h,k , cn−1
h,k )−λ(a, b, c)| ≤ Lλ

√

(an−1
h,k −a)2+(bn−1

h,k −b)2+(cn−1
h,k −c)2

≤ Lλ(|an−1
h,k −a|+|bn−1

h,k −b|+|cn−1
h,k −c|),(5.21)

where Lλ is the Lipschitz constant of function λ. Since all terms in the absolute values
on the right hand side of (5.21) can be estimated similarly, we do it in details just for
the first one |an−1

h,k − a|. A slight difference is only when treating |bn−1
h,k − b| and we

will also mention it later. We can use the following splitting and get

|an−1
h,k − a| ≤

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(xWE , tn−1) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, tn−1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, tn−1) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

Gρ ∗
(

∂Gt̃

∂x
∗ uh,k

)2
)

(s, t) −
(

Gρ ∗
(

∂Gt̃

∂x
∗ u

)2
)

(s, t)

∣

∣

∣

∣

∣

= J1 + J2 + J3.

Then subsequently

J1 ≤

∣

∣

∣

∣

∣

∣

∣

∫

RN

Gρ(xWE − ξ)





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ−

−
∫

RN

Gρ(s − ξ)





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ

∣

∣

∣

∣

∣

∣

∣

≤

≤
∫

RN

|Gρ(xWE − ξ) − Gρ(s − ξ)|





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

dξ ≤ Ch,

because of the fact that |xWE − s| ≤ h, C∞ smoothness of Gρ and because





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2

≤ C

∫

RN

(

∂Gt̃

∂x
(ξ − η)

)2

dη

∫

Ω

u2
h,k(η, tn−1)dη ≤

≤ C||uh,k(tn−1)||L2(Ω) ≤ C

holds for any ξ ∈ RN , using the Cauchy-Schwarz inequality, C∞ smoothness of Gt̃

and extension by 0 of uh,k outside a neighbourhood of Ω..
The second term can be written as follows

J2 =

∫

RN

Gρ(s − ξ)











∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, tn−1)dη





2
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−





∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, t)dη





2





dξ =

∫

RN

Gρ(s − ξ)K1dξ,

and for the term K1, using the relation |p2−q2| = |p+q||p−q|, we get for any ξ ∈ RN ,
t ∈ (tn−1, tn) that

|K1| =
∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, tn−1) + uh,k(η, t))dη

∣

∣

∣

∣

∣

∣

.

∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, tn−1) − uh,k(η, t))dη

∣

∣

∣

∣

∣

∣

≤ C
(

||uh,k(η, tn−1)||L2(Ω) + ||uh,k(η, tn)||L2(Ω)

)

||uh,k(t − k) − uh,k(t)||L2(Ω)

≤ C||uh,k(t − k) − uh,k(t)||L2(Ω),

where the Cauchy-Schwarz inequality and piecewise constant in time definition of uh,k

was used. Then also

|J2| ≤ C||uh,k(t − k) − uh,k(t)||L2(Ω)

because
∫

RN Gρ(s − ξ)dξ = 1 for any s.
For the third term we have

J3 =
∣

∣

∣

∣

∣

∣

∣

∫

RN

Gρ(s − ξ)











∫

RN

∂Gt̃

∂x
(ξ − η)uh,k(η, t)dη





2

dξ −





∫

RN

∂Gt̃

∂x
(ξ − η)u(η, t)dη





2

dξ







∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

RN

Gρ(s − ξ)K2dξ

∣

∣

∣

∣

∣

∣

and again due to the Cauchy-Schwarz inequality we get

|K2| =

∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, t) + u(η, t))dη

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

RN

∂Gt̃

∂x
(ξ − η)(uh,k(η, t) − u(η, t))dη

∣

∣

∣

∣

∣

∣

≤ C||uh,k(t) − u(t)||L2(Ω) + C||u(t)||L2(Ω)||uh,k(t) − u(t)||L2(Ω).

and so

|J3| ≤ C||uh,k(t) − u(t)||L2(Ω) + C||u(t)||L2(Ω)||uh,k(t) − u(t)||L2(Ω).

Let us note that for |bn−1
h,k − b| we can use the same approach as above, but

in the terms which would correspond to J2 and J3, we would use |p1q1 − p2q2| ≤
|p1(q1 − q2)| + |(p1 − p2)q2| in order to get the same estimates as above. For the
term |cn−1

h,k − c| we can use completely same approach as above. Putting together all
previous estimates we end the proof of Lemma 5.2. �

Next we also show that

λ̄σ ≥ C > 0, for all σ ∈ Eint.
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The matrices B and D, cf. (2.8), are similar and positive definite. We can write for
their traces

Tr(D) = Tr(B) = κ1 + κ2 ∈ [2α, α + 1].(5.22)

Thanks to (5.22), we have ν̄σ < Tr(D) ≤ α + 1. The use of determinants leads to

λ̄σ ν̄σ − β̄2
σ = |D| = |B| = κ1κ2 ≥ α2, and from it λ̄σ > α2

ν̄σ
> α2

α+1 = C.

It comes from regularity of the solution, boundedness of λ̄σ and application of
the Cauchy-Schwarz inequality that

B3B ≤ C(ω)h

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄σ − λ̄
)2

dsdt.

Lemma 5.2, regularity of u and inequality (a + b)2 ≤ 2a2 + 2b2 lead to

|B3B | ≤ 4C(ω)h2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

( h2 + ||uh,k(x, t − k) − uh,k(x, t)||2L2(Ω)

+ ||uh,k(x, t) − u(x, t)||2L2(Ω)

)

dt.(5.23)

Owing to geometrical arguments, we know that
∑

σ∈Eint

dWEm(σ) = C|Ω|,

which yields
∑

σ∈Eint

h2 = C|Ω|(5.24)

for our uniform square mesh. Now, we estimate each term on the right hand side of
(5.23). Thanks to relation (5.24) we simply bound the first term as follows

C(ω)h2
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

h2dt ≤ C(ω)|Ω|Th2.(5.25)

The second term can be rewritten again using the relation (5.24) in the form

C(ω)
m
∑

n=1

tn
∫

tn−1

||uh,k(x, t − k) − uh,k(x, t)||2L2(Ω)

∑

σ∈Eint

h2dt

≤ C(ω)|Ω|
T
∫

0

∫

Ω

(uh,k(x, t − k) − uh,k(x, t))2dxdt ≤ C(ω)k(5.26)

due to the time translate estimate, cf. Lemma 4.5. We treat the third term in the
similar way as previous one and obtain

C(ω)

m
∑

n=1

tn
∫

tn−1

||uh,k(x, t) − u(x, t)||2L2(Ω)

∑

σ∈Eint

h2dt
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≤ C(ω)|Ω|
T
∫

0

∫

Ω

(uh,k(x, t) − u(x, t))2dxdt = C(ω)||uh,k(x, t) − u(x, t)||2L2(QT )

= C(ω)||eh,k(x, t)||2L2(QT ) = C(ω)

m
∑

n=1

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt.(5.27)

Finally, applying (5.25), (5.26) and (5.27) in (5.23) we get

|B3B| ≤ C(ω)Th2 + C(ω)k + C(ω)

m
∑

n=1

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt,

which together with (5.11) result in

|B3| ≤
ω

2

m
∑

n=1

k
∑

σ∈Eint

λ̄σ (en
W − en

E)
2

+ C(ω)Th2 + C(ω)k + C(ω)

m
∑

n=1

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt.(5.28)

Using the same tricks as for the term B3 we can state that

|B4| ≤
ω

2

m
∑

n=1

k
∑

σ∈Eint

λ̄σ (en
W − en

E)
2

+ C(ω)Th2 + C(ω)k + C(ω)

m
∑

n=1

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt.(5.29)

As usual in finite volume methods, we rearrange the term B5 in the form

B5 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u(s, tn) · nW,σ

)

en
W dsdt

=
m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(

λ̄ΛWE + β̄ΛSN − D∇u(s, tn) · nW,σ

)

(en
E − en

W )dsdt

=

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

m(σ)



λ̄ΛWE + β̄ΛSN − 1

m(σ)

∫

σ

D∇u(s, tn) · nW,σds



 (en
E − en

W )dt.

Next step is to define an auxiliary unknown B5A by

B5A = λ̄ΛWE + β̄ΛSN − 1

m(σ)

∫

σ

D∇u(s, tn) · nW,σds.

Then we can write

|B5A| ≤

∣

∣

∣

∣

∣

∣

λ̄



ΛWE − 1

m(σ)

∫

σ

ūx(s, tn)ds



+ β̄



ΛSN − 1

m(σ)

∫

σ

ūy(s, tn)ds





∣

∣

∣

∣

∣

∣

.
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In order to estimate the tern B5A we use technique from [5]. Let us note that due to
simplification we omit the time variable here and provide only necessary arguments,
the complete proof can be found in chapter 9.6 of [5]. Let us define RW,σ as follows

RW,σ =
u(xE) − u(xW )

h
− 1

m(σ)

∫

σ

∇u(x) · nW,σds.

Using Taylor expansion and u ∈ C2(χσ), cf. Fig. 3.1, we have

u(xE) − u(x) = ∇u(x) · (xE − x) +

1
∫

0

H(u)[gx + (1 − g)xE ](xE − x) · (xE − x)g dg

and

u(xW ) − u(x) = ∇u(x) · (xW − x) +

1
∫

0

H(u)[gx + (1 − g)xW ](xW − x) · (xW − x)g dg,

where x ∈ σ and H(u)[z] is the Hessian matrix of u at a point z. Subtracting one
equation from the other and integrating over σ we get

|RW,σ | ≤ BW,σ + BE,σ,

where

BW,σ =
C

hm(σ)

∫

σ

1
∫

0

|H(u)(gx + (1 − g)xW )||xW − x|2g dgds

and BE,σ is given just changing W to E. To conclude, we note that xE−xW = hnW,σ.
Thanks to the Cauchy-Schwarz inequality and the fact that |xW − x| ≤ m(σ) we can
bound BW,σ in the following way

|BW,σ| ≤
Cm(σ)2

h
3
2





∫

χσ

|H(u)[z]|2dz





1
2

.(5.30)

The above mention facts lead to

|B5A| ≤ λ̄
C

h2

∫

σ

1
∫

0

|H(u)(gx + (1 − g)xE)(xE − x) · (xE − x)g| dgds

+ λ̄
C

h2

∫

σ

1
∫

0

|H(u)(gx + (1 − g)xW )(xW − x) · (xW − x)g| dgds

+ β̄
C

h2

∑

δ∈Pσ∩Eint

1

4

∫

σ

1
∫

0

|H(u)(gx + (1 − g)xEδ
)(xEδ

− x) · (xEδ
− x)g| dgds

+ β̄
C

h2

∑

δ∈Pσ∩Eint

1

4

∫

σ

1
∫

0

|H(u)(gx + (1 − g)xWδ
)(xWδ

− x) · (xWδ
− x)g| dgds.
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Owing to boundedness of the diffusion tensor elements, relation (5.30) and Young’s
inequality we can estimate the fifth term by

|B5| ≤ Ch
3
2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint





∫

χσ

|H(u)[z]|2dz





1
2

|en
E − en

W |dt ≤

ω

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt + C(ω)h3

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

χσ

|H(u)[z]|2
λ̄σ

dzdt,

which gives us

|B5| ≤ ω

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2

+ C(ω)h3||u||2L2(I,H2(Ω))dt.(5.31)

Concerning the last term, we can write

B6 = −2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(D∇u(s, tn) − D∇u(s, t)) · nW,σen
W dsdt

=

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

(D∇u(s, tn) − D∇u(s, t)) · nW,σ (en
E − en

W ) dsdt,

which can be split in the form

B6 ≤ C(ω)

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

((D∇u(s, tn) − D∇u(s, t)) · nW,σ)
2 m(σ)

λ̄σ

dsdt

+
ω

2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )2 dt

by the Young inequality. Properties of the matrix D together with the regularity of
the solution u lead to the following estimate for the first term

C(ω)

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

((D∇u(s, tn) − D∇u(s, t)) · nW,σ)
2 m(σ)

λ̄σ

dsdt

≤ C(ω)

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ





tn
∫

t

∂∇u(s, g)

∂g
dg





2

m(σ)dsdt

≤ C(ω)k

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

∫

σ

tn
∫

tn−1

(

∂∇u(s, g)

∂g

)2

dg m(σ)dsdt

≤ C(ω)k2‖∇ut‖L2(I,L∞(Ω)),
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where lower limit of the integration t ∈ (tn−1, tn]. And from the above mentioned
inequalities we get

B6 ≤ C(ω)k2‖∇ut‖L2(I,L∞(Ω)) +
ω

2

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt.(5.32)

At the end, we apply (5.9), (5.10), (5.28), (5.29), (5.31) and (5.32) in (5.8) to state
that for ω sufficiently small ( e.g. for ω ≤ 1

20 )

∫

Ω

|em
h,k|2dx +

m
∑

n=1

∫

Ω

|en
h,k − en−1

h,k |2dx +

m
∑

n=1

tn
∫

tn−1

∑

σ∈Eint

λ̄σ (en
E − en

W )
2
dt

≤ C

∫

Ω

|e0
h,k|2dx + C

(

k + h2
)

+ C

m
∑

n=1

tn
∫

tn−1

∫

Ω

|en
h,k|2dxdt.

Since for the initial error we have
∫

Ω

|e0
h,k|2dx ≤ Ch2

thanks to Gronwall‘s lemma we end up the proof. �

6. Numerical experiments. In this section, we are going to demonstrate prac-
tical advantages of our numerical scheme. To that goal we present and discuss the
results of several computational experiments performed by the scheme. The results
show that the diffusion improves the structure connectivity which enables to get good
segmentation of biological images.

The images used for these experiments come from the two-photon laser scanning
microscopy. They represent the corresponding cell membranes, cf. Fig. 6.1 (top left),
nuclei, cf. Fig. 6.1 (middle, left). In order to provide a segmentation we can also
put membranes and nuclei together and form one coupled image, cf. Fig. 6.1 (bottom
left). These 2D slices were chosen from 3D images showing early stages of the zebrafish
embryogenesis.

In experiments with our scheme for the nonlinear tensor anisotropic diffusion we
use the spatial step h = 0.01, time step k = 0.0001, C = 1, α = 0.001, t̃ = 10−5,
ρ = 0.002 for the membranes and coupled images and t̃ = 10−10, ρ = 0.1 for the
nuclei images. The arising linear systems are solved by the Gauss-Seidel iterations.

Figs. 6.1 and 6.2 demonstrate the behaviour of the nonlinear tensor anisotropic
diffusion applied to these 2D images. We can observe that this type of multiscale pro-
cess enhances the connectivity of the zebrafish embryo eye retina structures boundaries
while smoothing their interior. It enables to get much better results of the image seg-
mentation algorithms which depend on the structure connectivity. The most expres-
sive example of this connectivity improvement is represented by the processed nuclei
image and therefore we display the nuclei images in the enlarged form, cf. Fig. 6.2.
Although, in Fig. 6.2 (top), we can see only separate nuclei, we are able to recognize
the embryo structures in the original image. However, this simple task for a human
brain is nontrivial for the image segmentation algorithms. As we can see, it can be
overcome by pre-processing using the nonlinear tensor diffusion, cf. Fig.. 6.2 (bottom).
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Fig. 6.1. 2D slices of the 3D zebrafish embryo image. Left: original images. Right: filtered
images after 50 time steps. Top: cell membranes. Middle: cell nuclei. Bottom: membranes and
nuclei coupled together.
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Fig. 6.2. The images of cell nuclei from the Fig. 6.1.
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Fig. 6.3. The structure segmentation for the original image of coupled membranes and nuclei.
Top (left): the isolines of the final state of segmentation function. Top (right): the chosen isoline
of the final state of segmentation function. Bottom: the graph of the final state of segmentation
function. The results were obtained after 5000 segmentation steps.

In Figs. 6.3-6.6 we present the image segmentation results in order to show how
one can exploit improvement of the connectivity of coherent structures. We use the
image segmentation algorithm based on the subjective surface method [18] and its
semi-implicit finite volume implementation [14]. We start the segmentation construct-
ing an initial segmentation function centered in a segmented object. Then, in order
to extract a shape of the object, we evolve it by solving the so-called subjective sur-
face equation which is a special geometrical partial differential equation for moving
graphs by weighted mean curvature, cf. [18, 14]. Its solution evolves to a final state
with a shock profile which gives the segmentation result. To extract the shape of the
segmented object we take a proper isoline of the shock profile at the stopping time,
mostly naturally the average of maximal and minimal value of the final segmentation
function.

In Fig. 6.3 we present the segmentation results obtained using the original image
of coupled membranes and nuclei, cf. Fig. 6.1 (bottom left). Due to a great number
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Fig. 6.4. The structure segmentation for the filtered image of coupled membranes and nuclei.
Top (left): the chosen isoline of the final state of segmentation function. Top (right): the same
isoline of the final state of segmentation function displayed on the original image. Bottom: the
graph of the final state of segmentation function. The results were obtained after 200 segmentation
steps.

of noisy structures as well as structures represented by individual membranes and
nuclei in the original image, the segmentation algorithm is not able to find the cor-
rect boundary of the segmented embryo structure. The isolines of the final state of
segmentation function are depicted at the top left of the figure, the mean isoline at
the top right and the graph of the final state of segmentation function at the bottom
of the figure.

We can compare this segmentation result with the ones obtained using the filtered
images presented in Figs. 6.4-6.6. The mean isoline of the final state of segmentation
function is shown at the top of the figures, where we display it together with the
filtered image (top left) and with the original one (top right). The graph of the final
state of segmentation function is shown at the bottom of the figures. As one can
clearly see, almost all isolines are accumulated along the structure boundary due to
the correct shock profile obtained using the filtered image and thus the mean isoline
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Fig. 6.5. The structure segmentation for the filtered image of membranes. Top (left): the
chosen isoline of the final state of segmentation function. Top (right): the same isoline of the final
state of segmentation function displayed on the original image. Bottom: the graph of the final state
of segmentation function. The results were obtained after 200 segmentation steps.

correctly represents the biological structure.
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